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Abstract

This note proposes a new notion of algebraizability, which we call possible-

translations algebraic semantics, based upon the newly developed possible-

translations semantics. This semantics is naturally adequate to obtain an al-

gebraic interpretation for paraconsistent logics, and generalizes the well-known

method of algebraization by W. Blok and D. Pigozzi. This generalization obtains

algebraic semantics up to translations, applicable to several non-classical logics

and particularly apt for paraconsistent logics, a philosophically relevant class of

logics with growing importance for applications.
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1. Why algebraizing?

Algebraic methods devoted to study logics based upon correspondence be-
tween theorems on logical systems and identities on classes of algebras are a
heritage of the spirit of the traditional Polish school initiated by A. Tarski
and J. Lukasiewicz, by its turn influenced by the 19th century view of
algebra as a realization of logic due to G. Boole.

In intuitive terms, according to this tradition, to algebraize a logic is
to forget negligible differences between formulas, and to collect formulas
into classes, warranted that the classes form a congruence relation. Then
one constructs the quotient algebra, based on the equivalent relation that is
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also a congruence, where the operations of this algebra are induced by the
connectives of the logic. When this can be done, we can forget the logic
and play with the algebra of classes (or quotient algebra).

To define such an algebra it is sufficient that, when starting from equiv-
alent formulas (that is, from formulas interdeductible by means of the un-
derlying consequence relation), other formulas constructed using them are
also equivalent. This procedure, when possible, is known as Lindenbaum–
Tarski algebraization: in this case, two formulas A and B are said to be
equivalent if, only if, one can prove in such deductive system A ` B and
B ` A. This deductive equivalence relation, usually denoted by A ≡ B, is
obviously an equivalence relation (in the presence of the usual properties of
consequence operators), and one can naturally form the set of equivalence
classes modulo ≡. In some cases, depending upon the language and upon
properties of the consequence relation, A ≡ B may coincide with ` A ↔ B.
In any case, one thus has to show that each equivalence class is closed un-
der the connectives of the logic, that is, if (A1 ≡ B1), (A2 ≡ B2), . . . ,
(An ≡ Bn), then cn(A1, . . . , An) ≡ cn(B1, . . . , Bn), for each n-ary connec-
tive cn. When this holds, the deductive equivalence relation is said to be
a congruence. For such reasons, this method is informally referred to as
congruence algebraization, or method of quotient algebras.

Obtaining quotient algebras is not very problematic if the logic in
question is endowed with a replacement theorem, that is, if the intersubsti-
tutivity of provable equivalents (IpE) holds (see Section 5 of [CM02]). This
sufficient condition is, however, not necessary. Although the procedure of
Lindenbaum–Tarski algebraization imitating what is done in the classical
case, can be carried out for several logics besides classical logic (such as in-
tuitionistic logic, some modal logics, and certain finite-valued logics) there
are some well-established logical systems to which Lindenbaum–Tarski pro-
cedure fails in establishing a non-trivial congruence, for several reasons
(though it may be difficult to establish such failure).

The point is that working by analogy with Lindenbaum–Tarski con-
struction does not constitute a definition of algebraizability, because anal-
ogy does not give a way to decide when a logic is not algebraizable. Such a
definition is precisely what W. J. Blok and D. Pigozzi suggested in [BP89],
by substituting congruences by systems of equations, replacing the truth
constant by a finite system of equations in one variable and by requiring
that the interpretations of the logic consequence relation and the equa-
tional consequence relation be inverses of one another. In this way a much
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more general and wide sense of algebraization is obtained, defining what is
now known as Blok–Pigozzi algebraization. For details consult [BP89], and
[Cze01]. Other important references including also emphasizing the more
general (weaker) concept of protoalgebraic logics are [BP86], [Cze80] and
[FJ96].

However, not every logical system can be algebraized even within such
wide concepts. A simple counter-example is the implicationless fragment
IPC* of the intuitionistic propositional logic: IPC* is neither algebraiz-
able in the sense of Blok–Pigozzi, nor even protoalgebraizable (cf. [BP89],
pp. 56). Other systems that are not algebraizable in the Blok–Pigozzi sense
are the paraconsistent logics Cn, although these systems are trivially pro-
toalgebraic. Our interest is to propose a new method of algebraization that
extends the Blok–Pigozzi method and is able to algebraize paraconsistent
systems in general.

Paraconsistent logics are an emergent issue for some new paradigms of
computation, specially for problems of semantics of sequential evaluation,
querying and repairing contradictory databases, and for more flexible logic
programming (paraconsistent logic programming is a specially flourishing
area). The fact that paraconsistency affects computer science has strict
connections to the fact that several purely humanistic domains also require
a paraconsistent approach, as theories containing contradictory bodies of
law, contradictory scientific theories and some philosophical systems (see
[CCM04]).

The slippery task of algebraizing paraconsistent logics is consequently
justified, since this will provide to them an algebraic realization counter-
part, in such a way that the paraconsistent entailment relations can be
simulated by algebraic entailments through the proposed syntactical inter-
pretations.

It should be noted that deciding whether or not a logic is algebraizable
is much more complicated when (IpE) does not hold. It does not mean,
in such cases, that the logic cannot be algebraizable, but that almost cer-
tainly the Lindenbaum–Tarski approach will not apply, or the resulting
algebraization will be of doubtful relevance.

A particularly well-known case is that of the logic Cila, cf. [CM02]
(Cila is another way of defining the logic C1 of da Costa of [dC74]) for
which (IpE) does not hold. This result can also be obtained as a particular
case of Theorem 3.51 of [CM02] which characterizes non-realizability of
(IpE).
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Several attempts (like that of [dC66]) had been pursued to obtain
other kinds of congruence or other kinds of algebraization for the logic C1

(or Cila), until C. Mortensen proved in 1980 (cf. [Mor80]) that this was
a hopeless enterprise: no non-trivial quotient algebra is possible for Cila,
or for any logic weaker than Cila. Some years later, in 1991, R. A. Lewin,
I. F. Mikenberg, and M. G. Schwarze showed (cf. [LMS91]) that C1 is
not even algebraizable in the more general sense of Blok–Pigozzi. Hence,
C1 is not algebraizable, neither in Lindenbaum–Tarski nor in Blok–Pigozzi
sense. Moreover, since any deductive extension of an algebraizable logic (in
the same language) is also algebraizable (since, when a logic has sufficient
deductive machinery to prove that the deductive equivalence relation is a
congruence, all other deductive extensions will do) we obtain as a conse-
quence that no such algebraization for any other of the weaker calculi in
the infinite hierarchy Cn is possible.

Lacking of congruence algebraization is not a fate of paraconsistent
logics, since some logics, as the logic C+

1 of da Costa, Béziau and Bueno
in [dCBB95] (coincident with Cilo of the taxonomical classification of
[CM02]) can be assigned a non-trivial congruence. Indeed, this can be done
by defining two formulas to be equivalent when they are provably equivalent
and also provably consistent: (A ≡ B) iff ` ((A ↔ B) ∧ (◦A ∧ ◦B)).

Various extensions of Cila can be shown to have non-trivial quotient
algebras, as the ones proposed by C. Mortensen in [Mor89]. But how to
deal with recalcitrant cases as Cila itself and its subsystems, and with
other similar logics hard to algebraize?

It is worth noting that many paraconsistent logics are Blok–Pigozzi
algebraizable: for example the maximal three-valued paraconsistent logic
P1, as a deductive extension of C1, is immune to both the arguments of
Mortensen in [Mor80] and of Lewin, Mikenberg and Schwarze in [LMS91]
concerning impossibility of algebraization. Indeed, it can be shown that
P1 is algebraizable in Blok–Pigozzi’s sense (as proved by Lewin, Mikenberg
and Schwarze in [LMS90]). Their argument can be extended to a large
family of 8,192 three-valued maximal paraconsistent logics (cf. [CM02],
Fact 3.82) which are all shown to be Blok–Pigozzi algebraizable.

For the purposes of clarifying the notions of algebrization here intro-
duced it is convenient to briefly review the bases of Blok and Pigozzi’s
method.

The basic idea of their algebraic semantics, in formal terms, is to
change the notion of “equivalent formula” (used to separate equivalence
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classes) by a finite set of formulas with two variables, usually denoted
by ∆(ϕ,ψ), and to substitute the notion of equation with truth constant
by a finite set of defining equations, usually denoted by εi(pi) ≈ δi(pi).
More demanding, an equivalent algebraic semantics requires, moreover,
that the interpretations of the logic consequence relation and the equational
consequence relation be invertible.

A deductive system S is defined to be a structure S = 〈For,`〉, where
` is a consequence relation over For, i.e., a relation `⊆ (℘(For) × For))
between theories and formulas of For, where ℘(For) denotes the power set
of For. The consequence relation of a given logic is often defined by its
axioms and rules, or else from some semantical interpretation associated to
this logic.

The relation ` is required to follow certain specific requirements which
are the following:

1. If A ∈ Γ then Γ ` A (reflexivity)
2. If Γ ` A and Γ ⊆ ∆ then ∆ ` A (monotonicity)
3. If Γ ` A and ∆, A ` B then Γ, ∆ ` B (transitivity)
4. Γ ` A implies that ∆ ` A for some finite ∆ ⊆ Γ (finitariness)
5. Γ ` A implies σ̂(Γ) ` σ̂(A) for every substitution σ (structurality)

Let L be a propositional language and K any class of L-algebras
(a quasi-variety). Let |=K be the relation that holds between a set of
equations Γ and a single equation ϕ ≈ ψ, in symbols, Γ |=K ϕ ≈ ψ, if every
interpretation of ϕ ≈ ψ in a member of K holds provided each equation
in Γ holds under the same interpretation. Thus, Γ |=K ϕ ≈ ψ iff for each
algebra A ∈ K and every interpretation a of the variables of Γ∪{ϕ ≈ ψ} as
elements of A, if ξA(a) = ηA(a) for every ξ ≈ η ∈ Γ then ϕA(a) = ψA(a).
In this case we say that ϕ ≈ ψ is a K-consequence of Γ. The relation |=K is
called the (semantical) equational consequence relation determined by K.

Definition 1.1. Let S = 〈L,`S〉 be a deductive system and K a class of
algebras. K is called an algebraic semantics for S if `S can be interpreted
in |=K in the following sense: there exists a finite systems δi(p) ≈ εi(p),
for i < n, of so-called defining equations with a single variable p such that,
for all Γ ∪ {φ} ⊆ ForL and each j < n:

(i) Γ `S ϕ iff {δi[γ/p] ≈ εi[γ/p] : i < n, γ ∈ Γ} |=K δj [ϕ/p] ≈ εj [ϕ/p]
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Definition 1.2. Let S = 〈L,`S〉 be a deductive system and K an al-
gebraic semantics for S with defining equations δi(p) ≈ εi(p); K is called
an equivalent algebraic semantics for S if, moreover, the following holds:
there exists a finite system of (primitive or defined) connectives ∆j(p, q)
for j < m of so-called equivalence formulas such that, for i < n, j < m:

(ii) ϕ ≈ ψ =||=K δi(∆j(ϕ,ψ)) ≈ εi(∆j(ϕ,ψ))

In order to obtain negative results in the Blok–Pigozzi algebraization,
a useful tool is the Leibniz operator. The Leibniz operator Ω defines binary
relations ΩA(F ) on the domain of an algebra A by:

ΩA(F ) = {〈a, b〉 : ϕA(a, c0 · · · , ck−1) ∈ F iff ϕA(b, c0, · · · , ck−1) ∈ F , for
every formula ϕ(p, q0 · · · , qk−1) of S and every c0, · · · ck−1 ∈ A}.

It can be shown that a deductive system is Blok–Pigozzi algebraizable
if, and only if, there exists a quasi-variety K such that, for every algebra
A, the Leibniz operator ΩA induces an isomorphism between the lattice of
S-filters and the lattice of compatible K-congruences (for details see [BP89]
p. 43).

As a consequence, if such an operator fails to define an isomorphism
between the lattice of S-filters and the lattice of compatible K-congruences,
then the deductive system S is not algebraizable. This was the basis of
the combinatorial argument used by Lewin, Mikenberg and Schwarze in
[LMS91] and that was extended in [CM02], Theorem 3.83, to show that
even the stronger logic Cibaw is not algebraizable. Of course, no weaker
logic extended by Cibaw will be algebraizable (as it is the case of Cil,
Cila and all Cn, in particular).

So there is no hope, neither in the classical Lindenbaum–Tarski nor
in the new sense of algebraizability of Blok–Pigozzi, to algebraize any logic
weaker than Cibaw.

However, some years before the proposal by Blok and Pigozzi, an
algebraic counterpart to some of these non-algebraizable C-systems was
proposed and investigated by W. A Carnielli and L. P de Alcantara (cf.
[CdA84]) and subsequently by J. Seoane and de Alcantara (cf. [SdA91]).
This was also further developed in categorial terms by V. Vasyukov in
[Vas00]. A variety called da Costa algebras for a fragment of the paracon-
sistent logic C1 was introduced in [CdA84], and a Stone-like representation
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theorem was proven, showing that every da Costa algebra is isomorphic to
a paraconsistent algebra of sets. This defines a (non-equivalent) algebraic
semantics for Cila, offering the first response to the question of finding
an algebraic interpretation for paraconsistent logics. This proposal indeed
preceded the notions of Blok–Pigozzi’s algebraization and protoalgebraic
logics, and for all effects was the more conclusive proposal to the general
problem of algebraizing general paraconsistent logics up to now.

The conclusion is that Blok and Pigozzi’s approach, even if it is so
wide as to accommodate new algebraizations for some systems, and so
sharp as to be capable of showing that some logics are not algebriazable,
may not be appropriate for the subtleties of paraconsistency. We offer a
step forward, proposing a new form of algebraization up to translations,
inspired in the paradigm of possible-translations semantics. This is what
we explain below.

2. Possible-translations semantics

Given logics L = 〈For,`L〉 and L′ = 〈For′,`L′〉, a translation from L into
L′ is a mapping between their sets of formulas which preserves derivability,
that is, if A is provable in L from premises Γ (i.e., Γ `L A) and t is a
translation from L into L′, then t(A) = A′ should be provable in L′ from
premises Γ′ = {t(B) : B ∈ Γ} ( i.e., if Γ `L A then Γ′ `L′ A′). When “if ...
then” is changed to “iff”, the translation is said to be conservative.

The concept of possible-translations semantics was introduced already
in 1990 (cf. [Car90]), and reworked later on. (cf. [Car00], see also [Mar99]
and [CCM04]). In intuitive terms, this semantics works similarly to the
act of deciphering a hieroglyphic Rosetta Stone: the idea is to project a
strange, not known, “hieroglyphic” logic by means of translations into a
collection of simpler (usually many-valued) systems, and use all together
the forcing relations of such logics in order to obtain a sound and complete
semantical interpretation for the initial unknown system.

In less colorful terms, the basic idea is that, starting from a logic L,
it can be splitten with the help of a collection of simpler logics, seen as
factors, under a certain collection of translations. By suitably combining
such translations a new semantics emerges, providing a sound and complete
interpretation for the initial logic L.
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In formal terms, given a logic L = 〈ForL,`L〉 with a known syntax,
and for which we intend to give an interpretation, consider a collection T
of translations whose common domain is the set of formulas of L. Each
function t ∈ T will have as image the wffs in a logic St (which, supposedly,
has an acceptable semantics). A possible-translations structure for L is a
pair PT = 〈{St}t∈T , T 〉, where T is an adequate collection of translations
and {St}t∈T is a collection of logics. A possible-translations interpretation
for a formula A in L will be given by the collection of all translations t(A),
each t(A) in St. If all logics in {St}t∈T are characterized (i.e., are sound and
complete) with respect to their semantics, we have a possible-translations
semantics. In this case, given a set of formulas Γ ∪ A in For(L) and a
particular translation t in T , we define the local forcing relation for L,
|=t

PT, as:

Γ |=t
PT A iff t(Γ) |=St

t(A), where |=St
is the forcing relation in St.

The global forcing relation for L, |=PT, is defined by:

Γ |=PT A iff Γ |=t
PT A, for every t in T.

We say that the logic L is sound and complete with respect to the
possible-translations structure PT when, for every Γ ∪A in ForL:

Γ `L A iff Γ |=PT A.

It is shown in [Car00] (cf. also [Mar99]) that, despite the fact that the
paraconsistent systems Cn cannot be characterized by finite-valued seman-
tics, the possible-translations semantics do obtain sound and completeness
for systems Cn with respect to the three-valued logic LCD:

Theorem 2.1. For each logic Cn,

Γ `Cn A iff Γ |=PTn
3

A, for every Γ ∪A in ForCn .

where PTn
3 is a possible-translations structure based upon an adequate col-

lection of translations Tn .

The concept of possible-translations semantics is very general, and
in a certain sense any logic can be interpreted in a possible-translations
environment.
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Natural restrictions on the set of translations, or restrictions in the
nature of the factors, offer a fine control for obtaining relevant semantical
models. In this direction, particular cases of possible-translations seman-
tics known as society semantics (introduced in [CLM99]), dyadic semantics
(treated in [CCM05]) and non-deterministic semantics (in the sense of [AL])
are already successfully employed in the literature.

3. A closer regard to the three-valued logics
that characterize Cn

It turns out that the mentioned characterization of the paraconsistent hi-
erarchy Cn by means of possible-translations semanticsis is quite natural
and elegant, since LCD coincides with the paraconsistent maximal logic J3

introduced in [DdC70], which by its turn coincides with the system CLuNs
(see [Bat89]), with the system LFI1 (cf. [CMdA00]), and quite surpris-
ingly, with the system Φv introduced years before in [Sch60] (Chapter II.7)
for proof-theoretical purposes. The matrices of J3 are the following:

∨J 1 / 0
1 1 1 1
/ 1 /

/

0 1 / 0

∇J

1 1
/ 1
0 0

¬J

1 0
/

/

0 1

where {1, /} are the distinguished truth-values.
By identifying > to 1, >− to / and F to 0, we can easily define

all connectives of J3 in LCD using only the connectives {¬L,¬C ,∧3}, as
computed in [Mar99]. Conversely, all connectives of LCD can be defined
in J3.

Since LCD and J3 are interdefinable and have the same distinguished
truth-values, they are deductively equivalent. Moreover, all other connec-
tives {∧1,∧2, ∨1,∨2,∨3,→1,→2,→3} of LCD can be defined starting from
{¬L,¬C ,∧3}.

It is also possible to define inside J3 the table →L for the implication
of the three-valued ÃLukasiewicz logic L3:

A →L B
def= ((∇J(¬JA)) ∨J B) ∧J ((∇JB) ∨J (¬JA)).

giving the matrix:
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→L 1 / 0
1 1 / 0
/ 1 1 /

0 1 1 1

As the negation ¬L of L3 is the same as ¬J , we can define the basic con-
nectives of J3 from →L and ¬L:

A ∨J B
def= (A →L B) →L B;

∇JA
def= (¬LA) →L A.

These definitions show that it is possible to write J3 and L3 in the
same language. Although J3 and L3 define the same matrices, they are
not equivalent, because L3 has only 1 as its distinguished truth-value; this
allows to check, for example, that `J3 (¬p → p) → p while 6`L3 (¬p → p) →
p. In [BP] it is shown that J3 and L3 are algebraizable in the same algebraic
quasi-variety, by using the the notion of invertible strong translations1.

Moreover, additionally to this conservative translation from J3 into
L3, a finer result is proven in [BP]: it is shown in that paper that J3

and L3 are strongly conservatively translated in the sense that there exist
invertible strong translations between that J3 and L3. Indeed, for any
formula A in the common language of J3 and L3, A =||=J3 ♦2A A =||=L3

2♦A hold, where ρ(A) = 2A is a translation from L3 into J3 defined as
2A

def= ¬L♦¬LA and τ(A) = ♦A is a translation from J3 into L3 defined
as ♦A

def= ¬LA →L ¬LA. That is, the translations τ and ρ are invertible
strong translations; the tables for ♦ and 2 are the following:

♦
1 1
/ 1
0 0

2

1 1
/ 0
0 0

These facts permit to conclude that J3 and L3 are algebraizable by the same
equivalent algebraic semantics, namely, by the three-valued MV-algebras
(or ÃLukasiewicz-Moisil algebras) as shown in [BP].

1In [BP] the authors use the term “equivalent” instead of “invertible strong
translations”.
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We now suggest an extension of the Blok–Pigozzi algebraizability cri-
teria which, in particular, offers a solution for the desired algebraizzation
of the paraconsistent systems Cn.

4. The possible-translations algebraic seman-
tics

The approach suggested here means to provide algebraic semantics for re-
calcitrant logics by means of an analogue of the possible-translations struc-
ture. Suppose we have in hands a certain logic L which cannot be alge-
braizable in the Blok–Pigozzi sense but has a possible-translations structure
associated to it, by means of a collection T of translations whose common
domain is the collection of formulas of L. Suppose also that the components
of such possible-translations structure are algebraizable. Each function t,
thus, for t ∈ |T |, will have as image the wffs of a calculus St with conse-
quence relation `t and with equivalent algebraic semantics in an algebraic
variety Kt (with equational consequence relation |=Kt). The algebraic in-
terpretation for a formula A in L will then be given by the collection of all
algebraic interpretations for t(A) in Kt.

Let L be a complete logic with respect to the possible-translations
structure PT. A possible-translations algebraic structure for L is a triple:

PA = 〈{St}t∈T , {Kt}t∈T , T 〉

such that:

1. PT = 〈{St}t∈T , T 〉 is a possible-translations structure for L;
2. For each t ∈ T,Kt is an equivalent algebraic semantics for St.

In such case, we say that L is characterized by a possible-translations
algebraic semantics PA = 〈{St}t∈T , {Kt}t∈T , T 〉 and that {Kt}t∈T is a
possible-translations algebraic semantics for L (up to the translations T ).

Consequently, the following immediate characterization holds:

Theorem 4.1. Let L be a logic characterized by a possible-translations
algebraic semantics PA = 〈{St}t∈T , {Kt}t∈T , T 〉; then the consequence re-
lation `L holds iff for every translation t in T , Kt is an equivalent algebraic
semantics interpreting `St .
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Proof. Given a set of formulas Γ ∪ {A} in ForL and a particular trans-
lation t in T the following holds:

(a) By the definition of local forcing relation, Γ |=t
PT A iff t(Γ) |=St t(A);

(b) Since each calculus St is characterized (i.e, is sound and complete) by
its own semantics, we also have: t(Γ) |=St

t(A) iff t(Γ) `St
t(A);

(c) Since St has an equivalent algebraic semantics, the conditions of Defi-
nition 1.1 and Definition 1.2 are satisfied;

(d) Considering that, by hypothesis, L is complete with respect to the
possible-translations structure PT, we obtain that the consequence
relation `L holds iff the translated consequence relation `St

holds
for each translation t in T , iff, for each translation t in T , Kt is an
equivalent algebraic semantics interpreting `St

.

2

We can now state the main result of this paper:

Theorem 4.2. For each n, the variety of three-valued reducts of MV-
algebras (or ÃLukasiewicz-Moisil algebras) is a possible-translations algebraic
semantics for Cn.

Proof. From Theorem 4.1 and Theorem 2.1. 2

The arguments above show that the paraconsistent logics Cn can be
algebraized by means of an extended concept of algebraizability here de-
fined, the possible-translations algebraic semantics. This new notion of
algebraizability generalizes the one of Blok–Pigozzi, in the precise sense
that a Blok–Pigozzi algebraization for a logic L, where K is an algebraic
semantics for L, coincides with a possible-translations algebraic semantics
PA = 〈{S}, {K}, T 〉 where T is a singleton containing just the identity
translation.

Although there are other generalizations of the Blok–Pigozzi defini-
tion, as the protoalgebraic logics (cf. [BP86]), the possible-translations
algebraic semantics offers a non-trivial alternative at least for paraconsis-
tent logics, in view of the fact that every logic Cn is trivially protoalgebraic
(see Section 1).

The concept of possible-translations algebraic semantics offers an al-
ternative to the quest of obtaining equivalent algebraic counterparts not
only to paraconsistent logics, but also to other logics which are complete
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with respect to possible-translations semantics. A categorial approach to
possible-translations algebraic semantics was discussed in [BCC04], where
it is shown that, given a possible-translation semantics for a logic L, there
exist conservative translations from L into a product Π of some family of
logics, and vice-versa.

Moreover, if the cardinality of the (finite) sets of defining formulas
and equivalence formulas involved in the possible-translations algebraic se-
mantics is bound (note that we may have an infinite collection of such
finite sets), the product Π is not only algebraizable but there also exists a
conservative translation from L into Π. This is precisely the case for the
possible-translations algebraic semantics for Cn discussed here, which can
thus be shown (in such categorial setting) to be algebraizable up to just
one translation.

Possible-translations algebraic semantics are not confined to paracon-
sistency: other logics, as for instance ÃLukasiewicz and Bochvar three-valued
logics (cf. [FC03]), can be shown to be sound and complete with respect
to society semantics, a particular case of possible-translations semantics
(see end of Section 2). Thus, in principle, possible-translations algebraic
semantics can also be assigned to such logics, and it would be instructive to
compare this new algebraic semantics with the traditional algebraization.
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References

[AL] A. Avron and I. Lev, Non-deterministic multiple-valued struc-
tures, Journal of Logic and Computation (2005), to appear.

[Bat89] D. Batens, Dynamic dialectical logics, [in:] G. Priest,
R. Routley and J. Norman, editors, Paraconsistent Logic. Essays on
the Inconsistent, pp. 187–217, Munich, 1989, Philosophia Verlag.



90 Juliana Bueno-Soler and Walter Carnielli

[BCC04] J. Bueno, M. E. Coniglio and W. A. Carnielli, Finite al-
gebraizability via possible-translations semantics, [in:] F. Miguel Diońısio
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