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The purpose of this paper is to review recent work on four key challenges in fisheries
science and management: (1) dealing with pervasive uncertainties and risks; (2) estimating
probabilities for uncertain quantities; (3) evaluating performance of proposed management
actions; and (4) communicating technical issues. These challenges are exacerbated in
fisheries that harvest multiple stocks, and various methods provide partial solutions to them:
(i) risk assessments and decision analyses take uncertainties into account by permitting
several alternative hypotheses to be considered at once. (ii) Hierarchical models applied to
multi-stock data sets can improve estimates of probability distributions for model
parameters compared with those derived through single-stock analyses. (iii) Operating
models of complete fishery systems provide comprehensive platforms for testing
management procedures. (iv) Finally, results from research in such other disciplines as
cognitive psychology can facilitate better communication about uncertainties and risks
among scientists, managers, and stakeholders.
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Introduction

Fisheries scientists and managers face many significant

challenges; here are four.

1. Uncertainties and the risks they create are pervasive

owing to natural variability in components of aquatic

ecosystems, imperfect information about those compo-

nents, and lack of perfect control over fisheries.

2. It is difficult to estimate probabilities for the uncertain

factors in stock assessments.

3. Fisheries scientists who provide advice to managers

must comprehensively take into account uncertainties

and risks in their analyses of management options.

4. Scientists must communicate complex and technical

results effectively to decision makers and the public.

These challenges apply to most fisheries situations, but they

are amplified where a single stock is harvested sequentially

by different fisheries, or where multiple stocks are harvested

in one fishery (multi-stock fisheries). Methods for respond-

ing to these challenges are widely applicable and are not re-

stricted to multi-stock situations. In some cases, multi-stock
1054-3139/$30.00 � 2004 International Cou
situations can provide opportunities to deal with certain

challenges, as will be shown later.

This paper has two purposes. First, it elaborates on these

challenges facing fisheries scientists and managers. Second,

it describes some potential solutions to each challenge by

reviewing recent research. Although most examples here

are from Pacific salmon (Oncorhynchus spp.) fisheries, the

lessons learned are applicable to other species.

Challenges and some possible solutions

Challenge 1: uncertainties and risks are
pervasive

To put the challenges facing fisheries scientists and

managers into context, consider a typical fishery system

(Figure 1). The natural aquatic system is sampled by

scientists and harvesters, and the resulting data are used by

stock assessment scientists to estimate abundance, pro-

ductivity, recruitment, and other attributes of a stock. The

resulting model is used to estimate how several potential

management actions, such as various harvest rates or

enhancement activities, might affect outcomes. Scientists
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

mailto:peterman@sfu.ca


1332 R. M. Peterman

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/61/8/1331/631060 by U
.S. D

epartm
ent of Justice user on 16 August 2022
then provide stock assessment advice to fisheries managers

and interested parties (stakeholders), ideally with some

iterative feedback. Managers consider their management

objectives along with input from stock assessment scientists

and stakeholders before recommending a particular action,

such as a harvest rate, which then affects the natural system.

Such fishery systems contain numerous sources of

uncertainty (ellipses in Figure 1). Five are:

(i) the natural variability across space and time in

distribution, abundance, and productivity of fish

populations;

(ii) observation error (i.e. imperfect information), which

arises from measurement error as well as sampling

error (Mace and Sissenwine, 2002);

(iii) the difficulties associated with communication among

scientists, managers, and stakeholders about techni-

cal scientific information and its associated uncertain-

ties;

(iv) unclear management objectives;

(v) implementation error, which is the difference bet-

ween a management goal and the actual realized

spawning-stock biomass or fishing mortality rate, for

example.

These uncertainties can be large and can affect in-

terpretation of data, the results of analyses, the rank orders

of management options, and the effectiveness of those

options. Uncertainties are therefore important because they

create risks: biological risks for fish populations, economic

losses for those in the fishing industry, and social

disruptions for people in fishing-dependent communities.

Uncertainties are pervasive and occur in all fishery systems

to varying degrees. Consequently, most decisions in

fisheries management should take uncertainties into

Stakeholders

Natural
aquatic system

Observation
error

Management
objectives

Lack of
clarity

Implementation
error

Stock assessment
What
we
know

What
we
don't know

Fisheries managers

Fishing regulations
(closed areas,

harvest rate, ...)

Sampling, data collection

Harvesting

Natural
variability

Communi-
cation

Figure 1. A conceptual diagram of the flow of information and

actions in a typical fishery system. Rectangles represent compo-

nents of the system, solid arrows indicate flows of information and

actions between components, and ellipses represent major sources

of uncertainty (adapted from C. J. Walters, pers. comm.; Hilborn

and Peterman, 1977; de Young et al., 1999).
account. This applies to decisions not only concerning

harvest regulations, but also the design of monitoring

schemes and activities such as ocean ranching or other

attempts to increase abundance of fish stocks.

Potential solutions to Challenge 1

That stock assessments can account for uncertainties is well

known; the challenge of pervasive uncertainties has been

met by increasingly sophisticated technical tools. For

instance, it is no longer widely acceptable to provide

scientific advice to managers on possible consequences of

management actions based only on best-fit, or point,

estimates of current stock biomass and productivity

parameters of stocks. Stock assessments in many regions

now routinely take several sources of uncertainties into

account quantitatively [National Research Council (NRC),

1998; Quinn and Deriso, 1999]. This includes assessments

made for the stocks investigated through the International

Council for the Exploration of the Sea (ICES), an

organization in which growing emphasis on conservation

concerns and application of a precautionary approach

(FAO, 1995) has led many analysts to estimate probabilities

that stock indicators will cross reference points (Lassen and

Sparholt, 2000). Further, the European Commission is

actively encouraging policy-orientated research that takes

uncertainties into account and includes risk assessments.

Risk assessments and decision analysis have also been

particularly useful for evaluating a broad range of

management options in the context of uncertainties (Francis

and Shotton, 1997; McAllister and Kirkwood, 1999).

Risk assessment

To avoid misunderstandings, fisheries scientists, managers,

and stakeholders should always clearly state what they

mean by the term ‘‘risk’’. Technically, it has two

components, the magnitudes of adverse consequences that

will arise from events that are uncertain, and the chances

(i.e. probabilities) of those events and their consequences

occurring. ‘‘Risk assessment’’ (i.e. risk analysis) refers to

the general process of estimating both components of risk,

not just one or the other.

As yet, there is no standardized risk-assessment pro-

cedure for fisheries situations, let alone ecological systems

in general, although various broad frameworks for the latter

have been developed (Power and McCarty, 2002). This lack

of standardized methodology is partly because those that

have been developed were mainly derived in the early

1990s from specialized procedures for estimating human

health risk from toxic chemicals [National Research

Council (NRC), 1993]. Therefore, ecological risk assess-

ment is a relatively new field and methods are continually

evolving (and can be found within the pages of such

journals as Risk Analysis and Human and Ecological Risk

Assessment).
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Generally, a typical risk assessment in fisheries manage-

ment includes five components. (i) First is a management

objective, which often includes factors such as expected

catch, variation in catch over time, and probability of the

spawning biomass or other variable crossing a limit

reference point (a condition to be avoided). Indicators are

identified to measure how well a management objective is

expected to be met. (ii) Several management options are

considered for achieving the objective. (iii) A stochastic

risk-assessment model of system processes includes (iv)

a wide range of quantified hypotheses about those pro-

cesses, i.e. different parameter values or structural forms of

relationships among variables. (v) Uncertainties are taken

into account by weighting these alternative hypotheses and

their consequences by the degree of belief in them or their

probability of occurrence. The model then estimates the

probability distribution of outcomes or other indicators for

each proposed management action. Risk assessments are

usually linked to further analyses, such as the procedure for

decision analysis described next.

Decision analysis

It is not sufficient for decision makers merely to see

a description and quantification of uncertainties and risks.

They want to know how uncertainties and risks affect the

ability of each potential management option to meet

particular management objectives. To provide this in-

formation, scientists often conduct formal quantitative

decision analyses (Walters, 1986; Clemen, 1996; Peterman

and Anderson, 1999), which add three new components to

the five already mentioned for risk assessment: (vi)

a decision tree or decision table to help structure the

analysis and communicate its content, (vii) a ranking of

management options that results from conducting the

decision analysis, and (viii) extensive sensitivity analyses

to show decision makers the effects of changing various

assumptions on that rank order of management options. In

this context, procedures for risk assessment can be thought

of as a subset of decision analysis (Figure 2).

Decision analysis has several advantages over standard

approaches to decision making. First, by taking uncertain-

ties into account explicitly, decision analysis often indicates

that the best management option for meeting an objective

will be different from that recommended by a simpler

analysis based only on point estimates of parameters and

state variables, i.e. an option that ignores uncertainties

(Reckhow, 1994; Frederick and Peterman, 1995). For

example, Robb and Peterman (1998) found that the adult

abundance estimate for returning Nass River (British

Columbia, Canada) sockeye salmon (O. nerka) that was

optimal for opening an upstream First Nations fishery was

40 000 fish when only point estimates of model components

were used. In contrast, when a decision analysis was

conducted that took into account uncertainty in both the

structural form of the stock-recruitment relation as well as
its parameters, that optimal abundance tripled to 120 000

fish. The main reason for a decision-analysis result being

different from the deterministic analysis is that, in fisheries

systems, losses associated with deviating from an optimal

state are usually asymmetric (e.g. where loss in long-term

value of catch is higher for a spawning biomass that is 50%

below some desired level than if it is 50% above).

Similarly, probability distributions for uncertain quantities

are often asymmetric. Given either of these conditions, it

usually becomes optimal to choose an action that ‘‘hedges’’

away from the higher potential losses (Reckhow, 1994).

When decision makers consider political, economic, and

social pressures, the final recommended action may or may

not still hedge in this direction.

A second benefit of decision analysis is that it can

include various structural forms of models as alternative

hypotheses in a single analysis. This is important, because

mis-specification of a model’s components (compared with

the real-world situation) may produce inaccurate estimates

of outcomes, and yet we usually do not know the model’s

correct specification. A significant point is that decision

analysis does not require scientists, stakeholders, or others

to agree on which single model should be used in analyses

of management options. Instead, several alternative models

can be included.

Such alternatives create two important limitations of

decision analysis; analysts must choose not only which

alternative models are legitimate and necessary for in-

clusion, but also they must assign a probability to each

model. Such choices may influence the rank order of

actions, particularly in cases where data are relatively

uninformative about the alternative models (i.e. unable to

distinguish among them) and where different models lead to

considerably different predictions. As yet, there is no

definitive answer to this problem. This is a complex topic

• Management objectives
• Management options
• Model of system processes
• Uncertain hypotheses
• Weights on hypotheses

• Decision tree or table
• Rank management

• Sensitivity
• Consider other

• Make trade-offs

Risk assessment

(Risk analysis) Decision analysis

options

analyses

Risk management

(Make decisions)

factors

Figure 2. Risk assessment or risk analysis is a component of

a decision analysis, which considers uncertainties and risks when

ranking management options in the context of a stated management

objective. Results from these analyses provide advice to decision

makers (risk managers), who also consider other information.

Arrows indicate flows of information, including iterative feedback.
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beyond the scope of this paper, but Punt and Hilborn (1997)

and McAllister and Kirchner (2002) provide useful advice.

Perhaps the most extensive example of a decision

analysis in fisheries management is a recent evaluation of

recovery plans for seven depleted populations of spring and

summer chinook salmon (O. tshawytshca) from the Snake

River sub-basin of the Columbia River system in the

northwestern United States (Peters and Marmorek, 2001).

Those stocks were listed under the US Endangered Species

Act. Adult and juvenile fish migrate through several

reservoirs and dam systems, and also face problems from

nearby agricultural lands, harvesting, hatcheries, predation,

and changing ocean conditions. Large uncertainties about

the various factors that contributed to reduced stock

abundance over several decades led to contentious debates

about interpretations of data and which salmon population

model was most appropriate for evaluating management

options designed to achieve their recovery (Marmorek and

Peters, 2001)1. A decision-analysis framework defused

some of the debate by including multiple hypotheses and

models in one analysis along with uncertainties in them

(Peters and Marmorek, 2001).

The decision analysis was aimed at identifying accept-

able actions to be implemented by the US National Marine

Fisheries Service. One example of a quantitative manage-

ment objective (the ‘‘recovery’’ objective) was to find

a management action with at least a 50% chance of having

six of the seven Snake River stocks exceed their respective

desired target spawner abundances during the last 8 of the

next 48 years (Peters and Marmorek, 2001). Other

management objectives considered had a similar format.

This approach (using the top six of seven stocks) assigned

priority to the best-off stocks, while recognizing that there

was some non-zero probability that the recommended

action would not be successful for all stocks. This approach

to structuring a multi-stock management objective may be

useful in other fisheries.

A decision tree reflects some key elements of the Snake

River chinook salmon problem (Figure 3). These elements

dealt largely with uncertainties in data and hypotheses

about mechanisms operating during downstream freshwater

migration by juveniles, as well as delayed mortality effects

in the ocean. The uncertainties, hypotheses, and outcomes

were incorporated into a stochastic simulation model. A

wide range of weightings for alternative hypotheses were

evaluated and one of the management options (A3),

removing the four lower Snake River dams, was the

highest-ranked and most robust option after extensive

sensitivity analyses were conducted across a wide range of

assumptions (Peters and Marmorek, 2001).

This example for the endangered Snake River chinook

salmon stock also illustrates that decision analysis is

a useful framework for focusing efforts of members of

1 Available on line at http://www.consecol.org/vol5/iss2/art8.
a diverse multi-stakeholder team, and taking into account

their sometimes strongly differing views about hypotheses

and uncertainties (Marmorek and Peters, 2001).

Three recent examples also illustrate the benefits of

decision analysis; the first two apply to problems in the

ICES region. Kuikka et al. (1999) explored how environ-

mental uncertainties affect recruitment and growth of Baltic

cod (Gadus morhua), which in turn affect the optimal mesh

size for managing that fishery. That decision analysis

demonstrated that increased mesh size would reduce the

probability of stock collapse and also meet other manage-

ment objectives. That method of analysis has been accepted

formally within the ICES region as a basis for scientific

advice to managers for Baltic cod. Another decision

analysis on Baltic cod also showed that reduced fishing

mortality was necessary to lower the probability of stock

collapse substantially; this result was robust to various

assumptions about the structure of the model (Jonzén et al.,
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Figure 3. A simplified decision tree representing the main

elements of an analysis of management options for meeting

a recovery objective for 7 spring and summer chinook salmon

populations from the Snake River (western United States) that were

listed under the US Endangered Species Act. The three main

management actions (out of six actually considered) were status

quo (A1), maximize barging of juveniles during downstream

migration instead of letting them swim through the entire

hydroelectric power system (A2), and remove the four lower

Snake River hydroelectric dams (A3). Numerous uncertain

hypotheses (only some of which are shown, as reflected by .
symbols) are grouped into three categories, survival rate of

juveniles inside the hydroelectric power system (i.e. the sets of

dams and reservoirs), survival rate outside that system, and the

timing and physical/biological effects on the river of removing the

dams. Each hypothesized uncertain state of nature had a probability

of occurrence (Pi,j,k), which was varied in later sensitivity analyses.

The model calculated an outcome (in terms of the number of

chinook stocks recovering) for each combination of management

action and uncertain state of nature; only one example set of

stochastic outcomes is shown. Management options were ranked

based on the expected (weighted average) outcomes across all

possible states of nature (adapted from Peters and Marmorek,

2001).

http://www.consecol.org/vol2/iss1/art2.
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2002). Finally, Punt et al. (2002) used decision analysis

extensively to evaluate harvesting options for Australia’s

multi-stock, multispecies Southeast fishery.

Clearly, risk assessment and decision analysis are useful

methods for dealing systematically with some of the

uncertainties and risks facing fisheries scientists and

managers. Alternative hypotheses can be incorporated into

a single analysis, numerous uncertainties can be taken into

account explicitly, and the rank order of management

options can be identified under a variety of assumptions

through sensitivity analyses. Actions may emerge that are

robust to such a range of assumptions.

Despite these benefits, risk assessment and decision

analysis cannot resolve all issues related to uncertainties

and risks. The methods have serious limitations in addition

to the two already mentioned (choosing which alternative

models/hypotheses to include, and how to weight them).

First, where a management objective includes conflicting

components, such as maximizing catch but minimizing the

chance of stock collapse, decision analysis cannot indicate

the action that makes the best trade-off between those

components; managers must make that trade-off. The only

exceptions are if those components are expressed in

common units such as utility, or if one or more components

imposes an absolute constraint. A second limitation arises

from deciding on the variables and processes to include in

an analysis. Because the omitted processes likely also have

associated uncertainties, any risk assessment or decision

analysis can lead to overconfidence in the results. This is

also true of any other quantitative approach. Third, risk

assessments and decision analyses are difficult to describe,

especially to non-technical people who use the results.

Finally, not only is expertise in these methods limited, so is

time. There may not be enough expertise or time to apply

advanced methods as part of annual stock assessments,

which already consume considerable time and effort. To

help deal with time constraints, comprehensive risk

assessments and decision analyses could be most useful

for developing pre-agreed state-dependent and time-

independent management procedures (control rules, man-

agement strategies) that are intended to be in place for

a considerable period before being re-evaluated (McAllister

and Kirkwood, 1999). This topic is expanded upon later

under Challenge 3.

Risk management

Risk management is the process in which decision makers

‘‘manage the risks’’ by selecting a particular action, or set

of actions. They do so after taking into account scientific

advice from a risk assessment, decision analysis, or stock

assessment, as well as other factors not considered

explicitly in those analyses (Figure 2). Because of these

‘‘other factors’’, risk management is not a purely scientific

process; it involves subjective judgements about compro-

mises or trade-offs. There is no scientifically ‘‘correct’’
weighting for catch, year-on-year variation in catch, or

probability that a fish stock will fall below a biomass limit

reference point. Nevertheless, results from risk assessments

can indicate how much of one of these indicators will be

lost for a given gain in another, under each management

option.

Clear communication is critical to risk management. To

improve the efficiency and effectiveness of decision

making, and to ensure that all scientific information is

understood, there needs to be an iterative, two-way flow of

information among people responsible for risk analysis,

decision analysis, and risk management, as well as between

these people and stakeholders.

Challenge 2: estimating probabilities
for uncertain quantities

Another challenge for fisheries scientists is to estimate

probabilities, or degrees of belief, for parameters that are

considered uncertain. We can

(i) directly calculate probabilities from a lengthy data set,

such as annual water levels in a river,

(ii) use expert judgement, or

(iii) use the data available along with Bayesian methods to

produce a posterior probability distribution (Ellison,

1996; Punt and Hilborn, 1997).

There are difficulties with all three approaches. The first

is not commonly used because lengthy data series for

uncertain components are rare in fisheries. Even where such

series exist, questions arise about relevance of very old data

because underlying processes can change. The second

approach, seeking expert opinion, is used widely. However,

such elicitations of expert judgements are well known by

cognitive psychologists to be subject to bias, and incorrect

estimates of precision are attributable to many factors

(Morgan and Henrion, 1990, p. 102). For instance, if

a question is ambiguous concerning the exact quantity

about which an opinion is being sought, each expert in

a group might think about a different location, season, life

stage, etc., when giving their opinion. This would make the

distribution wider than it should be and might also bias it.

An unambiguous question will ensure that experts’

responses reflect only uncertainty about the parameter’s

value, rather than uncertainty about which entity the

parameter represents (the ‘‘clarity test’’ of Morgan and

Henrion, 1990, p. 50).

The third approach for describing uncertainties in stock

assessments, using available data in conjunction with

Bayesian statistical methods, is increasingly used, but it is

far from widespread [National Research Council (NRC),

1998]. A prior probability distribution can be combined

with a likelihood distribution derived from data, and the

resulting posterior probability distribution can quantify the

degree of belief in different values of some parameter. Such

posterior probabilities can then be used in a risk analysis
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and decision analysis to weight various hypotheses about

the value of the parameter. One major challenge about this

third, or Bayesian, approach to describing uncertainties is to

find means of deriving defensible prior probability

distributions. When data are not too informative about an

uncertain parameter owing to data paucity, low contrast, or

large natural variability and observation error, for example,

the shape of the posterior probability distribution is greatly

affected by the choice of the prior probability distribution

(Ellison, 1996). This can have important management

implications. For example, if the resulting posterior

probability distribution is too narrow, it may underestimate

the probability of extreme cases that lead to deleterious

conservation outcomes. This general problem is acute for

relatively unproductive stocks that are a conservation

concern (Rivot et al., 2001); such stocks typically have

relatively few data and there is a potentially high cost of

incorrectly estimating the probability of decline or recovery

of a stock. For this reason, some researchers argue that,

given relatively non-informative data, it is most appropriate

to use a completely non-informative prior probability

distribution for a parameter to avoid biasing the posterior

(Walters and Ludwig, 1994; Punt and Hilborn, 1997).

Others argue for using independent biological information

where it is available to create an informative prior (e.g.

a narrow normal distribution; McAllister et al., 1994,

2001). In situations with data that are very informative

about the uncertain quantity, the nature of the prior is

relatively unimportant, because the narrow likelihood will

dominate the calculation of the posterior.

Potential solutions to Challenge 2

A hierarchical model is a quantitative tool that can help

produce defensible informative priors through use of large

sets of data on multiple populations. Rather than assuming

that each population’s parameter values are statistically

independent from those of other populations, hierarchical

models allow for some underlying structure or pattern in the

parameters. For instance, all stocks of a given species might

be assumed to have a maximum reproductive rate that is

drawn from a single normal probability distribution that has

a mean and variance (e.g. Myers et al., 1999). Such models

are hierarchical in the sense that each population’s value of

some uncertain parameter, such as parameter ai of the

Ricker (1975) stock-recruitment model [Equation (1)

below], represents a sample from a distribution that is

described by unknown parameters, which must also be

estimated. Hierarchical models include mixed-effects mod-

els ( fixed and random effects) estimated by classical or

Bayesian methods. Such models have proven very useful

for combining information across multiple populations of

the same species, as well as across species, or across years

(Liermann and Hilborn, 1997; Myers et al., 1997, 1999,

2001; Adkison and Su, 2001; Myers, 2001; Su et al., 2001;

Chen and Holtby, 2002; Mueter et al., 2002). Those
analyses identified generally consistent and limited ranges

of values for particular parameters, such as maximum

annual reproductive rates across fish species worldwide

(Myers et al., 1999), and a narrow range of coefficients

reflecting the effects of summer sea surface temperature on

survival rates of Pacific salmon populations (Mueter et al.,

2002; Su et al., 2004). In the absence of other information,

such results are useful either for establishing prior

probability distributions for parameters to be used in

Bayesian updating, or for directly specifying posterior

probability distributions or weightings to be used in

decision analyses.

To illustrate the usefulness of hierarchical models,

consider the common problem of estimating parameters

of fisheries models in the presence of large natural

environmental variation, which tends to mask parameter

values. To the extent that multiple stocks share common

environments, they should show similar responses to

environmental variation. Indeed, numerous studies have

documented positive covariation among stocks in particular

variables across several hundreds of kilometres, and as

stocks become increasingly separated, the correlation

approaches zero. Such studies cover a variety of species

and locations, including Pacific herring (Clupea pallasaii;

Ware and McFarlane, 1989); North Sea and North Atlantic

fish (Shepherd et al., 1984), Baltic salmon (Salmo salar;

McKinnell and Karlström, 1999), Northeast Pacific sockeye

salmon, pink salmon (O. gorbuscha), and chum salmon

(O. keta; Peterman et al., 1998; Pyper et al., 2001, 2002),

and numerous other marine and freshwater species (Myers

et al., 1997). Hierarchical models take advantage of such

situations by attributing some of the observed variation to

responses that are shared among stocks (i.e. are common to

them), thus permitting more precise estimates of model

parameters. Such models therefore ‘‘borrow strength or

information’’ from stocks with similar parameter values.

An example for 43 pink salmon stocks in the Northeast-

ern Pacific Ocean demonstrates the benefit of applying

a hierarchical Bayesian model (HBM). The pink salmon

stocks with ocean entry points for seaward-migrating

juveniles that are less than w500 km apart show positive

covariation in residuals from their stock-specific, best-fit

Ricker stock-recruitment models (Pyper et al., 2001). In our

hierarchical Bayesian analysis of pink salmon, this positive

covariation among stocks permitted stocks to be treated as

‘‘statistical replicates’’ when a model was fitted; this tended

to average out observation errors across stocks (Su et al.,

2004). We used a generalized Ricker model:

logeðRit=SitÞZai � biSitCgiSSTitC3it ð1Þ

where Sit is the spawner abundance of stock i in brood year

t and iZ 1, ., 43, Rit the resulting recruitment, ai and bi
parameters of the basic Ricker model, gi the coefficient

reflecting the effect of summer sea surface temperature

(SSTit) in the region where each stock’s juveniles spend
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their first four months in the ocean, and 3it is the residual

variation. We used spatially correlated prior distributions to

reflect possible regional similarity of the stock-specific ai
and gi parameters (Su et al., 2004).

This multi-stock hierarchical Bayesian model gave more

precise estimates of the ai and gi parameters than separate

analyses of each stock (Figure 4; Su et al., 2004). These

narrower posterior probability distributions permit im-

proved estimates of biological reference points that are

affected by these parameters, because some of the

environmentally induced variation in productivity has been

better accounted for than in single-stock analyses. The

probability distributions can also be used to weight

different combinations of parameter values in decision

analyses.

Therefore, although multi-stock situations normally

create problems for scientists and managers (perhaps

caused by simultaneous harvesting of several stocks with

different productivities) in situations where several stocks

respond similarly to some variable, hierarchical models can

improve stock assessment information. Such models pro-

vide a consistent method for estimating informative prior

probability distributions that are more precise for particular

parameters than if populations were analysed separately.

Nevertheless, hierarchical models and Bayesian

approaches are not panaceas; they have limitations too.

A hierarchical model will not be beneficial for estimating

parameters unless they are at least somewhat similar across

data sets. For instance, quantities such as a salmon stock’s

unfished equilibrium abundance may differ considerably

between even nearby stocks as a consequence of human-
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Figure 4. Averages across 43 pink salmon stocks from the

Northeastern Pacific (Washington state, USA, through to western

Alaska) of coefficients of variation (standard deviation divided by

the mean) for estimates of ai and gi in Equation (1). Open bars in

each pair are for estimates derived from fitting Equation (1) to each

stock’s data separately; solid bars are for estimates from the multi-

stock hierarchical Bayesian model (results adapted from Su et al.,

2004).
induced or natural differences in freshwater habitat. In such

a case, the uncertainty about any single stock’s unfished

equilibrium abundance will be reduced little, if any, by

applying a hierarchical model that uses data from other

nearby stocks. In addition, the hierarchical modelling

approach will not be particularly advantageous when there

are only a few data sets on different populations. Also,

although estimates of parameters from hierarchical Bayes-

ian models usually have lower mean-squared errors (are

statistically ‘‘more efficient’’) than estimates from separate

Bayesian analyses of single data sets (Gelman et al., 1995),

the performance of such hierarchical estimators needs to be

evaluated with ‘‘operating models’’ (see Challenge 3

below) to generate numerous realizations of multiple data

sets in order to determine the performance of the Bayesian

estimates.

Bayesian methods for estimating probabilities for un-

certain quantities also have limitations. Complex fish stock

assessment models that contain numerous uncertain param-

eters require sophisticated and computationally intensive

techniques. In such situations, joint and marginal posterior

probability distributions can be estimated with sampling-

importance-resampling (SIR) algorithms (Rubin, 1988) or

Markov Chain Monte Carlo (MCMC) methods (Gelman

et al., 1995). The latter can be used by employing relatively

new software (e.g. WinBUGS; Spiegelhalter et al., 1999).

However, problems can result from the nonlinear nature of

most fisheries models, in which estimates of two different

parameters may be correlated, for instance. This can cause

convergence problems for MCMC methods. In such cases,

careful re-parameterization of the model is necessary (e.g.

Meyer and Millar, 1999). Care should be taken to choose

the appropriate scale for non-informative priors in fisheries

models. For example, parameters such as s in lognormal

models should have a flat prior on the log(s) scale (Gelman

et al., 1995; Millar, 2002). It is often difficult to find non-

informative priors, especially for variances of random

effects in hierarchical models. Therefore, sensitivity

analyses must also be conducted with different priors to

determine the extent to which they affect the posterior

distribution.

Finally, all fisheries models, including hierarchical

Bayesian ones, will result in incorrect estimates of

parameters and inappropriate management advice if the

models assume (as most do) that parameters are constant

over time when they in fact vary temporally. For instance,

body size and stock productivity can change with climate,

so models should reflect these possibilities. State-space

models (Chatfield, 1989) can deal with time-varying

parameters, and many fisheries scientists have used this

approach, most commonly by applying a Kalman filter

(Collie and Sissenwine, 1983; Walters, 1986; Mendel-

sohnn, 1988; Pella, 1993; Schnute, 1994; Millar and Meyer,

2000; Peterman et al., 2000, 2003). However, state-space

models have been limited to relatively simple fisheries

situations.
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Challenge 3: evaluating the performance
of management options

Even if the challenges described above are met, scientists

and managers will still be uncertain about the management

option that will best meet a given management objective or

set of objectives, owing to complex interactions and

feedbacks among components of fishery systems (Figure 1).

Potential solutions to Challenge 3

Given a clearly stated objective, simulations can be done to

evaluate relative performances of proposed management

options. Although fisheries scientists routinely conduct

stochastic simulations, the most comprehensive method to

evaluate options is to simulate the entire feedback system

shown in Figure 1 (not just part of it) using an ‘‘operating

model’’ (Linhart and Zucchini, 1986). Such models are

analogous to flight simulators; the latter include detailed

dynamic feedback processes to help pilots determine which

decision-making protocols are best in the presence of

a wide range of possible, but uncertain, simulated

contingencies. Similarly, operating models of fisheries

typically aim to identify robust decision-making rules by

simulating six components:

(i) the stochastic dynamics of a ‘‘true’’ (i.e. assumed)

natural population;

(ii) samples of indices of abundance or other data from

that ‘‘true’’ population, including observation error;

(iii) where needed, a stock assessment step that uses those

sampled data to update annual estimates of state

variables and parameters;

(iv) state-dependent harvest control rules that specify the

effect of either sampled indices or stock assessment

estimates on the choice of management actions;

(v) implementation of those actions, including error; and

(vi) the effect of those realized actions on the ‘‘true’’

population (Punt, 1992; de la Mare, 1996, 1998;

Sainsbury, 1998).

This process is usually repeated over many simulated

decades in thousands of Monte Carlo trials, with indicators

calculated to determine how well a given management

objective is met. Indicators for each of several objectives

can be produced.

Normally, operating models are used to explore numer-

ous situations and structures for the first four components

above. For example, a wide range of alternative hypotheses

about scenarios for the ‘‘true’’ population are considered

routinely in successive simulations. The specific nature and

form of components (ii), (iii), and (iv) (collectively often

called a management procedure or strategy; de la Mare,

1996) can be varied across runs of the operating model to

determine the best combination of sampling procedure (e.g.

sampling methods and times/places to sample), types of

models and parameter-estimation methods (e.g. constant or
time-varying parameters, maximum likelihood or Bayesian

updating), and harvest control rules (functional forms and

parameter values). The final result is usually a relative

ranking of management procedures based on those that are

most robust to a wide range of conditions. Just as with

decision analysis, sensitivity analyses should also be

conducted to indicate how that ranking changes with

different management objectives.

The fifth component of an operating model, implemen-

tation error, is extremely important. It is the deviation

between a desired state and the actual realized outcome

(Rosenberg and Brault, 1993; Rice and Richards, 1996).

This error typically arises from a combination of non-

compliance with regulations by harvesters, changing

catchability, and other dynamic processes in the fishing

fleet. Implementation error can be a large source of

variation, yet it is rarely included in the exploration of

management options in stock assessments. Such omission

leads to overconfidence in the effectiveness of proposed

management actions. To rectify this situation, analysts can

include implementation error by employing a stochastic

harvesting process in an operating model based on

historical data or hypotheses.

Such comprehensive operating models of entire fishery

systems provide a strong test of robustness of management

options (Cooke, 1999). An excellent and early example of

operating models to evaluate management procedures was

the International Whaling Commission’s (IWCs) develop-

ment of the Revised Management Procedure (RMP; IWC,

1994; de la Mare, 1996; Kirkwood, 1997). The IWCs

analyses explored many shapes of functions for the harvest

control rule while taking into account uncertainties in

estimates of whale abundance. Those analyses also

examined model performance under numerous combina-

tions of uncertainty in stock identity in multi-stock fisheries

and temporal trends in abundance of whales resulting from

environmental changes or interactions with other species.

The harvest control rule that performed best for whales was

robust to these sources of uncertainty (de la Mare, 1996).

Operating models have also been applied in many other

situations [see Smith, 1993; Butterworth and Punt, 1999,

and several papers published in Volume 56(6) of the ICES

Journal of Marine Science; Peterman et al., 2000].

European Commission and ICES scientists are currently

actively developing operating models for a wide variety of

fisheries in the ICES region to derive robust management

procedures (including harvest control rules; Kell et al.,

1999). The general conclusion from past work on this topic

is that such comprehensive simulations of sources of

uncertainties provide different recommendations to decision

makers than if only a subset of those uncertainties were

analysed.

Nevertheless, operating models can be formidable to

implement. Not only do they require advanced expertise,

but more processes must be included than in most standard

stock assessment models. These processes include a



1339Some challenges facing fisheries scientists and managers

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/61/8/1331/631060 by U
.S. D

epartm
ent of Justice user on 16 August 2022
description of potential sampling errors, which are usually

unknown. Intangible or other factors that are not simulated

may strongly influence the performance of some control

rule when it is applied ‘‘in the field’’, leading to

overconfidence in the results of the operating model.

Further, time constraints often preclude analyses with

operating models.

Challenge 4: communication

Communication among scientists, managers, and stake-

holders is another source of uncertainty or error that

influences fishery systems (Figure 1). Stock assessment,

risk analysis, and decision analysis are highly technical

endeavours. It is difficult to convey assumptions, results,

and implications effectively to people who are not actively

involved in the analyses. Many sources of communication

problems are obvious, but some are more subtle. As an

example of the latter, cognitive psychologists who conduct

research on how people reason about uncertainties and risks

have found widely different intuitive interpretations of such

seemingly straightforward terms as ‘‘probability’’. Teigen

(1994) found that people interpret ‘‘probability’’ in six

different ways. It can reflect:

(i) the chance of seeing a given outcome for a stochastic

process (which most fisheries scientists would intend

in a stock assessment context);

(ii) the tendency or ease with which some event is

perceived to occur (if a stock size has been low

recently, people may perceive a higher tendency or

probability of its dropping dangerously low, even if

a calculated chance probability indicates otherwise);

(iii) the knowledge or awareness of the range of possible

outcomes (if you are aware of only one possible

outcome, you will assign it a high knowledge

probability);

(iv) the confidence or degree of subjective belief in some

outcome based on one’s experience;

(v) control, with more management influence over the

outcome generally leading to a higher perceived

probability of an outcome occurring;

(vi) the plausibility of the scenario (how convincingly the

case is presented).

Therefore, what may seem like a relatively simple concept

to fisheries scientists who use ‘‘probability’’ every day may

inadvertently lead to misunderstanding because a given

style or format of presentation may trigger different

probability concepts in listeners.

Potential solutions to Challenge 4

There is no simple answer to the problem of communicat-

ing technical information. It takes concerted effort by

managers, scientists, and stakeholders through ongoing

involvement and interaction in analyses to improve mutual
understanding (Smith et al., 1999). Of course, scientists

could be trained better in how to communicate technical

concepts more effectively to non-technical audiences. For

example, after extensive experiments, Gigerenzer and

Hoffrage (1995) found that people were more likely to

interpret the chance probability noted above correctly when

results for a wide variety of problems were stated in

frequency format rather than as decimal probabilities.

Fisheries scientists should exploit this fact when presenting

the probability of some outcome occurring (i.e. chance as

described by Teigen, 1994). For example, compare the

following statements about the effect of a proposed fishing

mortality rate:

(i) ‘‘There is a probability of 0.2 (or a 20% chance) that the

stock biomass will drop below its limit reference point

within 5 years’’;

(ii) ‘‘Two out of every 10 situations like this will lead to the

stock biomass dropping below its limit reference point

within 5 years’’.

Those who work frequently with numbers know these are

equivalent statements, but it has been shown that, for most

people, the second statement is less likely to cause

confusion because its frequency format prompts concrete

thinking about sets of cases, which can be visualized and

counted (Gigerenzer and Hoffrage, 1995). This frequency

format is easier, more direct, and less ambiguous than

thinking about the decimal probability of a single low-

abundance situation. Anderson (1998)2 provides other

examples of applying these concepts of frequency format

to management of natural resources.

To extend this idea of frequency format to uncertain

events in a multi-stock fishery, consider a case in which five

fish stocks are simultaneously vulnerable to harvest, but

they differ in their limit reference points and current stock

biomasses relative to those reference points. Say that stock

assessment scientists evaluated a particular proposed

management regulation via Monte Carlo simulation. If

they used the recommended frequency format, they would,

for example, report that ‘‘In three out of ten situations like

this, any two of the five fish stock biomasses would drop

below their limit reference points during the period

considered.’’ According to the studies of Gigerenzer and

Hoffrage (1995), fisheries managers and stakeholders would

find this statement more understandable (and would act

more logically and consistently on the information) than

a statement using the more typical probability format, such

as ‘‘There is a probability of 0.3 that 40% of the stocks

would drop below their limit reference points during the

period considered.’’

2 Available only on line via the Internet at http://www.

consecol.org/vol2/iss1/art2.

http://www.consecol.org/vol2/iss1/art2.
http://www.consecol.org/vol2/iss1/art2.
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This simple idea of using frequency format has another

benefit; it may help reduce the confusion over the term

‘‘risk’’ discussed earlier. Mislabelling a probability of an

undesirable outcome as the only measure of ‘‘risk’’ reflects

a failure to understand the dimensions (units) of risk and its

components. In the concretely pictured sets produced in

peoples’ minds by presenting information about uncertain-

ties in a frequency format, the tangled concept of risk and

its attendant arithmetic and dimensional errors would

scarcely arise. Thinking in frequencies automatically and

intuitively separates the two components of risk described

earlier into two activities everyone does easily from an

early age: they visualize each of the possible outcomes/

costs as separate cases, and they count the cases.

A special problem of communication is that perceptions

of risk are often quite different from experts’ estimates of

risk (Slovic, 1987). Perceptions of risks by stakeholders

tend to be higher than estimated risks when:

(i) they have less control over uncertain events;

(ii) they are not actively involved in the decision-making

process;

(iii) the sources of risks are completely new;

(iv) the risks are not being shared equally among

stakeholder groups (Slovic, 1987).

This is a well-studied topic in the literature of cognitive

psychology and management science. If fisheries scientists

and managers are aware that such factors affect perceptions

of risk, they can take steps to reduce errors of interpretation

and conflicts by, for instance, involving knowledgeable

stakeholders in risk assessments and giving them more

input to the decisions.

Of course, using frequency format and being aware of risk

perception issues can only help with a small portion of the

challenges related to communicating uncertainties and risks.

Good documentation, early and frequent interactions among

interested groups, and ‘‘gaming’’ workshops using models

can also only go so far in bridging the gap between technical

specialists and others. We need many more innovative

approaches to facilitating two-way communication.

Conclusion

There is one last important point to make about

uncertainties and risk management. Sometimes, decision

makers become unjustifiably worried about the reliability of

biological information provided by fish stock assessment

scientists because of the numerous uncertain components

that are included in analyses, such as alternative structural

forms of models and probability distributions of parameter

values. However, managers and stakeholders should keep

these detailed descriptions of uncertainties in perspective.

They should not put low weight on biological information

simply because fisheries scientists have been so explicit

about describing major sources of uncertainties. Such

uncertainties also exist for economic and social factors;
they are just not usually described as well as uncertainties

associated with physical and biological factors. Fisheries

managers and stakeholders should therefore set the same

standards for accepting information as evidence for

economic and social indicators as they do for physical and

biological indicators. Of course, the response will be, ‘‘we

don’t have the same rigorous data on economic and social

indicators.’’ This may be true, but economic factors such as

discard rate and price per tonne of fish show considerable

variation. Clearly, therefore, there should be a united call

for more research on economic and social processes, such as

movement of vessels and discarding behaviour of vessel

crews (Hilborn, 1985; Dorn, 2001; Ulrich et al., 2002).

Results of such research should aim to incorporate harvest-

ers into models as dynamic, not static, components, and to

reflect uncertainties in processes and parameter values.

This review has hopefully highlighted some of the major

challenges in fisheries science and management. Potential

solutions to these challenges are partly provided by

advanced quantitative methods such as decision analysis,

hierarchical models, and operating models. Methods and

lessons learned from other disciplines such as cognitive

psychology can also help improve communication among

scientists, managers, and stakeholders. Considerable re-

search is already being conducted on many of these topics

by scientists in the ICES family, and elsewhere. Neverthe-

less, despite these advances, there is still substantial work to

be done to reduce the problems and limitations described

above for each potential solution to the challenges

presented here.
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