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Abstract

The design of lightweight structures is often driven by buckling phenomena. Increasing demands for fuel-
efficient aircraft structures makes post-buckled designs attractive from a structural weight perspective. How-
ever, the need for reliable and efficient design tools that accurately model the emerging nonlinear post-
buckled landscape, potentially one containing multiple branches, remains. With this aim, a previously
derived flat shell element, MISS-4, is extended to the geometrically nonlinear analysis of variable-angle
tow (VAT) composite plates using Koiter’s asymptotic approach. The curvilinear fiber paths in VAT lamina
open the design space for tailoring the buckling and post-buckling capability of plates and shells. A finite
element implementation of Koiter’s asymptotic approach allows the pre-critical and post-critical behavior
of slender elastic structures to be evaluated in a computationally efficient manner. Its implementation uses
a fourth-order expansion of the strain energy, and requires both the structural modeling and finite element
discretization procedures to be, at least, of fourth order. The corotational approach adopted in the MISS-4
element readily fulfills this requirement by starting from a linear finite element discretization. VAT plates
with prismatic fiber variations and different loading conditions are analyzed using the MISS-4 element and
numerical results of the post-buckling paths are presented. The computed equilibrium paths are compared to
benchmark results using the commercial finite element package ABAQUS, and strong asymptotic solutions
of the differential equations. The results document the good accuracy and reliability of the proposed mod-
eling approach, and also highlight the importance of multi-modal analysis when multiple buckling modes
coincide as is the case in long plates, shells and other optimized thin-walled structures.
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1. INTRODUCTION

In the analysis of slender elastic structures, the numerical implementation of Koiter’s asymptotic method
[1] allows a reliable evaluation of the post-buckling behavior. The method, its implementation and applica-
tion are under investigation to this day [2—7]. The advantages of Koiter’s asymptotic approach are apparent
when multi-modal buckling interactions are to be accounted for. Furthermore, the sensitivity to imperfec-
tions, and therefore a realistic evaluation of the load carrying capacity of the structure, can be studied in a
computationally efficient manner by combining Koiter’s asymptotic approach with stochastic Monte Carlo
simulations [8—12].

A finite element implementation of Koiter’s asymptotic method was developed by Casciaro et al. [13,
14]. Initially, this method was applied to planar beam frames [15, 16] and simple plate assemblies [17].
The use of a corotational formulation [18, 19] allowed the simple extension of the underlying linear model
to the geometrically nonlinear regime and permitted the straightforward computation of high-order strain
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energy derivatives. As a result, the analysis could be extended to spatial beam frames [20] and general
shell structures [21]. Recently, the formulation has been extended to laminate composite shell structures
[9], particularly to cylindrical shells [22] and folded plate structures [10], and to cold formed steel structures
[23]. By coupling the asymptotic method with a Monte Carlo engine, the effect of random imperfections on
the first critical load of cylindrical shells in compression [22], and the erosion [24-26] of critical loads of
cold formed sections have been investigated [23]. Recently, the method has been validated experimentally
for composite beams [27] confirming the good accuracy and reliability of the approach.

Here, a general finite element for the pre-buckling, buckling and post-buckling analysis of variable-
angle tow (VAT) plates using Koiter’s asymptotic approach is proposed. Due to the increased design space
for locally tailoring laminate stiffness, VAT composites are a promising technology for further improving
the structural efficiency of engineering structures. In these variable stiffness structures, the fiber tows within
a layer are not restricted to straight trajectories but can describe curvilinear paths. Numerous works have
shown that tailoring the in-plane stiffness over the plate planform allows pre-buckling stresses to be redis-
tributed to supported regions, thereby increasing the first critical buckling load [28-35].

Wu et al. [36] showed that the fiber orientations of flat VAT laminates can be tailored to reduce the
stiffness knock-down in the post-critical regime compared to straight-fiber laminates. Furthermore, the opti-
mal fiber paths for increasing buckling load also reduce the out-of-plane post-buckling displacements [37].
An interesting application of variable-stiffness composites is the reduction of the imperfection sensitivity of
shell structures. It is well known in the engineering community that cylindrical shells are prone to collapse
beyond the first critical load, and as a result of this instability, shell structures are extremely sensitive to
geometric and loading imperfections. White and Weaver [38] showed that this imperfection sensitivity can
be effectively eliminated by tailoring the fiber paths across the surface of cylindrical shells. Hence, stable
plate-like post-buckling responses in cylindrical shells were documented for the first time.

Due to its modeling versatility and numerical robustness, most modeling work on the buckling of VAT
structures has focused on using the finite element method (FEM) [30, 39—42]. At the same time, the pseudo-
spectral differential quadrature method (DQM) has been shown to be a fast, accurate and computationally
efficient technique for solving the variable-coefficient higher-order differential equations for buckling [33,
43] and post-buckling [35, 44] of VAT plates and cylindrical shells [45, 46].

White et al. [45] were the first to implement Koiter’s asymptotic approach within a DQM framework.
The asymptotic differential equations for the pre-buckling, buckling and initial post-buckling problem of
constant stiffness curved panels were solved using the generalized DQM, while the orthogonality condi-
tion of the buckling and initial post-buckling mode shapes was enforced as an additional constraint equa-
tion using an integral quadrature approach. The overdetermined system was then solved using the Moore-
Penrose generalized matrix inverse operation. This general approach was used in the optimization study of
imperfection-insensitive cylindrical shells mentioned above, and by Groh and Weaver [46] in a minimum-
mass optimization study of VAT wing panels with static failure constraints. Finally, Raju et al. [47] extended
the numerical scheme beyond the initial post-buckling regime, and used the approach as the basis for an op-
timization scheme to minimize the end-shortening strain in the post-buckling regime.

The starting point of the present implementation of Koiter’s asymptotic approach in the finite element
method is the 3D shell element MISS-4 [48-50]. The use of a corotational reference frame allows the
extension of the geometrically linear finite element into a nonlinear context. The fundamental equations
of Koiter’s asymptotic method are presented in Section 2. Derivations of the linear shell element MISS-4
are discussed in Section 3, and its extension to the geometrically nonlinear regime presented in Section 4.
In Section 5, a number of different test cases with different VAT stacking sequences and loading condi-
tions are presented and comparisons are made with benchmark models. In particular, the results have been
compared with the Riks path-following algorithm [51] in the commercial code ABAQUS [52] and with the
implementation of Koiter’s approach in DQM [45]. Furthermore, this section highlights the importance of
multi-modal expansions in Koiter’s approach. Finally, conclusions are drawn in Section 6.



2. NONLINEAR ANALYSIS OF SLENDER ELASTIC STRUCTURES

The starting point of Koiter’s asymptotic approach is the total potential energy functional I1[«], where u
are the configuration variables (i.e. displacements/stresses). In particular, we have

T[u] = O[u] — Apu (nH

where ®[u] is the strain energy, A the load control parameter and p the applied load. The solution to the
problem is given by the stationarity condition of the total potential energy

II[u] = stat. 2)
which means that the first variation of the total potential energy must vanish. Hence,
' [u]ou = @' [uléu — Apéu =0 Yéu 3)

where the prime denotes the Fréchet derivative with respect to configuration variable u, and the equilibrium
Eq. (3) is generally nonlinear. Using the finite element method, Eq. (3) can be rewritten as

(5uTr[u,/l] =0 VYéu rlu, 2] = (s[u] — Ap) 4)

with u = Lu and p = Lp, where L is a suitable interpolation operator, and s[u] and p represent the internal
and external load vectors, respectively. The solution of Eq. (4), and therefore the equilibrium path, can be
obtained either by means of a path-following approach or an asymptotic approach.

The path-following [51] approach is widely used as a solution scheme because of its general applicability
to a wide array of nonlinear systems. Disadvantages include the computational cost, which is directly related
to the number of variables in the FEM discretization (i.e. the dimension u); the need to perform separate
analyses in the case of small modifications (i.e. imperfections) of the load and/or geometry; and difficulties
associated with following post-critical branches at coincident, or near-coincident, critical loads.

On the other hand, in the asymptotic analysis [1], the equilibrium path is obtained in an approximate
fashion through an asymptotic expansion of parameters &; for i = 0...m. Starting from a known expansion
point {ug, 4o}, we have:

- 1 < SRR
u=u0+;§ii¢i+§ Zfifjiiij+"'+0(§f) ; /1=/10+Z(;§i/1i+§ Zfifj/lij+"'+0(§f~c) &)

i,j=0 i,j=0

where the superimposed (-) denotes differentiation with respect to €. By invoking the fundamental lemma
of the calculus of variations, the nonlinear system of Egs. (4) can be rewritten as

rig, =0 (6)

with vector £ collecting the &; expansion parameters. The nonlinear system Eq. (6) is generally defined by a
reduced number of variables. In practical contexts the expansion order m is of order 10'. Once all unknowns
in Eq. (5) are determined for the so-called *perfect structure’, the solution for deviations in the assumed load
and geometrical imperfections only require the solution of Eq. (6). Thus, the reduced order of the asymptotic
method allows the straightforward computation of thousands of imperfections at low computational cost.

2.1. Koiter’s approach fundamental equations: Casciaro’s quadratic algorithm

In the following, Koiter’s asymptotic approach as proposed by Casciaro [13, 14] in the context of the
FEM is employed. This implementation is also know as the quadratic algorithm [13] and has been developed



over the last thirty years.
The analysis procedure can be summarized as follows:

- First, the fundamental path (pre-critical path) is assumed to be a linear combination
u'[A] = ug + A 7

where ug is an initial known configuration, and # = du/dA is computed from the linear algebraic
equation
Kot = p (®)

where p is a reference load vector, and K|y is the the stiffness matrix evaluated at u, that is Ky = K[ug].

- Second, a multi-modal buckling problem is solved to obtain a cluster of buckling loads 4;,i =1...m,
and associated buckling modes ¥; along u/[1]. Hence, the stability criterion

K[4i]9i=0 , K[A4]= Kluo + ] €))
is solved for 4; and v;. The buckling modes are normalized using the orthogonality condition
O avy; =0 , Vij=1...m (10)

where @} is the third Frechet derivative evaluated at Ap,, with 4, an appropriate reference value for
the cluster (e.g. the smallest A; or their mean value).

- Third, the quadratic corrections that define the space W = {w : wLv;, i = 1...m}, i.e. orthogonal to
the space of buckling modes, are evaluated by the condition

wily;, & (DZ,EAH')[W =0. (1D
By defining &y = (A1 — Ap) and vy = @, the asymptotic approximation for any equilibrium path is
approximated by an expansion in terms of mode amplitudes &/,
m 1 m
uld & = up + ;fm 3 ijz_oéifjwij (12)

where w;; € ‘W are quadratic corrections introduced to satisfy the projection of the equilibrium
equation onto ‘W, obtained by the linear orthogonal equations

ow  (Kywij+p;) =0, YweW (13)

where K} is the stiffness matrix evaluated at A, and vectors p; ; are defined as a function of modes
Vi, i = 0...m, and by energy equivalence 6prl-j = Q6w ;.

- Fourth, the energy terms:
Cik = Pywoowix,  Aijk = ) viv vk, Bijnk = " viw jvivr — O Wi wip + wipw jx + wiw jp)  (14)

are evaluated fori, j=0...m, k=1...m.



- Finally, the equilibrium path is recovered by solving the nonlinear algebraic system
1 m 1 m 1 m
5 Z &igjAije + & Z ik iEnBijnk + [ A] — Ap(A — Eflb)z&cik =0, k=1...m 15)
i,j=0 i,jh=0 i=0

of m equations in m + 1 unknowns &y, & ... &y, where
1 1 11 a2 1 2 111 A3
e[l = E/lb(/l - E/Ib)d)b avy + g/lb(/lb =300, (16)

are implicit imperfection factors by the 4th order expansion of the unbalanced work on the fundamen-
tal path (i.e. y[A] = (Ap — s[Aa]) V).

Geometrical & and/or load p imperfections can be imposed on the equilibrium path by simply changing the
definition of the imperfection factors p[A] and subsequently solving Eq. (15). As a result, computation-
ally efficient imperfection sensitivity analyses can be performed by coupling the asymptotic method with a
Monte Carlo generator (see [10, 23]). In this manner, thousands of imperfections can be tested, and those
that influence the load carrying capacity of the structure the most are readily identified (see, for example,
[10, 23]).

3. MIXED FORMULATION FOR VAT: LINEAR SHELL ELEMENT

The strain energy Eq. (1) of the 3D linear shell model is written in mixed form as a function of stress
resultants and displacements defined on a reference surface of the plate (e.g. the mid plane). Under the
assumptions of first-order shear deformation theory (FSDT), i.e. plane sections remaining plane but not
necessarily perpendicular to the reference surface, and by defining a Cartesian reference system {X, Y, Z}
with the Z-axis pointing in the thickness direction, the mixed strain energy of the plate is written as:

1 t d D 0
_ T _ 24T -1 —|tm _ |¥m — m
ol = fg{t pd-at® t}dg t [tf]’ ¢ [df]’ v [ 0 Df] an

where Q is the two-dimensional domain of the reference surface, vectors ¢,, and ¢ are the membrane stress
resultants and the bending/shear stress resultants, respectively,

Ny
N,
Ny

tm =

M,
=" with g=| M| and g= |30 (18)
t‘\‘ M Sy
xy

where #;, are bending moments and #, shear forces. The vectors d,, and d are the in- and out-of-plane
generalized displacements in the Cartesian reference system,

d;
Px
Py

19)

dy ~
=[] -



and the differential operators D,, and D are defined as

0 0 -d/0X

a/ox 0 0 9/0Y 0
D,=| 0 9/oY|, Dy=| 0 9/0X -0/9Y|. (20)
0/0Y 0/0X a/0X 0 1

0/0Y -1 0

The laminate constitutive matrix E relating reference surface stress resultants to strains is written as

n n
1
— (k) — 2 2 (k)
E. E, 0 En= )G~ 2By Enn =3 ;(Z" -2} )E,
E- E, 0 . 1; . @1
sym. Eq Ey =3 Z(Zi ~Z DEY, E,=x0 ) (Zt-Z-)EY
k=1 =

k=1

where layer k is one of n total number of layers; Z;, Z;—; are the top and bottom coordinates of the k-
th lamina, respectively; Eﬁ,]f),Egk) are the reduced lamina constitutive matrices referring to in-plane and
transverse shear stress/strain, respectively, and account for the plane-stress condition in Z, and, for VAT
lamina, are functions of coordinates (X, Y) (e.g. Ef,’f) = EE,’?(X, Y), Egk) = Eﬁk)(X, Y), etc.). Finally, symbol
© denotes the component product that allows different shear correction factors to be introduced for each
component of the E; matrix

o [Ku K12] 22)
K12 K22

3.1. SHELL FINITE ELEMENT

The mixed strain energy Eq. (17) is interpolated using the MISS-4 3D shell finite element formulation
introduced by [48]. The geometry of the element is described by four nodal coordinates on the plane Z = 0
of the global Cartesian system {X, Y, Z} (see Fig. 1).

Figure 1: Global, local and internal coordinate systems.

In standard finite element notation a dimensionless internal system is defined over the element mid
surface with {¢, i}, =1 < £ < 1,-1 < 5 < 1, which is implicitly defined by

with 23
Y =bo+b1&+bén+ban ay by 1 X3 Y3 23)
1 X4 Yy

ap by 11 1 1][X Y
X=a+aé+amén+an ap bif _1[-1 1 1 -1{|X2 Y,
N I B T B |
as bs -1 -1 1



and {X;, Y;}, i = 1,...,4 are the global nodal coordinates.
A third local Cartesian system {x, y} is defined over the element mid surface, centered and aligned with
the element. To define this local system, we introduce the Jacobian matrix J G and its average J G,

G _|Xe Xa| _[(@r+am (a3+a2§)] -Gzlf‘ L 6 4ed :[al a3] »
I [Y,g Y,J b+ bs+bp) T 77 e ) T by b Y

The average Jacobian J Yis decomposed into an orthogonal matrix R and a symmetric matrix J, so that

]G:R], Rz[@sa —s1noz]’ a:arctan(a3_bl), ]:[a C]. (25)
sina cosa ay + bz c b

The local Cartesian system {x, y} has its origin at the element centroid (£ = = 0) and is rigidly rotated
by R with respect to {X, Y}. Thus, the coordinates {x, y} are defined according to the transformation

el

y Y - by

3.1.1. Assumed stresses
The stresses are assumed to be self-equilibrated and isostatic, leading to a minimum set of parameters,
which are the 18 components of the vector §,. In this manner, the stress resultants are written as

_ _(Bm 0 [[By
el 38

where B,, and B are matrices representing the assumed stress modes for the membrane and flexural gen-
eralized stresses, respectively, and B,,, B are 9-component vectors representing membrane and flexural
moments, respectively. For the membrane stresses, it is assumed that

1 00y 0 x 0 —2a’xy
B,=[0 1 00 x 0 y —x* 2bxy (27b)
001 00 —y —x 0 d&y-bpx
For the flexural stress, it is assumed that
1 00 x 0 y 0 xy O
B B,={0 1 00 x 0 y 0 xy
Bf:[Bb] with 0010 yc x/c O 0 O (27¢)
* g 000 -1 2 0 0 - o0
710 00 0 0 -1/c -1 0 -x

with ¢ = a?/b>.

3.1.2. Assumed displacements

The interpolation of the displacement field d is controlled by the 24-component vector d,, collecting
displacements and rotations of the four nodes of the element. As the stress assumption is inherently equi-
librated, the internal work can be obtained by integrating on the element contour. Therefore, only contour
displacements are needed. The displacement interpolation dj along element side k is defined as the sum of
three contributions

di[{] = dull] + diy[ L] + dil <] (28a)



where —1 < ¢ < 1 is a one-dimensional coordinate along element side k. The first term is a linear expansion
i _ i gi ginT
d - [dX’ d_)n dz]

&’ = [d, &, d)"

1 : ‘
dull) = 5ld —od' + (1 +Od], { (28b)

where superscripts i, j denote the nodes of element side k. The second and third terms correspond to
quadratic and cubic expansions of the normal component of the element side displacements

L ] - S R
digl2) = 5 Lk 1)[_(¢i_¢j)fnk], dicld) = 3 ¢ - &)

'(’)"] 0 (28¢)

with nodal rotations around the X- and Y-axes collected in
o =l 1 . o =1el T (28d)

and where n; = [ng,, nky]T is the normal to the element side, Ly is the side length, and @ is the average
in-plane distortional rotation defined as

4
1 e
6= Z;sp;—saz (28¢)
with @, the average in-plane rigid rotation of the element
P = Nyd e (281)

Ny

= 10, [—ya + Y3, Xa = X3, =ya + Y1, X4 = X1, =y2 + Y1, X2 = X1, —y3 + Y2, X3 — x2]

where d,,. collects the nodal displacements and rotations describing the membrane behavior, {x;,y;},i =
1...4 are the nodal coordinates in the local reference frame and €2, is the area of the element. By definition,
the linear part dj; and the quadratic part di, are continuous at the inter-element boundaries. The cubic
contribution dy, corresponds to an incompatible mode, which is added to avoid rank defectiveness [53].
Finally, a simple bilinear interpolation for bending rotations is used along the side

1
eildl = 10 =0+ L+ Dl @ild] = lpw 91" (282)

3.1.3. Compliance and compatibility
Introducing assumed stress (27) and assumed displacements (28) into the mixed strain energy (17), the
elemental mixed strain energy @, is defined as follows

1
®,=p!D.d, - E,BZHeﬁe (29a)

where H, and D, are the element compliance matrix and the compatibility matrix respectively. The com-
pliance matrix can be written as follows

Hm Hmb 0
H, = H, 0 (29b)
sym H,

where
H, = f {BLE, Bu}dQ.  Hyp = f {BLE,}B,}dO (29¢)
Q. Q,



and
H), = f {BYE,'By}dQ, H,= | {BIE;'B,}dQ (29d)
Q, Q,
The integration is performed assuming E,,, E,;, E, and E; are constant over each individual element
domain €, but can change between different domains to represent VAT fiber variations. Since the compat-
ibility matrix is due to self-equilibrated stress interpolation, and it is evaluated through analytical contour
integration. It can be written as follows

4 4
D, 0
De=[0 D], D, =) Dy+D., Dy=) Dp (29)
! k=1 k=1
where the matrices D, and Dy are defined as

1
B;Dmkdme = f] t;[{]N,T,,kdmk[f] dg

1
ByDcdpe = f tlINTd (L)AL
i
BiDpds. = [ NG duiaa 91)

and the vectors d,,, and dj. collect the nodal displacements and rotations describing the membrane and
flexural behaviour, respectively. Finally, the matrices N, N s split the components of the normal to the
element side,

0 0 0 Niex nky

Ngx  Niy 0 0 0. (29g)

Nmk:[nkx 0 nky], N =
Ny 0 —mx O 0

0 ngy ngy

4. GEOMETRICAL NONLINEAR FORMULATION BASED ON COROTATIONAL APPROACH

A linear finite element can be made geometrically nonlinear using corotational algebra to describe the
rigid body motion [20]. With respect to the fixed frame {e, e;, 3}, a corotational (CR) frame {&;, &;, &3} is
defined as

e, =Qlale,, k=1...3 (30)

with Q being a rigid rotation, parametrized by the rotation vector @ according to Rodrigues’ formulation
[54]. The origin of the CR frame is translated by vector ¢. Denoting the displacement and rotation associated
with position X in the fixed reference frame by d and R, respectively, the displacement and rotation in the
CR frame d and R are

d=0"X+d-¢)-X , R=0'R. (31)

Using a vector parametrization for R and R, and denoting the rotation vectors by ¢ and ¥, we have
¥ = log(R[Y)) = log (Q" [@]R[Y)). (32)

A CR frame can be defined for each element by means of the element rotation vector a,, which is a
function of the element kinematical parameters d, in the fixed frame, i.e.

a, = a,[d,]. (33)



The local kinematical parameters d, in the CR frame are related to d, by the geometrical transformation
d, = gld.] (34)

where g collects the CR transformations for displacements Eq. (31) and rotations Eq. (32) conveniently
rearranged once the definition of local kinematic parameters d, of the finite element is fixed.

Based on the above relations, the linear finite element characterized by energy Eq. (29a) can be trans-
formed into a geometrically nonlinear element simply by introducing a corotational description and assum-
ing that the element kinematical parameters in Eq. (29a) are referred to the corotational frame. This leads
to:

1
D,[2., de] = tZDeg[de] - EtZHete- (35)
The strain energy in each element can be expressed in terms of the unknown vector
u, = {t., de}T (36)

which collects all parameters that define the configuration of the element in a single vector, and can be
related to the global configuration vector u through the standard finite element assemblage procedure

u, =A.u 37

where the matrix A, implicitly contains the connectivity constraints between elements. For the Hellinger-
Reissner formulation used here, the components of u are the nodal global displacements/rotations and stress
resultants.

4.1. Taylor’s expansion of corotational kinematics

The corotational approach is very convenient for expressing the strain energy variations because the
nonlinearity is restricted to the geometrical relationship g[d,], i.e. Eq. (34). The Taylor expansion of this
relationship can be written as

1 1 1
g[de] = 8 [d.] + §g2[dea d.]+ 6g3[dea d,d,]+ ﬁgzt[dea d,d,.d,]+ - (38)

where g, are n—multilinear symmetric forms which express the n-th Fréchet derivatives of the function g[d.].
In the following, vector u; (i = 1...4) denotes a generic variation of the global finite element configuration
vector of stress and displacement parameters, and vector u,; = A.u; = {t., d,\T the corresponding vector
at the element level. Using the same notation ug and u,( are the global and element reference configuration
vectors.

4.2. Second-order energy variations

Second-order energy variations are used in the evaluation of the fundamental equilibrium path and the
buckling modes. In both cases, using expansion Eq. (38) and the energy expression Eq. (35), the elemental
energy contribution can be expressed as

(D,g,uelueZ = teTlDegl[deZ] + teTzDegl[del] - th]HeteZ + teT()Degz[dela dysl. (39)
Introducing matrices L, and G[t.] through the following equivalences

Lid,j = gld.j] , d'Gltylde = t!,D,.g>ld,1,d.], (40)



Eq. (39) can be rearranged in a more compact form:

—H. DeLl}. 41)

T 5" T
u ®us=u K.u , K,=
elTeler = RerRelez T LIDL Glt)

The mixed elemental tangent stiffness matrix K, can be used directly through a standard assemblage
process to obtain the overall stiffness matrix K

WO, =ujKu; , K=) AlK.A, (42)
e

4.3. Third and fourth order variations

Third-order energy variations are used in Koiter’s approach to evaluate the third-order coefficients and
are also used to evaluate the secondary force vectors (see Eq. (13) and Eq. (14)). The element contribution
to the scalar coeflicients can be easily calculated using the general formula

(I),e”ueludueﬁi = tleeg2[d22’ de3] + t52D2g2[de3’ del] + tZ3Deg2[dela deZ]

(43)
+ 61D, g5[d,1, doo, do3).

Then the element contributions can be simply added to obtain the global values. On the other hand, taking
advantage of the above expression, the element contribution to the secondary force vector is evaluated by

O uertter = pe = [G[tel]de2 + gfiigflife;gteo de1,d] +4)
where vector ¢ is defined according to the following condition:
dlyglte, det, ) = thyDegslder, deo, dos. (45)
Then, the overall vector is then obtained by standard finite element assembly
O""uuy = Z Alpluci unl. (46)

Finally, fourth-order energy variations, used to evaluate the fourth-order coefficients (see Eq. (14)), can
be computed by summing the relevant element contributions based on the following expression

1"

(De U UDUAUy = tleeg:;[de, dg3, dg4] + tZ2Deg3[de3’ de4’ del]
+ teT3Deg3 [des,de1,dp2] + tZ4Deg3[dg], d.,ds] (47)
+ tZOD€g4[del s deZ, de3, de4]-

5. NUMERICAL RESULTS

First, the reliability and accuracy of the proposed MISS-4 finite element in predicting the post-buckling
behavior of square laminated VAT plates using Koiter’s asymptotic approach is tested for different boundary
and loading conditions. In particular, a square plate under three loading conditions (compression, bi-axial
compression and shear) is considered (see Fig. 2). The loading conditions are denoted as Test 1, Test 2, Test
3. For each loading condition, three different boundary conditions are considered: clamped (CCCC), simply
supported (SSSS) and simply supported/clamped (SCSC). The plates are meshed using a grid of 100 x 100
elements for converged results. The length of the square plate is [/ = 1.0 m and the thickness of each lamina
is # = 1.272 - 10~ m. The material properties of the plate are tabulated in Table 1 and the layer stacking



sequences (LSS) are cited in Table 2. The local fiber orientation #(X) within a VAT lamina is presented
using the standard notation of Gurdal & Olmedo [28]

000) = ¢+ 210 4 48)

L,

where ¢ is the rotation of the fiber paths with respect to the global X-axis, Ty is the fiber orientation an-
gle with respect to ¢ at the plate center (X = 0), and T is the fiber orientation angle at the plate ends
(X = £L,/2). The LSS chosen in Table 2 are balanced and symmetric and exhibit fiber paths with variations
along the longitudinal and width directions, and also at 45° to either. The chosen VAT layups do not rep-
resent optimized layups for the chosen load-cases but rather serve to demonstrate the robustness and wide
applicability of the modeling approach.

To validate the present approach, comparisons have been made with a finite element solution based on
the Riks path-following algorithm in the commercial finite element code ABAQUS [52]. In this case, each
plate was meshed with 100 x 100 S4R elements, each with a unique stacking sequence to approximate the
VAT layup over the planform, and an initial linear eigenvalue analysis was performed to determine possible
perturbations off the fundamental path. The eigenmode corresponding to the first critical eigenvalue was
then applied as an initial imperfection with a scaling factor of the order 107> — 107 and the full nonlinear
analysis was re-run using the Riks algorithm. Comparisons are also made with a Koiter’s asymptotic model
implemented using the differential quadrature method (see Section 5.1). In this case a discretisation grid of
42 x 42 points was required for convergence.

The initial post-buckling behavior of test cases 1-3 in Fig. 2 with boundary conditions (CCCC), (SSSS)
and (SCSC) are all dominated by the first buckling mode. To showcase a more complicated multi-modal case
with coincident buckling loads, a long plate under uni-axial compression (Fig. 3) with stacking sequence
LSS3 was tested. This example highlights the importance of a full nonlinear multi-modal analysis to capture
possible interactions between different buckling modes.

Table 1: Assumed material properties.

E, E; V12 G2 Gi3 G
[GPal [GPal [-] [GPa]l |[GPa] |[GPa]
181.00 10.27 0.28 7.17 4.00 4.00

Table 2: Lamina orientations.

Plate Notation | Stacking Sequence
LSS1 (0 = (45]|0))35
LSS2 (45 £(9010))3
LSS3 (90 £(0[45))35

5.1. Differential Quadrature Method (DQM)

Differential quadrature (DQ) is a numerical discretization technique proposed by Bellman et al. [55]
that approximates the partial derivative of a functional field with respect to a specific spatial variable using
a linear weighted sum of all the functional values in the domain. For example, the n™ partial derivative of
function f(x) at the i discretization point is

0" f(x:)

SL S AP S = 120N, (49)



Test 1 Test 2

Point| X Y

C |[-0.22]0.02

Tost3 T D |-0.34]0.00

Yy F |-0.20 ] 0.00

G |-0.30] 0.00

s R M |-0.15]-0.03
@ |

P X N |-0.181-0.00

P 10.00]0.00

Q 1-0.17(-0.17

4 R |0.18] 0.00

S |-0.18]-0.03

Figure 2: Geometry of tested VAT plates and different loading conditions. In each case the edges are simply-supported.
Note, even though the deformed dotted edges are depicted as straight lines, varying in-plane stiffness along
an edge means that this is not necessarily so. For each test, three boundary conditions are considered

(clamped (CCCC), simply supported (SSSS) and simply supported/clamped (SCSC)) and three layer stack-
ing sequence ((LSS), see Tab. 2).

where x; is the set of N, discretization points in the x-direction, typically defined by the non-uniform Gauss-
Lobatto-Chebychev distribution, Ag.’) are the weighting coefficients of the n’” derivative, and repeated index
J means summation from 1 to N,. The same technique is easily extended to the remaining two spatial
dimensions to compute mixed derivatives.

The key to applying DQ is finding the value of the weighting coefficients for any order derivative and
number of grid points. In this regard, Shu and Richard [56] proposed the generalized differential quadrature
(GDQ), whereby Lagrange polynomials are used as the underlying polynomial basis for deriving Ag.l). The
interpolation coefficient matrix g for the Lagrangian polynomial basis [57] is given by

__ mw _
gk(x) = =)’ =12,...,N, (50)
where
N, N,
me) = [ Jor-xp and w0y =[] i-x (51)
Jj=1 k=1,k#i



Test 4

1 5 i

Figure 3: Geometry of a long VAT plate under uni-axial compression. All edges are simply-supported. Note, even
though the deformed dotted edges are depicted as straight lines, varying in-plane stiffness along an edge
means that this is not necessarily so. This test is denoted as Test 4 in the following.

and this leads to the weighting coefficients of the derivatives AE;”,

N N
(1) 1 Toxi— .. ) a 1
Al.j = — for i#j and Al = Z . (52)
TN i YT T k=g 0T

Subsequently, all higher-order weighting coefficients are obtained by direct matrix multiplication, i.e. [A?] =
[ADA™ D], withm = 2,3,...,N » — 1 [58]. In this manner, any set of linear differential equations can be
written as a linear system of algebraic equations by replacing the differential operators with the weighting
matrix in Eq. (49). Thus, the unknown functional values f(x;) at each grid point are found by solving the
strong form of the system of equations with pertinent essential or natural boundary conditions imposed on
the boundary points.

5.1.1. Plate element for DOM

To model the buckling and initial post-buckling behavior of VAT panels, the classic equilibrium equa-
tions of a flat plate subjected to in-plane and transverse loading are used. The classical Kirchhoff assump-
tions of mid-plane normals remaining normal and unextended, and plane sections remaining plane are in-
voked. Thus, transverse shear strains and transverse normal strains are deemed negligible compared to their
in-plane counterparts. Furthermore, Lagrangian linear kinematics with von Kdrman nonlinear strains are
employed [59]. Therefore,

aNX 6ny

ax Ty O

ON, ON,,

4 =0 53

oy " ox (53)
PM, 0*M,, &M, &d, &d &d

=+ + + N, +2Ny—=+Ny,—— +p, =0
2x ' axay | oy PX Yaxay TV ery T IE

where the nonlinear part of the third governing Eq. (53) represents the transverse components of the mem-
brane forces that arise once the panel has buckled. Finally, p; is the distributed load in the Z direction.
The membrane forces (¢,,) and bending moments (£) per unit width in Eq. (53) are defined by

tm = En(X,Y)- (e +1) + Eqp(X,Y) - x ty = Em(X.Y) (e +1n)+ EpyX,Y) x (54

where E,(X,Y), E,,(X,Y) and Ep(X, Y) are the membrane, coupling and bending stiffness matrices of
classical laminate analysis as introduced previously in Eq. (21). Note that due to the variable stiffness
design of the panel, these terms are functions of location (X, Y). Finally, the linear and nonlinear membrane
strains, e and 7, and curvatures y of the reference surface are given by:



dd,|dX 1/2(8d,/9X)? 8%d,|0°X
e= ady/dY . o=\ 1/20d./ov)?* |, x=-| 8%d. /Y (55)
ddy/0X + 0d,|dY (8d./0X)(9d. /DY) 23%d.|0X0Y

where d,, d,, d, are the deflections of the plate reference surface in the Cartesian {X, Y, Z}-coordinates, re-
spectively.

Finally, the essential and natural boundary conditions that need to be applied to fully constrain the
boundary value problem are

dn = Vn or Npp = Nnn
ds = JS or N,s = an
y oM . OM
dz =da; Or an + — = an + = (56)
as as
ad,  od, y
E = _n or My, = My,
where
dy = uxny + uyn, Ug = —UxNy + Nylly
0 0 N 0 0 0 N 0
— =Hly— +Hy— — = —ny— + Ny—
on Tox Yy s Yox oy
Ny = xni + 2N yynyny + Nyng Ny = (Ny - Nx) nyny + Ny, (n)zc - ni)
oM M,y oM, OM,, ad od od od
Ore = ( ax *ar )Gyt ax )t Meax e gy e (Mg H Mgy
M, = xni +2Mynyny + Myng M, = (My — Mx) nyny + My, (ni - ng)

and the directional terms are defined by n, = cosv and n, = sinv where v is the angle between the
normal to the boundary and the global X-axis, and prescribed quantities on the boundary are denoted by a
superimposed check symbol ™.

5.1.2. Koiter’s solution using DOM

In Koiter’s approach, the nonlinear differential Eqs. (53) are converted to an infinite set of linear differ-
ential equations. This is achieved by expanding the unknown functional fields, that for a von Kdrmdn plate
theory are d = [d,, d,, d,]", in a power series of an arbitrary perturbation parameter £ and a linear scalar A
of the external load,

d[/l,§]=/13+§d+%§221'+.... (57)

Here, the perturbation parameter is chosen to be the normalized buckling amplitude d;"‘”‘ /t, where ai’;"“x is
the amplitude of the transverse buckling mode d_, and  is the total thickness of the laminate. By combining
corresponding terms of A, & &2, ..., an infinite set of linear differential equations is obtained that represents
an asymptotic series solution to the nonlinear differential equations. The first three sets of linear differen-
tial equations pertain to the pre-buckling, buckling (linear correction) and initial post-buckling (quadratic
correction) solutions, respectively. These three sets of equations are solved successively for d,dandd.

In this particular work, the applied loading conditions are purely in-plane (uni-axial compression, bi-
axial compression or shear loading) and all VAT laminates are symmetrically laminated. In this case, the
VAT plate remains flat in the pre-buckling regime, and the pre-buckling and initial post-buckling (quadratic



correction) responses are functions of the in-plane variables d,, = [d,, dy]T only, whereas the buckling
(linear correction) solution is a function of dp[¢] = d, only. Thus,

duldEl = A+ 380 dyle) = d. = £de (58)

Hence, substituting the weighting matrix of eq. (49) for the differential operators into Eq. (53), and
collecting all terms associated with A, an algebraic system of equations for the pre-buckling response is
derived

[Ax 0 A,

N,
N, |= o ATN =0 (59)
0 A, Al m

0

where, in DQ form, the pre-buckling membrane forces are calculated as follows

N, Ay 075
Ny|=E,|[0 A, ["] = N=E,A,d (60)
Ny A, AL

with A, and A, the first-order DQ weighting matrices, and d, and 3y the vectors of pre-buckling unknowns
at the DQ grid points. By combining Eq. (59) and Eq. (60) we can write

~ATE,A,d=0. (61)

The loading condition is applied by replacing the equilibrium equations at the DQ boundary points in Eq.
(59) with the appropriate essential (displacement) and natural (stress) boundary conditions of Eq. (56),
which, for this particular work, include the loading conditions N, = Ny and Ny = N,s. As a result, some
of the rows in Eq. (61) are replaced with the pertinent boundary conditions, and the null vector in Eq. (61)
is replaced by a generalized load vector fe .

The second set of equations is a linear eigenvalue problem that yields the buckling eigenvalues A, and
eigenmodes d.. By substituting the weighting matrix of Eq. (49) for the differential operators into Eq. (53),
and collecting all terms associated with &, an algebraic system of equations for the generalized eigenvalue
problem is derived

Mx Axx
A Ay 24| My |+ [N By Nyll Ay |do=0 = AJM+INAd.=0  (62)
M, 24,

where [IV o N s N xy]T are the membrane forces acting on the reference surface calculated for a prescribed
unit loading in the linearized pre-buckling problem, and A, Ay, A,, are the second-order DQ weighting
matrices. In DQ form, the bending moments are calculated as follows

Mx _Axx
M,|=E,|-Ay, |d, = M=-EyAd.. (63)
M,y 24,

Thus, by combining Eq. (62) and Eq. (63), and factoring out the displacement vector d., we are left with
the generalized eigenvalue problem

~ATE Apd, + 4, NAd, =0 , - (Ko+ ,K1)d, =0 (64)



where K is the linearized stiffness matrix and K the geometric stiffness matrix evaluated for the prescribed
unit loading in the pre-buckling step. The the eigenvalues (buckling loads), 4, and eigenvectors (buckling
modes), d, are found by solving the eigenvalue problem with the appropriate essential (displacement) and
natural (stress) boundary conditions replacing the rows pertaining to the boundary points.

The initial post-buckling solution d corresponding to a particular buckling mode d, is calculated by
solving the third set of differential equations pertaining to £2. Hence, substituting the weighting matrix of
Eq. (49) for the differential operators into Eq. (53), and collecting all terms associated with £2, an algebraic
system of equations for the initial post-buckling response is derived

[Ax 0 Ay] N [Aprx+Aprxy]

0 A, A, ;\;’y " T|AN,y + AN,
xy

ATN=f,. (65)

where the membrane forces N, = [Ny, Ny, N pxy]T are calculated from the buckling solution as follows

N px (Axdz)j
pr =E, (Aydz) (66)
pr}’

2 (A.d)(Ad.)

and the initial post-buckling membrane forces N are given by Eq. (60) with d,.d ) replaced with d,.d ).
Thus, the initial post-buckling solution is found by solving the linear system of equations

ATE,A,d=f,. (67)

with the appropriate essential (displacement) and natural (stress) boundary conditions imposed on the system
of equations by replacing the rows pertaining to the boundary points.

After the three displacement fields (d,d, d) have been found, it is possible to compute the change in
load factor A for a given change in the perturbation parameter £. Thus, expanding the load factor in a power
series in terms of & gives

1,
/l:/lb+§§2/l+... (68)

where A is the curvature of the initial post-buckling equilibrium path. For a symmetrically laminated plate,
as considered in this work, the asymmetry parameter 1 = 0 as the plate is agnostic to the direction of
buckling. These path parameters can be found using the following integral expressions [60]

L. L2 (. A
/lbz—fMT-/\'/dQ , /lz—fNT-deQ , D:-fNT-R,,dQ (69a)
D Jq D Jo Q

where
T

R, =

0X aY 0X oY

Further details on implementing Koiter’s perturbation approach in DQM are presented by White et al. [45].

5.2. Koiter’s finite element analysis results

Three test cases (uni-axial compression, bi-axial compression, in-plane shear loading) with three bound-
ary conditions (clamped (CCCC), simply supported (SSSS), simply supported/clamped (SCSC) and three
different stacking sequences were analyzed comparing the MISS-4 finite element with both DQM and FE
analyses. The equilibrium paths for the 27 configurations are shown in Figs. 4, 5 and 6. These graphs
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show the equilibrium curves in terms of the load factor normalised by the first critical buckling load and the
displacement d, calculated at the points tabulated in Tab. 3.

For these 27 configurations the first buckling mode dominates the behavior and thus the MISS-4 and
DQM asymptotic solutions are based on a single buckling mode expansion and quadratic correction (see
Eq. (9) for MISS-4 and Eq. (62) for DQM). The comparison clearly shows the accuracy of the proposed
analysis in recovering the equilibrium paths in the initial pre-buckling regime.

Table 3: Location of displacement d, for the 27 configurations corresponding to the points defined in Fig. 2.

SSSS CCCC SCSC
LSST LSS2 LSS3 | LSS1 LSS2 LSS3 | LSS1 LSS2 LSS3
Test 1 P P Q P M N P C D
Test 2 P P P P P F P P G
Test 3 P P P P P P P R S

——-MIs54
« « «DOM

A \ Amin

0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25

dz/t dz/t d:f t

Figure 4: Test 1: Equilibrium paths calculated using the MISS-4 element based on Koiter’s asymptotic analysis, which
is compared with a Koiter DQM approach and Riks path-following solutions using ABAQUS. The load
factor A is normalized by the first critical buckling load A,,;,. Refer to Tab. 3 for the point on the plate that
d, refers to.

For the post-buckling analysis of Test 4, the first four buckling modes have been used in the expansion
of quadratic correction, i.e. the initial post-buckling solution. The buckling loads (4;,i = 1...4, see Eq. (9))
and modes (v;,i = 1..4) are shown in Fig. 7. The corresponding quadratic corrections (w;;,i,j = 1...4, see
Eq. (13)) are presented in Fig. 8.

The equilibrium path, in terms of the normalized load, A/A,,;;, versus normalized displacement, d,/1,
is shown in Fig. 9. As the first four buckling loads are clustered together, with the first pair of modes
coincident and the second pair of modes coincident, a multi-modal analysis that accounts for more than
just the first buckling mode is crucially important for capturing the post-buckling path. Initially, the post-
buckling behavior at point "B" in Fig. 9 is dominated by the first buckling mode. However, as we progress
along the post-buckling equilibrium path, higher-order buckling modes start to contribute to the deformation
(points "C", "D" and "E"). As a result, the final deformed configuration of the VAT plate at point "F" is
significantly different from the first buckling mode.

The normalized modal amplification factors &;/t of the first four buckling modes plotted in Fig. 10
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Figure 5: Test 2: Equilibrium paths calculated using the MISS-4 element based on Koiter’s asymptotic analysis, which
is compared with a Koiter DQM approach and Riks path-following solutions using ABAQUS. The load
factor A is normalized by the first critical buckling load A,,;,. Refer to Tab. 3 for the point on the plate that
d, refers to.
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Figure 6: Test 3: Equilibrium paths calculated using the MISS-4 element based on Koiter’s asymptotic analysis, which
is compared with a Koiter DQM approach and Riks path-following solutions using ABAQUS. The load
factor A is normalized by the first critical buckling load 4,,;,.Refer to Tab. 3 for the point on the plate that d,
refers to.



show that the deformation along the post-buckling path is predominantly influenced by buckling modes 1
and 4, with some contribution of mode 2. While mode 1 remains the dominant contribution to the post-
buckling solution, the contribution of higher-order modes can clearly not be neglected. In fact, Fig. 11
shows the convergence of the asymptotic series as the number of buckling modes in the asymptotic solution
is increased from the first mode only to a multi-modal analysis incorporating the first eight modes. The plot
shows that including only the first up to a combination of the first three buckling modes is not sufficient
in capturing the post-buckling behavior. However, the solution sufficiently converges once the first four
buckling modes are accounted for simultaneously.

A = 861.4 A = 861.4
A A A

v

A5 = 904.6 g =909.0
4000000 10000%
. A < A a

v \ 4 v v
0 01 02 03 04 05 0B 0.7 0g 0s 1
B B

Figure 7: Test 4: The first four buckling loads 4; and corresponding buckling modes v;,i = 1...4 (see Eq. (9)).
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Figure 8: Test 4: "Heatmap" plots of the quadratic corrections (w;;,i, j = 1...4, see Eq. (13)).
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Figure 9: Test 4: Equilibrium path of normalized load A/A4,,;, versus normalized displacement d./t at point "P" (see
Fig. (3)). "Heat maps" of deformed equilibrium configurations at different points along the pre-critical
and the post-critical path show the evolution of mode 1-dominated post-buckling behavior at point "B" to a
combination of multiple modes at point "F".
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Figure 10: Test 4: Contributions of the normalized modal amplification parameters &;/7 of the first four buckling modes
i =1...4to the total deformed configuration along the equilibrium path. The deformation is dominated by
buckling modes 1 and 4 with some contribution from mode 2.
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Figure 11: Test 4: Equilibrium paths of normalized load A/A4,,, versus normalized displacement d,/t at point "P"
(see Fig. (3)) accounting for different number of buckling modes, from a single mode 1 analysis to an
eight-mode analysis. Analyses that only account up to the first three buckling modes are not sufficient in
capturing the post-buckling behavior, but the analysis converges once the first four modes are accounted

for in a multi-modal analysis.



6. CONCLUDING REMARKS

A robust and computationally efficient method for analyzing the post-buckling behavior of flat variable-
angle tow (VAT) plates using Koiter’s asymptotic approach implemented using the finite element method
has been proposed. The analysis accounts for multi-modal interactions in the evaluation of the post-critical
behavior. The energy variation required for the asymptotic expansion has been obtained using a corota-
tional approach starting from the linear mixed finite element called MISS-4. The accuracy of the overall
approach is documented by comparisons with an asymptotic Koiter’s solution implemented within a differ-
ential quadrature framework and a path-following solution obtained using ABAQUS.

The present work has also highlighted the importance of accounting for multiple buckling modes in
the quadratic correction that is used to recover the post-buckling path. For structures where the first few
buckling loads are unique and not clustered, a post-buckling expansion based on the first mode may be
sufficient. However, for long plates, curved shell structures or optimized structures where buckling loads
are often coincident, the interaction of multiple buckling modes is crucially important when evaluating the
post-critical behavior.

The proposed approach can be easily extended to other finite element formulations due to the use of a
general corotational reference frame and also used as a facet element to mesh shell geometries [9, 21]. Future
work will focus on analyzing the load carrying capacity VAT structures subject to initial imperfections by
coupling the proposed Koiter approach with a Monte Carlo engine [10].
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