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Abstract The paper investigates the post-buckling

response of web-core sandwich plates through classi-

cal continuum mechanics assumptions. The compres-

sive loading is assumed to be in the direction of the

web plates. Equivalent Single Layer (ESL) plate

formulation is used with the kinematics of the First

order Shear Deformation Theory (FSDT). During the

initial, membrane-dominated loading stages, it is

observed that the effect of finite size of the periodic

microstructure is barely influences the plate responses.

At the higher loads, when bending is activated, the

finite size of the microstructure activates secondary

shear-induced bending moments at the unit cells of the

plate. A method to capture the envelope of the

maximum values of these bending moments is

presented. The findings are validated with the shell

element models of the actual 3D-geometry. Finally,

the physical limits of the classical continuum mechan-

ics are discussed in the present context.

Keywords Plate theory � Post-buckling � Structural

design � Sandwich Structures

1 Introduction

There is constant need to study new materials and

structural configurations for thin-walled structures.

Weight reduction and strength increase enable lighter

and often more sustainable structural solutions that

can be used in civil, naval and aeronautical applica-

tions. Structural efficiency in terms of strength-to-

weight and stiffness-to-weight is obtained by posi-

tioning of the material according to the load-carrying

mechanism of the structure. In bending dominated

applications, this often results in plates with periodic

microstructure, for example, single-sided stiffened

plates and sandwich panels with visibly discrete core;

see Fig. 1. The periodic structure allows integration of

functions to the panel(e.g. air-conditioning and cable

tracks). Thus, unidirectional stiffening system with

coarse spacing becomes attractive structural alterna-

tive; Refs. [1–13]. These unidirectional plates, espe-

cially in the form of steel sandwich plates, have been

found to have excellent mechanical properties for
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buckling, bending and impact loads [14–21]. These

structures are, however, challenging in terms of

structural analysis. The direct inclusion of the

microstructure to computational models of the entire

structure leads to expensive pre-processing, analysis

and post-processing times (i.e., computationally inten-

sive). The problem compounds if the geometry

changes and analysis is needed to be repeated several

times(e.g., during structural optimization or reliability

analysis [18, 20]). Further complications are caused by

the fact that often the failure of these panels occurs

first locally in the microstructural level in the face and

web-plates or at the welds by yielding or buckling, see

Fig. 1. This means that certain level of accuracy is

needed in the analysis of structural details.

Homogenization is the alternative method for a

direct modeling of both micro- and macrostructure. In

terms of plates, it has been discussed by several

authors(see, e.g., Refs. [1, 3, 4, 11–14, 20–36]). In

plates, the main idea is to reduce the mathematical

Fig. 1 Examples of periodic sandwich panels structural failures under different extreme loads. (Figures from: explosions Valdevit

et al. [18]; full-scale ship collisions Ehlers et al. [37] and quasi-static plate punch experiments Körgesaar et al. [38])
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description to Equivalent Single Layer (ESL) repre-

sentation in which the deformations and stress resul-

tants (forces and moments) are computed for known

load and boundary conditions. In periodic sandwich

panels, the closed unit cells, including the interacting

face and web plates, form a structure that warps in

bending due to the out-of-plane shear. With this

phenomenon included, Libove and Hubka [1] pre-

sented an ESL-theory for corrugated-core sandwich

plates which follows First order Shear Deformation

Theory (FSDT). They derived the equivalent shear

stiffness and provided series solutions to prevailing

differential equations for bending. After this work,

several papers have been written for other microstruc-

tures [26–30, 33, 37, 38] where the stiffness param-

eters change, but the differential equations remain the

same. The approach has been also validated to

geometrically moderate non-linear global deforma-

tions [26–28]. However, the problem arises in the

assessment of stresses. As the local, microstructural

length-scale can be close to that of macro-structural,

the local oscillations of stresses within microstructure

can have significant contribution to the overall stress

state caused by macroscopic plate behavior. It has

been experimentally shown that the out-of-plane shear

damages the periodic structures from plate edges or

close to point loads, thus the secondary stresses

induced by shear need to be carefully assessed

[20–22], see also Fig. 1. These findings are based on

bending of plates. This situation can also occur during

in-plane compression after buckling when the initially

membrane-dominated responses are complemented

with out-of-plane responses [39].

The objective of this study is to present the

phenomena related to post-buckling response of

web-core sandwich plates and thereby extending the

work presented in Ref. [39]. Primary focus is on the

bending responses due to the von Kármán strains. The

ESL formulation based on the FSDT is utilized in

order to show the connection between in- and out-of-

plane deformations. In post-buckling regime, bending

occurs, which activates secondary normal stresses of

the microstructure. As the unit cell to plate length

ratio, lmicro/lmacro, is not infinitesimal, the micro-

fluctuations of stress at unit cell level contribute

significantly to the total normal stress response of the

face and web plates.

In order to show these aspects, we first formulate

the geometrically non-linear differential equations of

the problem at hand. We assume that the microstruc-

ture is linearly-elastic. Thus, at micro-scale, analyti-

cal, stiffness and strength formulations are possible

and the prevailing physics can be explained in

parametric form. Then we show how to eliminate the

microstructural elements from the plate model. This

elimination allows solution of the macro-scale prob-

lem with the classical ESL-FSDT formulations that

can be found from numerous textbooks and the finite

element implementations from several commercial

codes. Then, at the post-processing stage we focus on

assessment of stress concentrations at faces, webs and

welds and reconsider the finite size of the microstruc-

ture. This shows the limitations of this paper and also

the commercial FSDT-ESL FE-codes on capturing the

prevailing post-buckling behavior. It also motivates

extensions to the non-classical continuum mechanics

formulations.

2 Theory

2.1 Notations

The plate is assumed to consist of structural elements

with small thickness representing the face and web

plate(s). This justifies the use of Kirchhoff hypothesis

locally at the face and web-plates. The thicknesses of

the top and bottom face plates are denoted by tt and tb,
respectively, and these are positioned in the xy-plane.

The web plates are in the xz-plane and have thickness

tw, spacing s, and height hc. The plate has two

coordinate systems, namely: global xyz and local xlylzl
(see Fig. 2). The origin of the global coordinate

system is located at the geometrical mid-plane of the

plate and the origin of the local coordinate is located at

the geometrical mid-planes of face or the web plates

under consideration.

2.2 Classical, homogenized FSDT for periodic

plates

The deformation of the periodic plate is composed of

global bending deflection of the mid-surface and local

deflection due to warping of face and web plates. Thus,

the total deflections along the three coordinate direc-

tions of the faceplate can be represented as
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u x; y; z; xl; yl; zlð Þ ¼ u0 x; yð Þ þ z/g;x x; yð Þ

þ zl/x;l x; y; xl; ylð Þ ð1Þ

v x; y; z; xl; yl; zlð Þ ¼ v0 x; yð Þ þ z/g;y x; yð Þ

þ zl/y;l x; y; xl; ylð Þ ð2Þ

w x; y; z; xl; yl; zlð Þ ¼ wg x; yð Þ þ wl x; y; xl; ylð Þ: ð3Þ

where subscript 0 denotes the in-plane membrane

displacements at the geometrical mid-plane, as shown

in Fig. 2. The subscripts g and l denote bending

actions at the geometrical mid-plane of the entire

sandwich plate and face plate respectively. The global

deflection of webs is defined completely by the face

plate deflection at their intersection, wweb = wg. In

addition, due to perfect connection with the faces, the

webs bend in the y-direction due to the local deflection

of the faces, wl. This deflection of the webs is defined

completely by the face plate rotations at the web-to-

face-interface. Thus, additional kinematical variables

are not needed for the web deformations. The rotation

of the mid-plane of the entire plate is denoted by /g,

the in-plane displacements by u0 and v0 and deflection

by wg. The global and local rotations are

/x;g ¼ cxz �
dwg

dx
¼

du

dz
;/y;g ¼ cyz �

dwg

dy
¼

dv

dz
ð4Þ

/x;l ¼ �
dwl

dx
;/y;l ¼ �

dwl

dy
ð5Þ

which means the sandwich plate behaves according to

the FSDT. The relative strains, expressed in column

vector, are

ef g ¼

exx
eyy
cxy

8

<

:

9

=

;
¼

exx;0
eyy;0
cxy;0

8

<

:

9

=

;
þ

exx;g
eyy;g
cxy;g

8

<

:

9

=

;
þ

exx;l
eyy;l
cxy;l

8

<

:

9

=

;

ð6Þ

with strains defined as

Fig. 2 Web-core sandwich plate, notations and the kinematics of the First order Shear Deformation Theory (FSDT) in Equivalent

Single Layer (ESL) formulation
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exx;0 ¼
du0

dx
þ
1

2

dwg

dx

� �2

; exx;g ¼ zg
d/x;g

dx
; exx;l

¼ �zl
d2wl

dx2
ð7Þ

eyy;0 ¼
dv0

dy
þ
1

2

dwg

dy

� �2

; eyy;g ¼ zg
d/y;g

dy
; eyy;l

¼ �zl
d2wl

dy2
ð8Þ

cxy;0 ¼
du0

dy
þ
dv0

dx
þ
dwg

dx

dwg

dy
; cxy;g

¼ zg
d/x;g

dy
þ
d/y;g

dx

� �

; cxy;l ¼ �zl
d2wl

dxdy
ð9Þ

where the underlined terms denote the von Kármán

strains, which are accounted at the macroscale. The

plates are assumed to be made of isotropic material

and follow Hooke’s law. Thus, the elasticity matrices

of the different layers (subscripts: t = top face,

b = bottom face, w = web) of the sandwich plate are

Qt½ � ¼ Qb½ � ¼
Q11 Q12 0

Q12 Q22 0

0 0 Q66

2

4

3

5

t;b

¼

E

1� t2
tE

1� t2
0

tE

1� t2
E

1� t2
0

0 0 G

2

6
6
6
4

3

7
7
7
5

t;b

ð10Þ

Qw½ � ¼
Ew

t

s
0 0

0 0 0

0 0 0

2

6
4

3

7
5 ð11Þ

where the web properties are smeared equally over the

unit cell width by the rule-of- mixtures. The stresses

per layer are:

rif g ¼ Ei½ � eif g; i ¼ t;w; b ð12Þ

The stress resultants are obtained by through-

thickness integration and are

Nf g ¼
Nxx

Nyy

Nxy

8

<

:

9

=

;
¼ r

h=2

�h=2

rxx
ryy
rxy

8

<

:

9

=

;
dz; Mf g

¼ r
h=2

�h=2

rxx
ryy
rxy

8

<

:

9

=

;
zdz; ð13Þ

Due to the periodic microstructure, smearing the shear

modulus of the core by an integrating over the

thickness of the sandwich does not result in correct

stiffness values. In the x-direction this is due to the

shear flow of the thin-walled section. In the y-direction

this is due to the higher order warping deformations of

the unit cells. Instead, we incorporate the shear

stiffness that accounts directly these two effects and

write:

Qf g ¼
Qxx

Qyy

� �

¼ DQ½ � cz
� �

¼
DQ1 0

0 DQ2

� 	
cxz
cyz

� �

ð14Þ

The equilibrium of a plate element is governed by

the following equations:

dNxx

dx
þ
dNxy

dy
¼ 0 ð15Þ

dNyy

dy
þ
dNxy

dx
¼ 0 ð16Þ

dQxx

dx
þ
dQyy

dy
þ N�wg þ q ¼ 0 ð17Þ

dMxx

dx
þ
dMxy

dy
� Qxx þ

dMxx;l

dxl
þ
dMxy;l

dyl
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

local

¼ 0 ð18Þ

dMyy

dy
þ
dMxy

dx
� Qyy þ

dMyy;l

dyl
þ
dMxy;l

dxl
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

local

¼ 0 ð19Þ

N�wg ¼
d

dx
Nxx

dwg

dx
þ Nxy

dwg

dy

� �

þ
d

dy
Nxy

dwg

dx
þ Nyy

dwg

dx

� �

ð20Þ

where the underlined terms are associated with local

shear-induced warping response. It should be also

noticed that due to the von Kármán strains, the in-
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plane membrane and out-of-plane shear forces are

coupled, by Eq. (20). The differential equations in

terms of displacements are then:

A11

d2u0

dx2
þ
dwg

dx

d2wg

dx2

� �

þ A12

d2v0

dxdy
þ
dwg

dy

d2wg

dxdy

� �

þ B11

d2/x;g

dx2
þ B12

d2/y;g

dxdy
þ B66

d2/x;g

dy2
þ
d2/y;g

dxdy

� �

þ A66

d2u0

dy2
þ

d2v0

dxdy
þ
d2wg

dxdy

dwg

dy
þ
dwg

dx

d2wg

dy2

� �

¼ 0

ð21Þ

A22

d2v0

dy2
þ
dwg

dy

d2wg

dy2

� �

þ A12

d2u0

dxdy
þ
dwg

dx

d2wg

dxdy

� �

þ B22

d2/y;g

dy2
þ B12

d2/x;g

dxdy
þ B66

d2/y;g

dx2
þ
d2/x;g

dxdy

� �

þ A66

d2v0

dx2
þ

d2u0

dxdy
þ
d2wg

dxdy

dwg

dx
þ
dwg

dy

d2wg

dx2

� �

¼ 0

ð22Þ

DQx

d2wg

dx2
þ
d/x;g

dx

� �

þ DQy

d2wg

dy2
þ
d/y;g

dy

� �

þ N�wg

þ q

¼ 0

ð23Þ

B11

d2u0

dx2
þ
dwg

dx

d2wg

dx2

� �

þ B12

d2v0

dxdy
þ
dwg

dy

d2wg

dxdy

� �

þ D11

d2/x;g

dx2
þ D12

d2/y;g

dxdy

þ D66

d2/x;g

dy2
þ
d2/y;g

dxdy

� �

þ B66

d2u0

dy2
þ

d2v0

dxdy
þ
d2wg

dxdy

dwg

dy
þ
dwg

dx

d2wg

dy2

� �

� DQ1

dwg

dx
þ /x;g

� �

�
dMx;l

dxl
�
dMxy;l

dyl
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

local

¼ 0

ð24Þ

B22

d2v0

dy2
þ
dwg

dy

d2wg

dy2

� �

þ B12

d2u0

dxdy
þ
dwg

dx

d2wg

dxdy

� �

þ D22

d2/y;g

dy2
þ D12

d2/x;g

dxdy

þ D66

d2/y;g

dx2
þ
d2/x;g

dxdy

� �

þ B66

d2v0

dx2
þ

d2u0

dxdy
þ
d2wg

dxdy

dwg

dx
þ
dwg

dy

d2wg

dx2

� �

� DQ2

dwg

dy
þ /y;g

� �

�
dMy;l

dyl
�
dMxy;l

dxl
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

local

¼ 0

ð25Þ

The membrane, membrane-bending coupling and

bending stiffnesses are

A;B;D½ � ¼ r
h=2

�h=2

Qi½ � 1; z; z2
� �

dz; i ¼ t;w; b ð26Þ

The shear stiffness is obtained by unit cell analysis

of the periodic structure. In x-direction (see Ref. [21])

this is:

DQ1 ¼ k211 Gttt þ Gbtb þ
tw

s
Gwhc

 �

ð27Þ

k11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

A
P

i r
si

QQ;xs

 �2

tidsi

� �

v
u
u
u
t

; i ¼ t;w; b ð28Þ

where the shear correction factor is obtained by

integration of shear flow through top, web and bottom

faces; for details see Ref. [21]. In the y-direction the

shear stiffness is computed by unit frame analysis (see

Ref. [21] and Fig. 3b) and is given by

DQ2 ¼
12Dw

s2 kQ
Dw

Db
þ 6 d

s

 �

þ 12 Dw

kb
h
s
� 2 d

s

 � ð29Þ

kih ¼
Qys

hic
; kt1 ¼ 1� kQ; k

b
1 ¼ kQ; k

t
2 ¼ 2� 3kQ; k

b
2

¼ 3kQ � 1;

ð30Þ

kQ ¼
1þ 12 Dt

s
1
kt
h

� 1
kb
h

 �

þ 6 Dt

Dw

d
s

1þ 12 Dt

Dw

d
s
þ Dt

Db

ð31Þ
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where kh is the rotation stiffness of the laser-stake weld

and k-parameters model the relative stiffness of faces

and webs. For symmetric sandwich panels the param-

eter kQ = 1/2 indicating that equal amount of shear is

carried out by top and bottom face plates.

2.3 Unit cell analysis for out-of-plane shear

The local response, opposite to stiffener direction, is

assumed to have the same values as the global

response at the unit cell edges in terms of displace-

ment, wl(x,y) = wg(x,y), wl(x,y ? s) = wg(x,y ? s), as

shown in Fig. 3a and b. However, along the unit cell

the local displacement field in the y-direction can

differ from global due to shear-induced warping (see

Fig. 3b). Due to the classical continuum assumptions

the average shear strain of horizontal and vertical

sliding, cyz= (cyz,h? cyz,v)/2, is utilized.

The local warping deflection due to shear force Qyy

is given as (see Ref. [21]):

wi ¼
QQysd

12Di

ki1 �
syl
d

þ 3
y2l
d
� 3

y3l
ds

� �

; i ¼ t; b ð32Þ

with the k-factors defined in Eq. (30). The curvature is

d2wi

dx2l
¼

d2wi

dxdy
¼ 0;

d2wi

dy2l
¼

QQys

2Di

ki1 1� 2
yl
s

 �

ð33Þ

The local bending moments and shear forces are

Mx;l ¼ tMy;l;My;l ¼ �
QQys

2
ki1 1� 2

yl
s

 �

;Mxy;l ¼ 0

ð34Þ

Qx;l ¼ 0;Qy;l ¼ QQyk
i
1 ð35Þ

The volume averages are

M�
x;l ¼ r s0

Mx;l

V
dV ¼ 0;M�

y;l ¼ 0;M�
xy;l ¼ 0; ð36Þ

Q�
x;l ¼ 0;Q�

y;l ¼ Qyy ¼ QQyk
t
1 þ QQyk

b
1 ð37Þ

Fig. 3 a Web-core sandwich under shear deformation in weak

direction. b Reduction of the deformation from 3rd order

polynomial to 1st order polynomial in y-direction. c The shear-

induced bending stresses in the unit cell and d variation of the

shear induced bending moment between the unit cells (periodic

behavior is shown by dashed lines, and average behavior by

points)
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Thus, with these average values the underlined

terms in equilibrium Eqs. (18) and (19) and differen-

tial Eqs. (24) and (25) based on displacements become

zero. The shear force Qyy is produced by the unit cell

warping, see Fig. 3b. This gives us the homogenized

differential equations that are derived based on the

classical continuummechanics assumption, that lmicro/

lmacro = 0. These equations can be found from numer-

ous text books of composite materials(see, e.g., Ref.

[40]). In these books the corresponding analytical

solutions and finite element formulations are also

presented. The corresponding finite element imple-

mentations can be found from most of the commercial

FE codes.

2.4 Calculation of envelope of periodic stresses

from homogenized response

The periodic shear-induced bending moments and

normal stresses (see Fig. 3c) are important as the with

these included the total stress always exceeds the

averaged, homogenized solution values. The charac-

teristic length, lmicro, of these normal stresses is equal

to web plate spacing, s, lmicro = s. These shear-induced

bending moments and normal stresses have zero mean

as shown in Fig. 3d and Eq. (36). Next we assume

that, as the homogenized structure is in equilibrium,

the periodic structure must be in equilibrium too.

Then, the periodic strains and stresses are (see Ref.

[21]):

e0f g
jf g

� �

¼
A½ � B½ �
B½ � D½ �

� 	�1
Nf g
Mf g

� �

�
0f g
MQ

� �

� �� �

ð38Þ

ef g ¼ e0f g � z jf g ð39Þ

rf g ¼ E½ � ef g þ rQ
� �

ð40Þ

where Eqs. (34) and (38) together create periodic

strain field from homogenized, smooth, strain field.

From strength viewpoint shape of this micro-fluctua-

tion is not important, but the maximum value is. Thus,

for linear distribution within unit cell, (see Eq. (34)

and Fig. 3c and d), the maxima and minima are simply

Mmax
Q;x;i ¼ �mik

i
1

Qyys

2
;Mmax

Q;y;i ¼ �ki1
Qyys

2
;Mmax

Q;xy;i ¼ 0

ð41Þ

It should be noted that when lmicro = s=0, these

bending moments and resulting shear induced stresses

become zero and result is the same as produced by the

homogenized solution without any additional post-

processing.

3 Example

3.1 General

The example presented here is taken from Ref. [39]; it

is extended here in order to explain the main post-

buckling phenomena. A square plate with length and

width of L = B=3.60 m is considered. Thickness of the

face and web plates are tt= 2.5 mm and tw= 4.0 mm,

respectively. Core height is hc= 40 mm and the web

plate spacing is s = 120 mm giving lmicro/lmacro= s/

L = 1/30. The interface between web and face plate is

assumed to be rigid in order to simplify the analysis. It

has been shown in Refs. [21, 36] that non-local plate

formulations are needed in the cases were the laser-

stake weld is assumed to be flexible or if lmicro/lmacro-

ratio would be significantly larger. In cases where the

lmicro/lmacro-ratio would be significantly smaller, the

shear-induced stress fluctuations would be less impor-

tant. Material is assumed to be linear-elastic with

Young�s modulus 206 GPa and Poisson ratio 0.3.

The FSDT-ESL problem is solved numerically by

using Finite Element Method. The non-linear analysis

is carried out in two steps. The first eigenmode is first

computed. It is used as the shape of the initial out-of-

plane imperfection and is given the magnitude of

0.01% of the plate length, L. Then, the geometrically

non-linear analysis is carried out to trace the post-

buckling path. Abaqus software, version 6.9, is used.

A subspace iteration solver is used for the eigenvalue

analysis and the modified Riks procedure for the post-

buckling path. In order to secure converged results in

FSDT-ESL, a mesh of 50 9 50 S4R shell elements are

used. Simply supported boundary conditions are

considered, with the loaded edges kept straight and

the unloaded edges free to pull in.
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3.2 3D Finite Shell Element Analyses

for Validation

In order to validate the FSDT-ESL approach, a 3D

model of the actual periodic plate is used; see Fig. 4

for details. The 3D-plate is modelled using shell

elements (S4) that follow the Kirchhoff hypothesis

(assumption in FSDT-ESL model). Concentrated

nodal forces act at web plates in the nodes in the

geometrical mid-plane. Six shell elements per web

plate height and between webs are used as this has

been shown to produce converged results in buckling

and bending problems [20, 41]. Simply supported

boundary conditions are considered, with the loaded

edges kept straight by constraint equations and the

unloaded edges free to move in-plane. The transverse

deflection is zero only at the nodes at the geometric

mid-plane. This allows the rotation of the plate around

the mid-plane edge.

3.3 Results

The load-end-shortening, load–deflection and load-

out of plane shear behavior is presented in Fig. 5,

where also the comparison of the FSDT-ESL with

respect to full 3D-FE model is presented. The main

idea is to show the influence of the von Kármán term,

Eq. (20), into the out-of-plane shear Qyy. Three load

levels are selected from the curves to show the

different stages of the structure undergoing non-linear

deformations. Point A corresponds to linear regime,

point B corresponds to the intermediate stage of

transition from linear to non-linear post-buckling

regime, and point C is the point of local buckling of

the face plates where the assumption of linear

microstructure becomes violated. Comparison of the

predicted shear force Qyy-distribution from mid-span

of the panel, at x = L/2, is presented in Fig. 6 for load

points A and C. Figure 7 present the corresponding

normal stresses with shear-induced stresses included

and excluded.

From Fig. 5 it is clear that the non-linear response is

predicted very accurately with the FSDT-ESL in

comparison to the 3D-model of the actual geometry

(3D-FEA). Both load-end-shortening and load–deflec-

tion curves overlap until local buckling occurs at the

unit cells at point C. It is also clear that this point is

well beyond the panel level buckling, around point B.

After this point B, the out-of-plane shear, Qyy,

increases rapidly due to the von Kármán non-linearity,

see Eq. (20). Figure 6 shows that the spatial distribu-

tion of out-of-plane shear is accurately predicted with

the FSDT-ESL. Even at the point of local buckling, the

FSDT-ESL and 3D-FEA results overlap each other in

Fig. 4 Description of the constrains implementation of 3D-FEA. Reproduced from Ref. [39]
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average sense. Figure 7 shows that the membrane

stresses of the face plates, predicted by both FSDT-

ESL and 3D-FE methods, overlap at the load point A.

In post-buckling, due to global bending, they start to

differ significantly from each other. It is also seen that

the membrane stress in the faces is significantly lower

than the total stress at the surface of the face plates

which is magnified by the secondary bending. It is seen

that the stresses from 3D-FEA are within the maxi-

mum stress envelope curves defined by Eq. (41). This

highlights the importance of taking the finite size,

lmicro/lmacro, of the microstructure into account when

computing the stress response. The stress jumps at the

location of webs close to plate edges indicate signif-

icant bending in the webs and welds due to shear-

induced warping of the unit cells.

4 Discussion

The investigation presented above indicates that when

sandwich structures, with visible periodic core, are

homogenized, special attention must be paid on the

stress assessment, even in the case of buckling

assessment where loading is of membrane type. In

linear regime this loading is carried out mostly by pure

membrane actions of face and web plates as Fig. 7 at

point A indicates. As the post-buckling takes place, the

membrane actions start to interact with the out-of-

plane deformation, due to the von Kármán non-

linearity. As the core is visibly discrete, lmicro/lmacro-

= 1/30, and the unit cells warp in shear, the magnitude

of shear-induced secondary normal stresses at the

faces and webs becomes significant. When these are

added to the membrane stresses, the total stress can be

significantly higher than the membrane stress only.

This effect becomes larger when the role of out-of-

plane shear cyz or Qyz increases and when the unit cell

size increases. So, this phenomenon can be considered

as type of size effect. Usually in homogenization

theories we assume that these are infinitely far apart,

i.e. lmicro/lmacro = 0. When departing from this

assumption, very soon we end up dealing with another

type of size effect, the assumptions of non-classical

continuum mechanics.

This issue is seen through following example. Post-

buckling analysis requires two stage analysis with

initial analysis to define the initial deformation shape

which is then followed by geometrically non-linear

analysis. In present formulation, the bifurcation

Fig. 5 Comparison of FSDT-ESL (dashed line) and 3D-FEA (solid line) in load-end-shortening, load–deflection and load-shear

responses. Shear force-load marked with crosses
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buckling load for simply supported rectangular plate is

given as [40]:

N0 ¼
1

a2 þ kb2

c55 þ
c11
DQy

a2 þ b2
DQ2

DQ1

 �

1þ c11
DQ2

1
DQ1

þ c22
c11

DQ2

DQ1
þ c33

c11

 �

a ¼
mp

a
; b ¼

np

b
; c11 ¼ c22c33 � c244;

c22 ¼ D11a
2 þ D12b

2;

c33 ¼ D66a
2 þ D22b

2 c44 ¼ D12 þ D66ð Þab;

c55 ¼ D11a
4 þ 2 D12 þ 2D66ð Þa2b2 þ D22b

4;

k ¼
Nyy

Nxx

;Nxx ¼ �N0;Nyy ¼ �kN0;

ð42Þ

where m and n are used to denote the number of half-

waves in directions x and y respectively. In present

case, the loading is assumed to be uniaxial, thus the

load ratio factor k = 0, orthotropy ratio for shear, DQ1/

DQ2-ratio, is very high (e.g. 100-1000). Thus, the

buckling load minimum is obtained when m = n = 1.

Problems with this equation occur when the load is

turned to be along y-axis or biaxial compression is

considered. In this case, the high orthotropy in shear

causes a situation where minimum does not converge

for m = n = 1, but decreases as function of n, while

m = 1. In this case the buckling load in finite element

solution becomes mesh size dependent; the smaller is

Fig. 6 Comparison of

FSDT-ESL and 3D-FEA in

terms of shear force Qyy at

x = L/2 for Top: load-Level

A, and Bottom: Load level C
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Fig. 7 Comparison of

FSDT-ESL (points, crosses)

and 3D-FEA (solid line) at

x = L/2. Top: x-normal

stresses due to membrane

action for load-levels A;

Center at load-level C and

Bottom: at load-level C with

envelopes of the shear

induced secondary normal

stress
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the mesh size, the smaller is the buckling load. This is

another type of size effect which results from classical

continuum mechanics assumptions. The decrease is

unphysical and can be corrected by incorporation non-

classical continuum mechanics assumptions into our

FSDT-ESL model. As shown by Romanoff and Varsta

[21], Jelovica and Romanoff [42] by thick-face plates

sandwich theory and by Karttunen et al. [36] by

micropolar theory, the shear deformations of sandwich

panels can have only finite wave-lengths, that is, finite

n-values. When using thick-faces effect or micropolar

solution, physically correct behavior is obtained. This

is a result of the fact that we can split the out-of-plane

shear strain to symmetric and antisymmetric parts

[36]. Therefore, the present investigation should be

extended in future to compression in transverse

direction and investigations based on non-classical

continuum formulations. This calls for micropolar

plate elements, and recently such study has been

reported by Nampally et al. [43].

In order to assess the strength of real welded

structures following issue must be handled. The stress

values seen in point C of the case study are very close

to the material yield point. Typically, the steel used for

these panels has a yield point at 355 MPa for the faces

and 235 MPa or 355 MPa for the web plates. Thus, as

Fig. 7, shows it is crucial to recover the microstruc-

tural stress if first fiber yield is to be assessed. The

assessment of laser-stake welds is a bit more chal-

lenging. Jutila [44] carried out experiments with

Digital Image correlation system of pull-out strength

of laser-stake welds. Strength values up to 1000 MPa

for tension for steel faces and webs of 355 MPa and

235 MPa, respectively are reported. The difference is

Fig. 8 Strength of welds by stress resultants. Observed

geometrical and material gradients in the welds. Failure mode

for stress resultants Nz with microrotation at HAZ andMy in the

bending of welds with impact of contact to the initial stiffness

and strength. See for details Refs. [43, 44]
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also seen in the hardness of the welds, see Fig. 8. Due

to rapid changes in the hardness, the weld deforms

only moderately in softer faces and webs and micro-

rotation is seen between these two, in the heat affected

zone. This is indicating that non-classical continuum

mechanics are needed in the weld modelling. How-

ever, there is another effect that requires careful

investigation. This is the contact between the faces and

webs at the laser-stake welds when being bended. Due

to the contact, the stresses are redistributed and

significant variations are seen in the moment carrying

capacity of the welds due to small variations in weld

geometrical properties. Measured strength values are

Mcr= 1400Nm/m (see Ref. [45] for details), which

corresponds Qyz = 21.5kN/m in shear. Thus, the

strength of welds would not be reached yet in present

context for individual stress components. Proper

modelling of these phenomenon in 3D FEA is

therefore a significant challenge which we cannot

solve in the present context. Also, an experimental

study is needed to gain more understanding of

prevailing failure modes in real structures.

In the present case it is indicated that the

microstructure can buckle during the deformation,

which is known to reduce the stiffness globally. As the

local and global deformations interact, there is a need

for coupled models where the geometrical non-

linearity in one length-scale can be mapped correctly

to the another one. Such example in context of

classical continuum mechanics has been presented in

Reinaldo Goncalves et al. [46] with one way coupling

and in for example Geers et al. [21] and Rabzcuk et al.

[30] for two-way coupling. However, this work should

be extended to the non-classical continuummechanics

due to the reasons mentioned above.

5 Conclusions

The paper presented, a phenomena related to post-

buckling of web-core sandwich plates. Equivalent

Single Layer (ESL) formulation with First order Shear

Deformation Theory (FSDT) was used to identify the

problem parameters in closed form. During the axial

load increase, these plates have multiple load-carrying

mechanisms that change due to von Kármán non-

linearity. During the membrane-dominated loading

stages, the effect of finite size of the periodic

microstructure is barely present, while at higher loads

when bending is activated, the finite size of the unit

cells activates secondary shear-induced bending

moments. Due to this effect, the normal stress levels

become significantly higher than the homogenized

plate theory would predict. A method to capture the

envelope of the maximum values of these stresses is

presented and validated with 3D-Finite Element -

models of the actual geometry. It is also discussed that

classical continuum mechanics has its limits when

failure of welded web-core sandwich structures is

concerned. The welds experience micro-rotation close

to failure point. Due to this also the antisymmetric out-

of-plane shear strain activates at the plate level which

calls for non-classical continuum mechanics. These

extensions are left for future work.
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