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Abstract There are no approved drugs for treating the
fibrosis in scleroderma (systemic sclerosis, SSc). Myfibro-
blasts within connective tissue express the highly contrac-
tile protein α–smooth muscle actin (α–SMA) and are
responsible for the excessive synthesis and remodeling of
extracellular matrix (ECM) characterizing SSc. Drugs
targeting myofibroblast differentiation, recruitment and
activity are currently under consideration as anti-fibrotic
treatments in SSc but thus far have principally focused on
the transforming growth factor β (TGFβ), endothelin-1
(ET-1), connective tissue growth factor (CCN2/CTGF) and
platelet derived growth factor (PDGF) pathways, which
display substantial signaling crosstalk. Moreover, peroxi-
some proliferator-activated receptor (PPAR)γ also appears
to act by intervening in TGFβ signaling. This review
discusses these potential candidates for antifibrotic therapy
in SSc.
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Introduction

In response to wounding, fibroblasts migrate into the
wound and where they produce and remodel extracellular
matrix (ECM). These fibroblasts are specialized forms of
fibroblasts called myofibroblasts, which express the highly
contractile protein α–smooth muscle actin (α–SMA) which

is organized into stress fibers connected to the ECM via
specialized cell surface structures called ‘supermature’ focal
adhesions (FAs) (Gabbiani 2003). The α-SMA stress fibers
contract, exerting tension on the ECM ultimately promoting
the reorganization of the ECM into functional connective
tissue. In normal tissue repair, myofibroblasts disappear
from the lesion, likely due to apoptosis; however, myofi-
broblast persistence is believed to be responsible for
scarring disorders and diseases including scleroderma
(SSc, Chen et al. 2005). Thus understanding how myofi-
broblasts arise and function in SSc is likely to be important
in understanding how to control the fibrosis in this disorder.

The precise origin of the myofibroblast in fibrotic lesions
in SSc is unclear, but several mechanisms are possible
(Hinz et al. 2007). One option is that myofibroblasts may
arise due differentiation, in response to proteins such as
transforming growth factor-β (TGF-β) and endothelin-1
(ET-1), of resident fibroblasts within connective tissue
(Leask 2008). However, clinical trials assessing the efficacy
of drugs combating these pathways in SSc have been
disappointing. However, it is possible that activation of
microvascular pericytes, which normally express α–SMA,
is principal driving force at least of the cutaneous fibrosis in
SSc (Rajkumar et al. 1999). Moreover, recent evidence has
elucidated some the mechanisms underlying myofibroblast
function. Thus, drugs targeting pericyte recruitment or
myofibroblast function may represent the wave of the
future in the development of antifibrotic therapies in SSc.
This review discusses these issues.

Transforming growth factor-β (TGF-β)

The three TGFβ isoforms (TGFβ1, TGFβ2 and TGFβ3)
are initially generated as part of a precursor complex
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containing latent TGFβ-binding proteins from which active
TGFβ is released by proteolytic cleavage (Leask and
Abraham 2004). Liberated, active TGFβ signals through a
heteromeric receptor complex which consists of one type I
and one TGFβ type II receptor. The TGFβ type I receptor
[also known as activin linked kinase (ALK) 5] phosphor-
ylates Smad2 and 3, which then bind Smad4 and
translocate into the nucleus to activate gene transcription.
The transcriptional cofactor p300 appears to act as a crucial
mediator TGFβ action (see below, Ghosh and Varga 2007).
TGF-β induces fibroblasts to synthesize ECM by both
inducing expression of ECM components such as collagen
and fibronectin, but also by suppressing several matrix
metalloprotenases and inducing tissue inhibitors of matrix
metalloprotenases (Leask and Abraham 2004). Finally,
TGF-β causes fibroblasts to differentiate into myofibro-
blasts (Leask and Abraham 2004).

Ample in vivo evidence using animal models suggest
that the canonical TGFβ/ALK5/Smad pathway mediates
fibrogenesis (Leask and Abraham 2004). However, in
human disease, the issue is slightly more complicated.
The Smad-responsive element is dispensable for the
heightened activity of the CCN2 promoter in SSc fibro-
blasts (Holmes et al. 2001). Similarly, targeting ALK5
using small molecule inhibitors reverses some fibrotic
aspects of lesional dermal scleroderma fibroblasts (such as
collagen overproduction), but critically does not reduce α–
SMA or CCN2 protein expression or α–SMA stress fiber
formation in this cell type (Chen et al. 2005, 2006; Ishida et
al. 2006). Intriguingly, an anti-TGFβ antibody was recently
tested in a clinical trial for SSc. This trial revealed that that
antibody was ineffective, yet caused serious adverse effects
(Denton et al. 2007) suggesting that broad inhibition of
TGFβ might not be suitable in SSc. Alternatively, the
apparent toxicity related to the study medication may have
had more to do with the degree of underlying illness in this
patient population than the therapeutic. Moreover, the lack
of efficacy could easily have been related to the limited
activity of this antibody to neutralizing only TGFβ1, and
not TGFβ2 or TGFβ3.

TGFβ also activates other ‘non-canonical’ pathways
such as the MAP kinase pathways which appear to provide
selectivity to TGFβ responses in cells (Santander and
Brandan 2006; Liu et al. 2007; Leask et al. 2003). For
example, focal adhesion kinase and JNK are required for
myofibroblast differentiation and α–SMA expression (Liu
et al. 2007). Conversely, TGFβ-induced CCN2 expression
is blocked by ERK inhibitors (Leask et al. 2003). Recently
it was suggested that TGFβ might be able to activate
Smad1 through endoglin [a coreceptor overexpressed in
SSc fibroblasts (Leask et al. 2002)] and that this pathway
contributes to CCN2 overexpression in SSc via ERK
activation (Pannu et al. 2007). Targeting these alternative

pathways may also represent novel, viable anti-fibrotic
approaches.

PPARγ

The transcription factor peroxisome proliferator-activated
receptor (PPAR)γ appears to control fibrogenesis by
attacking the TGFβ pathway; PPARγ ligands, synthetic
versions of which are currently in use to combat type II
diabetes, can modify the progression of fibrosis (Sime
2008). PPARγ agonists such as rosiglitazone inhibits the
ability of TGFβ to induce pulmonary fibroblasts to
differentiate into myofibroblasts and produce collagen
(Burgess et al. 2005), apparently via the transcriptional
coactivator p300 (Ghosh et al. 2009). Rosiglitazone
suppresses bleomycin-induced skin fibrosis (Wu et al.
2009), and PPARγ knockout mice show enhanced suscep-
tibility to bleomycin-induced skin fibrosis (Kapoor et al.
2009). These results suggest that PPARγ agonists such as
rosiglitazone may be useful in the future as antifibrotic
agents in SSc.

Endothelin (ET-1)

Endothelin-1, the significant endothelin in humans, is
produced by a wide variety of cell types. Initially secreted
as 212-amino acid precursor (prepro-ET-1), active ET-1, a
21-amino acid peptide, is released by proteolytic cleavages
(Denton et al. 2006). ET-1 binds to two 7-transmembrane
G-protein-coupled receptors (ETA and ETB) (Denton et al.
2006; Clozel and Salloukh 2005). TGFβ induces ET-1 and
ET-1 appears to act downstream of TGFβ to activate
fibrogenic responses (Leask 2008). When added to fibro-
blasts, ET-1 induces ECM production and contraction, the
former via both the ETA and ETB receptors and the latter by
ETA (Shi-wen et al. 2004a, b). In a mouse model of lung
fibrosis, ET receptor antagonists were found to be effective
(Park et al. 1997).

Regarding SSc, lung fibroblasts constitutively overpro-
duce ET-1 in a fashion independent of ALK5 and
dependent on JNK (Shi-wen et al. 2006a) and blockade of
the ETA and ETB receptors ET-1 receptors reverses the
persistent fibrotic phenotype of SSc lung fibroblasts (Shi-
wen et al. 2004a, 2007). Although endothelin receptor
antagonism prevents new digital ulcers and improves
mortality of SSc patients with pulmonary arterial hyperten-
sion (Korn et al. 2004; Denton et al. 2008), recent evidence
suggests that no improvement was observed in exercise and
other endpoints in patients with interstitial lung disease
secondary to SSc (Siebold et al. 2010). However, despite
these observations, a recent intriguing study suggests that
ET receptor antagonism reduce the skin score in patients
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with diffuse cutaneous SSc (Kuhn et al. 2010). Thus more
studies on ET receptor antagonism in SSc may be
warranted.

Connective tissue growth factor (CTGF, CCN2)

CCN2 is a prototypical member of the CCN (cyr61, ctgf
and nov) family of matricellular proteins (Leask and
Abraham 2004; Yeger and Perbal 2007). It has long been
appreciated that CCN2 is an excellent surrogate marker for
the severity of fibrosis including that of SSc (Moussad and
Brigstock 2000; Leask et al. 2009). When initially
identified, CCN2 was termed connective tissue growth
factor; however, it now appears that CCN2 is a matricel-
lular protein that promotes cellular adhesion via integrins
and heparin sulfate containing proteoglycans, the precise
identity of which changes depending on the cell type
examined (Leask et al. 2009).

As CCN2 is potently induced by TGFβ, CCN2 has been
considered in the literature to be a downstream mediator of
this protein (Grotendorst 1997). However, the reality is
somewhat more complicated. Although CCN2 itself is not a
potent mediator of fibrogenesis, CCN2 acts as a cofactor to
enhance fibrogenic action of TGFβ both in vivo and in
vitro (Mori et al. 1999; Shi-wen et al. 2006b). In mouse
embryonic fibroblasts which express CCN2, CCN2 is not
required for TGFβ to activate Smads, but appears to help
TGFβ activate adhesive signaling (Shi-wen et al. 2006b;
Mori et al. 2008). In adult dermal fibroblasts which do not
normally express CCN2, CCN2 is not required for TGFβ to
induce type I collagen or α–SMA mRNA (Liu et al. 2011)
suggesting that CCN2 is not required for the ability of
TGFβ to induce myofibroblast differentiation in adult cells.

Direct evidence has recently been provided illustrating that
blocking CCN2 action alleviates bleomycin-induced lung and
skin fibrosis. For example, an anti-CCN2 antibody or siRNA
reduces bleomycin-induced lung fibrosis including collagen and
α–SMA overexpression (Ponticos et al. 2009). Moreover, a
conditional knockout strategy has been used to show that
CCN2 is required for bleomycin-induced skin fibrosis (Liu et
al. 2011). The involvement of pericyte activation in deriving
the fibrosis observed in SSc is fairly well-established (Rajkumar
et al. 1999); essentially all of the myofibroblasts recruited in
response to bleomycin stain positive for NG2, a marker of
pericyte activation (Liu et al. 2010). These NG2/α–SMA-
positive cells are absent in CCN2 knockout mice exposed to
bleomycin indicating that CCN2 is required for pericyte
recruitment in fibrosis (Liu et al. 2010, 2011). In this regard
it is interesting that integrinβ1, to which CCN2 binds (Chen et
al. 2004) and is essential for the fibrotic phenotype of SSc
fibroblasts (Shi-wen et al. 2007), is also required for
bleomycin-induced skin fibrosis (Liu et al. 2009). Recent data
have emerges suggesting that fibrocytes (also known as bone

marrow stem cells), which have been considered to contribute
to fibrosis in SSc, might in fact be derived from pericytes
(Bianco et al. 2010).

Based on the available data, it is reasonable to conclude that
targeting CCN2 may be a useful approach to combating the
fibrosis seen in SSc. Moreover, as some members of the CCN
family, notably CCN3 and CCN5 block the fibrogenic action of
CCN2, it is possible that CCN3 and CCN5 may be used in the
future to treat fibrotic diseases such as SSc (Riser et al. 2009;
Leask 2009; Yoon et al. 2010).

Platelet-derived growth factor (PDGF)

PDGF consists of homo- or hetero-dimers (PDGF-AA,
PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD) that
bind two different PDGF receptors, α and β (Bonner 2004)
PDGF promotes both fibroblast proliferation and migration
and myofibroblast differentiation (Bonner 2004). In vivo
evidence links PDGF to pericyte activation. Whereas
PDGFβ receptors are expressed by activated microvascular
pericytes in patients with early SSc, these receptors are not
seen in abundance in late-stage scleroderma (Rajkumar et
al. 1999). In knockout animals, inhibition of PDGF receptor
β is linked with failure to recuite pericytes into the wound
bed, but was not associated with a failure of myofibroblast
differentiation (Rajkumar et al. 2006). In particular, the
platelet-derived growth factor receptor (PDGFR)-beta
inhibitor imatinib mesylate (which also inhibits c-abl)
delayed wound closure, accompanied by a reduction in
both myofibroblast numbers and fibronectin ED-A and
collagen type I expression (Rajkumar et al. 2006). In a
bleomycin-induced skin scleroderma in mice, dual
inhibition of c-abl and PDGF receptor signaling using
bdasatinib and nilotinib reduced bleomcyin-induced
dermal thickness, collagen deposition and the appearance of
myofibroblasts, consistent with the notion that this drug might
be used to treat SSc in the future (Akhmetshina et al. 2008). The
precise relationship between CCN2 and PDGF in terms of
pericyte activation and recruitment is unclear and warrants
further study.

Future prospects and conclusions

Evidence thus far suggests a role for TGFβ and ET-1 in
myofibroblast differentiation and for CCN2 and PDGF in
pericyte recruitment. PPARγ agonists may be a new
approach in SSc. Drugs targeting these pathways alone or
in combination may be useful strategies to blocking the
fibrosis observed in SSc.
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