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Abstract

We describe in terms of automata theory the automatic actions

with post-critically finite limit space. We prove that these actions are

precisely the actions by bounded automata and that any self-similar

action by bounded automata is contracting.

1 Introduction

The aim of this paper is to show a connection between two notions, which
have appeared in rather different fields of mathematics. One is the notion of a
post-critically finite self-similar set (other related terms are: “nested fractal”
or “finitely ramified fractal”). It appeared during the study of harmonic
functions and Brownian motion on fractals. The class of post-critically finite
fractals is a convenient setup for such studies. See the papers [10, 9, 11, 16]
for the definition of a post-critically finite self-similar sets and for applications
of this notion to harmonic analysis on fractals.

The second notion appeared during the study of groups generated by finite
automata (or, equivalently, groups acting on rooted trees). Many interesting
examples of such groups where found (like the Grigorchuk group [7], groups
defined by Aleshin [1], Sushchansky [19], Gupta-Sidki groups [8] and many
others), and these particular examples where generalized to different classes
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of groups acting on rooted trees: branch groups [5], self-similar (state closed)
groups [2, 17], GGS-groups [4], AT groups [12, 15], spinal groups [3].

S. Sidki has defined in his work [18] a series of subgroups of the group of
finite automata, using the notions of activity growth and circuit structure.
In particular, he has defined the notion of a bounded automaton. The set of
all automorphisms of the regular rooted tree, which are defined by bounded
automata is a group. It is interesting that most of the known interesting
examples of groups acting on rooted trees (in particular, all the above men-
tioned examples) are subgroups of the group of bounded automata. Also
every finitely automatic GGS-group, AT-group or spinal group is a subgroup
of the group of bounded automata.

We prove in our paper that a self-similar (state closed) group is a subgroup
of the group of all bounded automata if and only if its limit space is a post-
critically finite self-similar space. The limit space of a self-similar group was
defined in [13] (see also [2]). This establishes the mentioned above connection
between the harmonic analysis on fractals and group theory.

The structure of the paper is the following. Section “Self-similar groups”
is a review of the basic definitions of the theory of self-similar groups of
automata. We define the notions of self-similar groups, automata, Moore
diagrams, contracting groups, nucleus of a contracting group and establish
notations.

Third section “Limit spaces” gives the definition and the basic properties
of the limit space of a contracting self-similar group as a quotient of the space
of infinite sequences. We also discuss the notion of tiles of a limit space (the
images of the cylindric sets of the space of sequences).

The main results of the section “Post-critically finite limit space” are
Corollary 4.2, giving a criterion when the limit space of a self-similar group
action is post-critically finite and Proposition 4.3, stating that a post-critically
finite limit space is 1-dimensional.

The last section “Automata with bounded cyclic structure” is the main
part of the article. We prove Theorem 5.3, which says that every self-similar
subgroup of the group B of bounded automata is contracting and that a
contracting group has a post-critically finite limit space if and only if it is a
subgroup of B.
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2 Self-similar groups

We review in this section the basic definitions and theorems concerning self-
similar groups. For a more detailed account, see [2].

Let X be a finite set, which will be called alphabet. By X∗ we denote the
set of all finite words x1x2 . . . xn over the alphabet X, including the empty
word ∅.

Definition 2.1. A faithful action of a group G on the set X∗ is self-similar
(or state closed) if for every g ∈ G and for every x ∈ X there exist h ∈ G
and y ∈ X such that

g(xw) = yh(w)

for all w ∈ X∗.

We will write formally
g · x = y · h, (1)

if for every w ∈ X∗ we have g(xw) = yh(w). If one identifies every letter
x ∈ X with the map w 7→ xw : X∗ −→ X∗, then equation (1) will become a
correct equality of two transformations.

The notion of a self-similar action is closely related with the notion of an
automaton.

Definition 2.2. An automaton A over the alphabet X is a tuple 〈Q, π, λ〉,
where Q is a set (the set of internal states of the automaton), and π :
Q×X −→ Q and λ : Q×X −→ Q are maps (the transition and the output
functions, respectively).

An automaton is finite if its set of states Q is finite. A subset Q′ ⊂ Q
is called sub-automaton if for all q ∈ Q′ and x ∈ X we have π(q, x) ∈
Q′. If Q′ is a sub-automaton, then we identify it with the automaton
〈Q′, π|Q′×X , λ|Q′×X〉.

For every state q ∈ Q and x ∈ X we also write formally

q · x = y · p, (2)

where y = λ(q, x) and p = π(q, x).
We will also often use in our paper another notation for the functions π

and λ:
π(q, x) = q|x, λ(q, x) = q(x).
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The transition and output functions are naturally extended to functions
π : Q × X∗ −→ Q and λ : Q × X∗ −→ X∗ by the formulae:

π(q, xv) = π (π(q, x), v) , λ(q, xv) = λ(q, x)λ (π(q, x), v) ,

or, in the other notation:

q|xv = q|x|v, q(xv) = q(x)q|x(v).

We also put q|∅ = q, q(∅) = ∅.
Hence we get for every state q a map v 7→ q(v), defining the action of the

state q on the words. It is easy to see that we have

q1q2|v = q1|q2(v)g2|v, q(vw) = q(v)q|v(w)

for all q, q1, q2 ∈ Q and v, w ∈ X∗. Here q1q2 is the product of transformations
q1 and q2, i.e., q1q2(w) = q1 (q2(w)).

The above definitions imply the following description of self-similar ac-
tions in terms of automata theory.

Proposition 2.1. A faithful action of a group G on the set X∗ is self-similar
if and only if there exists an automaton with the set of states G such that
the action of the states of the automaton on X∗ coincides with the original
action of G.

The automaton from Proposition 2.1 is called complete automaton of the
action.

It is convenient to represent automata by their Moore diagrams. If A =
〈Q, π, λ〉 is an automaton, then its Moore diagram is a directed graph with
the set of vertices Q in which we have for every pair x ∈ X, q ∈ Q an arrow
from q ∈ Q into π(q, x) labelled by the pair of letters (x; λ(q, x)).

Let q ∈ Q be a state and let v ∈ X∗ be a word. In order to find the
image q(v) of the word v under the action of the state q one needs to find a
path in the Moore diagram, which starts at the state q with the consecutive
labels of the form (x1; y1), (x2; y2), . . . (xn; yn), where x1x2 . . . xn = v, then
q(v) = y1y2 . . . yn.

Definition 2.3. We say that an automaton A = 〈Q, π, λ〉 has finite nucleus
if there exists its finite sub-automaton N ⊂ Q such that for every q ∈ A
there exists n ∈ N such that q|v ∈ N for all v ∈ X∗ such that |v| ≥ n.

A self-similar action of a group G on X∗ is said to be contracting if its
full automaton has a finite nucleus.
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In general, if A is an automaton, then its nucleus is the set

N =
⋃

q∈Q

⋂

n∈N

{q|v : v ∈ X∗, |v| ≥ n} .

For more on contracting actions, see the papers [2, 14].

3 Limit spaces

One of important properties of contracting actions is there strong relation to
Dynamical Systems, exhibited in the following notion of limit space.

Denote by X−ω the set of all infinite to the left sequences of the form
. . . x2x1, where xi are letters of the alphabet X. We introduce on the set
X−ω the topology of the infinite power of the discrete set X. Then the space
X−ω is a compact totally disconnected metrizable topological space without
isolated points. Thus it is homeomorphic to the Cantor space.

Definition 3.1. Let (G, X∗) be a contracting group action over the alphabet
X. We say that two points . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically equiv-
alent (with respect to the action of the group G) if there exists a bounded
sequence {gk}k≥1 of group elements such that for every k ∈ N we have

gk(xk . . . x1) = yk . . . y1.

Here a sequence {gk}k≥1 is said to be bounded if the set of its values is
finite.

It is easy to see that the defined relation is an equivalence. The quotient
of the space X−ω by the asymptotic equivalence relation is called the limit
space of the action and is denoted JG.

We have the following properties of the limit space (see [13]).

Theorem 3.1. The asymptotic equivalence relation is closed and has finite
equivalence classes. The limit space JG is metrizable and finite-dimensional.
The shift σ : . . . x2x1 7→ . . . x3x2 induces a continuous surjective map s :
JG −→ JG.

We will also use the following description of the asymptotic equivalence
relation (for the proof see [13]).
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Proposition 3.2. Two sequences . . . x2x1, . . . ay2y1 ∈ X−ω are asymptoti-
cally equivalent if and only if there exists a sequence g1, g2, . . . of elements of
the nucleus such that gi · xi = yi · gi−1, i.e., if there exists a left-infinite path
. . . e2, e1 in the Moore diagram of the nucleus such that the edge ei is labelled
by (xi; yi).

A left-infinite path in a directed graph is a sequence . . . e2, e1 of its arrows
such that beginning of ei is equal to the end of ei+1. The end of the last edge
e1 is called the end of the left-infinite path.

The dynamical system (JG, s) has a special Markov partition coming from
the its presentation as a shift-invariant quotient.

Definition 3.2. For every finite word v ∈ X∗ the respective tile Tv is the
image of the cylindrical set X−ωv in the limit space JG. We say that Tv is a
tile of the level number |v|.

We have the following obvious properties of the tiles.

1. Every tile Tv is a compact set.

2. s (Tvx) = Tv.

3. Tv = ∪x∈XTxv.

In particular, the image of a tile Tv of nth level under the shift map s

is a union of d tiles Tu of the nth level, i.e., that the tiles of one level for a
Markov partition of the dynamical system (JG, T).

Actually, a usual definition of a Markov partition requires that two tiles
do not overlap, i.e., that they do not have common interior points. We have
the following criterion (for a proof see also [13]).

We say that a self-similar action satisfies the open set condition if for
every g ∈ G there exists v ∈ X∗ such that g|v = 1.

Theorem 3.3. If a contracting action of a group G on X∗ satisfies the open
set condition then for every n ≥ 0 and for every v ∈ Xn the boundary of the
tile Tv is equal to the set

∂Tv =
⋃

u∈Xn,u 6=v

Tu ∩ Tv,

and the tiles of one level have disjoint interiors.
If the action does not satisfy the open set condition, then there exists

n ∈ N and a tile of nth level, which is covered by other tiles of nth level.

6



4 Post-critically finite limit spaces

Following [10], we adopt the following definition.

Definition 4.1. We say that a contracting action (G, X∗), has a post-
critically finite (p.c.f.) limit space if intersection of every two different tiles
of one level is finite.

We obtain directly from Theorem 3.3 that a contracting action has a p.c.f.
limit space if and only if it satisfies the open set condition and the boundary
of every tile is finite.

The following is an easy corollary of Theorem 3.3 and Proposition 3.2.

Proposition 4.1. The image of a sequence . . . xn+1xn . . . x1 ∈ X−ω belongs
to the boundary of the tile Txn...x1

if and only if there exists a sequence {gk}
of elements of the nucleus such that gk+1 · xk+1 = xk · gk and gn(xn . . . x1) 6=
xn . . . x1.

This gives us an alternative way of defining p.c.f. limit spaces.

Corollary 4.2. A contracting action (G, X∗) has a p.c.f. limit space if and
only if there exists only a finite number of left-infinite paths in the Moore
diagram of its nucleus which end in a non-trivial state.

Proof. We say that a sequence . . . x2x1 ∈ X−ω is read on a left-infinite path
. . . e2e1, if the label of the edge ei is (xi; yi) for some yi ∈ X. If the path
. . . e2e1 passes through the states . . . g2g1g0 (here gi is the beginning and gi−1

is the end of the edge ei), then the state gn−1 is uniquely defined by gn and
xn, since gn−1 = gn|xn

. Consequently, any given sequence . . . x2x1 is read not
more than on |N | left-infinite paths of the nucleus N . In particular, every
asymptotic equivalence class on X−ω has not more than |N | elements.

For every non-trivial state g ∈ N denote by Bg be the set of sequences,
which are read on the left-infinite paths of the nucleus, which end in g.

Suppose that there is infinitely many left-infinite paths in the nucleus
ending in a nontrivial state. Then there exists a state g ∈ N \ {1} for which
the set Bg is infinite.

Since the state g is non-trivial, there exists a word v ∈ X∗ such that
g(v) 6= v. Then for every . . . x2x1 ∈ Bg, there exists a sequence . . . y2y1 such
that . . . x2x1v is asymptotically equivalent to . . . y2y1g(v). Hence, every point
of JG represented by a sequence from Bgv belongs both to Tv and to Tg(v).
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This show that the intersection Tv ∩ Tg(v) is infinite, since the asymptotic
equivalence classes are finite.

On the other hand, Proposition 4.1 shows, that if the sequence . . . x2x1v,
represents a point of the intersection Tv ∩ Tu for u ∈ X |v|, u 6= v, then the
sequence . . . x2x1 is read on some path of the nucleus, which ends in a non-
trivial state. Therefore, if the intersection Tv ∩ Tu is infinite, then the set of
left-infinite paths in the nucleus is infinite.

Proposition 4.3. If the limit space of a contracting action is post-critically
finite, then its topological dimension is ≤ 1.

Proof. We have to prove that every point ζ ∈ JG has a basis of neighborhoods
with 0-dimensional boundaries.

Let Tn(ζ) be the union of the tiles of nth level, containing ζ . It is easy to
see that {Tn(ζ) : n ∈ N} is a base of neighborhoods of ζ .

5 Automata with bounded cyclic structure

We take Corollary 4.2 as a justification of the following definition.

Definition 5.1. A self-similar contracting group is said to be post-critically
finite (p.c.f. for short) if there exists only a finite number of inverse paths in
the nucleus ending at a non-trivial state.

A more precise description of the structure of the nucleus of a p.c.f. group
is given in the next proposition.

Recall, that an automatic transformation q of X∗ is said to be finitary
(see [6]) if there exists n ∈ N such that q|v = 1 for all v ∈ Xn (then
q(x1 . . . xm) = q(x1 . . . xn)xn+1 . . . xm). The minimal number n is called depth
of q.

The set of all finitary automatic transformations of X∗ is a locally finite
group. If G is a finite subgroup of the group of finitary transformations, then
the depth of G is the greatest depth of its elements.

If we have a subset A of the vertex set of a graph Γ, then we consider
it to be a subgraph of Γ, taking all the edges, which start and end at the
vertices of A.

We say that a directed graph is a simple cycle if its vertices g1, g2, . . . , gn

and edges e1, e2, . . . , en can be indexed so that ei starts at gi and ends at gi+1

(here all gi and all ei are pairwise different and gn+1 = g1).
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Proposition 5.1. Let N be the nucleus of a p.c.f. group, and let N0 be the
subgraph of finitary elements of N and N1 = N \N0. Then N1 is a disjoint
union of simple cycles.

Proof. The set N0 is obviously a sub-automaton, i.e., for every g ∈ N0 and
x ∈ X we have g|x ∈ N0. It follows then from the definition of a nucleus that
every vertex of the graph N1 has an incoming arrow. This means that every
vertex of the graph N1 is an end of a left-infinite path. On the other hand,
there exists for every g ∈ N1 at least one x ∈ X such that g|x ∈ N1, since
all elements of N1 are not finitary. Thus, every vertex of N1 has an outgoing
arrow and is a beginning of a right-infinite path.

Let g be an arbitrary vertex of the graph N1. We have a left-infinite path
γ− ending in g. Suppose that we have a (pre-)periodic right-infinite path γ+

starting at g, i.e., a path of the form γ+ = qppp . . . = qpω, were q is a finite
path, p is a finite simple cycle and the set of edges of the paths p and q are
disjoint. Note that there always exists a (pre-)periodic path beginning at g.

If q is not empty, then we get an infinite set of different left-infinite paths
in the graph N1: {γ−qpn}n∈N, what contradicts to the post-critical finiteness
of the action.

Hence the pre-period q is empty. In particular, every element of N1

belongs to a finite cycle, i.e., for every g ∈ N1 there exists v ∈ X∗ such that
g|v = g.

Suppose now that there exist two different letters x, y ∈ X such that g|x
and g|y belong to N1. The element g|x belongs to a finite cycle px in N1. The
cycle px must contain the element g, otherwise we get a strictly pre-periodic
path starting at g. Similarly, there exists a cycle py , which contains g and
g|y. The cycles px and py are different and intersect in the vertex g. Hence
we get an infinite set of left-infinite paths in N1 of the form . . . p3p2p1, where
pi are either px or py (seen as paths starting at g) in an arbitrary way.

Hence, for every g ∈ N1 there exists only one letter x ∈ X such that
g|x ∈ N1. This (together with the condition that every vertex of N1 has an
incoming edge) implies that N1 is a disjoint union of simple cycles.

The following notion was defined and studied by Said Sidki in [18].

Definition 5.2. We say that an automatic transformation q is bounded if
the sequence θ(k, q) is bounded, where θ(k, q) is the number of words v ∈ Xk

such that q|v acts non-trivially on the first level X1 of the tree X∗.

The following proposition is proved in [18] (Corollary 14).
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Proposition 5.2. An automatic transformation is bounded if and only if
it is defined by a finite automaton in which every two non-trivial cycles are
disjoint and not connected by a directed path.

Here a cycle is trivial if its only vertex is the trivial state. In particular,
every finitary transformation is bounded, since it has no non-trivial cycles.

Theorem 5.3. The set B of all bounded automorphisms of the tree X∗ is a
group.

A finitely generated self-similar automorphism group G of the tree X∗ has
a p.c.f. limit space if and only if it is a subgroup of B. In particular, every
finitely generated self-similar subgroup of B is contracting.

Proof. The fact that B is a group, is proved in [18]. We have also proved
that the nucleus of every p.c.f. group G is a subset of B. This implies that
G is a subgroup of B.

In the other direction, suppose that we have a self-similar finitely gener-
ated subgroup G ≤ B. Then G is generated by a finite automaton S whose
all non-trivial cycles are disjoint. Let S0 be the subautomaton of all finitary
tranformations, and let S2 = S \S0. Then all non-trivial cycles belong to S2.
Let S1 be the union of all these cycles.

Let g ∈ S1 and v ∈ X∗ be arbitrary. Then either g|v belongs to the same
cycle as g, or g|v /∈ S1, since no two different cycles of S1 can be connected
by a directed path. If g|v /∈ S1, then all states g|vu of g|v do not belong to S1.
But this is possible only when g|v ∈ S0. Therefore, there exists m ∈ N such
that for every g ∈ S and every v ∈ Xm either g|v ∈ S0, or g|v ∈ S1. Then
the group G1 = 〈G|Xm〉 is also self-similar and is generated by a subset of
the set S0 ∪ S1. The group G is contracting if and only if G1 is contracting.
Their nuclei will coincide. Therefore, if we prove our theorem for G1, then it
will follow for G, so we assume that S2 = S1.

Let n1 be the least common multiple of the lengths of cycles in S1. Then
for every u ∈ Xn1 and s ∈ S1 we have either s|u ∈ S0 or s|u = s. Moreover,
it follows from the conditions of the theorem that the word u ∈ Xn1 such
that s|u = s is unique for every s ∈ S1.

Let N1 be the set of all elements h ∈ G \ 1 such that there exists one
word u(h) ∈ Xn1 such that h|u(h) = h and for all the other words u ∈ Xn1

the restriction h|u belongs to 〈S0〉. It is easy to see that the set N1 is finite
(every its element h is uniquely defined by the permutation it induces on
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Xn1 and its restrictions in the words u ∈ Xn1, note also that the group 〈S0〉
is finite).

Let us denote by l1(g) the minimal number of elements of S1 ∪ S−1
1 in a

decomposition of g into a product of elements of S ∪ S−1.
Let us prove that there exists for every g ∈ G a number k such that for

every v ∈ Xn1k the restriction g|v belongs to N1 ∪ {S0}. We will prove this
by induction on l1(g).

If l1(g) = 1, then g = h1sh2, where h1, h2 ∈ 〈S0〉 and s ∈ S1. The
elements h1, h2 are finitary, thus there exists k such that for every v ∈ Xn1k

the restriction hi|v is trivial. Then we have h1sh2|v = s|h2(v), thus g|v is either
equal to s ∈ N1 or belongs to S0∪S−1

0 . Thus the claim is proved for the case
l1(g) = 1.

Suppose that the claim is proved for all elements g ∈ G such that l1(g) <
m. Let g = s1s2 . . . sk, where si ∈ S ∪S−1. For every u ∈ Xn1 the restriction
si|u is equal either to si or belongs to S0. Consequently, either g|u = g for
one u and g|u ∈ 〈S0〉 for all the other u ∈ Xn1, or l1(g|u) < l1(g) for every
u ∈ Xn1 . In the first case we have g ∈ N1 and in the second we apply the
induction hypothesis, and the claim is proved.

Consequently, the group G is contracting with the nucleus equal to a
subset of the set {g|v : g ∈ N1, v ∈ X∗, |v| < n1}. Note that any restriction
g|v of an element of N1 either belongs to N1 or is finitary.

Let us prove that the limit space of the group G is p.c.f.. Suppose that
we have a left-infinite path in the nucleus of the group. Let

. . . h3, h2, h1

be the elements of the nucleus N it passes through and let the letters
. . . , x3, x2, x1 be the letters labeling its edges. In other words, we have

hn = hn+1|xn

for every n ≥ 1.
The number of possibilities for hn is finite, thus it follows from the ar-

guments above that every element hi belongs to N1 ∪ 〈S0〉. The elements
of 〈S0〉 can belong only to the ending of the sequence hi of the length not
greater than the depth of the group 〈S0〉. The rest of the sequences hi and
xi is periodic with period n1. Hence, there exists only a finite number of
possibilities for such a sequence, and the limit space of the group is p.c.f.
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Corollary 5.4. The word problem is solvable in polynomial time for every
finitely generated subgroup of B.

Proof. The word problem in every finitely generated contracting group is
solvable in polynomial time (see [14]).
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