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Abstract

The post-depositional enrichment of black soot in snow-pack was investigated by measuring

the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year

experiment revealed that black soot was greatly enriched, defined as the ratio of concentration

to original snow concentration, in the unmelted snow-pack by at least an order of magnitude.

Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the

melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g−1 in the

summer surface snow indicate that soot can significantly contribute to glacier melt. BC

concentrations reaching 3000 ng g−1 in the bottom portion of the firn pit are especially

concerning given the expected equilibrium-line altitude (ELA) rise associated with future

climatic warming, which would expose the dirty underlying firn and ice. Since most of the

accumulation area on Tibetan glaciers is within the percolation zone where snow densification

is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of

foremost importance. Results suggest the effect of black soot on glacier melting may currently

be underestimated.
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1. Introduction

Black soot deposited on snow surfaces reduces albedo by
absorbing more sunlight, which may exacerbate warming
(Hansen and Nazarenko 2004, Flanner and Zender 2005,
Flanner et al 2007, 2009, McConnell1 et al 2007) and glacier
melting (Warren and Wiscombe 1985, Hansen and Nazarenko
2004, Qian et al 2011). Black carbon (BC) concentrations
of only 10 ng g−1 or more can significantly reduce snow

albedo (Warren and Wiscombe 1985, Hansen and Nazarenko
2004, Flanner et al 2009), and BC concentration of 15 ng g−1

in snow is sufficient to reduce albedo by 1% (Warren and
Wiscombe 1980). As BC concentrations reach 500 ng g−1,
the albedo reduction is in the range of 5–17% (Warren and
Wiscombe 1985) causing a 50% increase of snow melting
(Conway et al 1996).

As the Asian water tower (Immerzeel et al 2010) and
the third largest reservoir of ice after the poles, the Tibetan
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Plateau (TP) holds 46 298 glaciers with total glacial area of

59 406 km2, and total glacial volume of 5590 km3 in China

(Yao et al 2004). The largest glaciated regions are extremely

important freshwater reservoirs, including those in the

Tien Shan, Karakoram and Kunlun mountains which release

about 137.7 × 108 m3 of meltwater to the lower reaches of

the Tarim Basin each summer (Yao et al 2004). Glaciers have

been melting at an accelerated rate (Yao et al 2004, Kehrwald

et al 2008), and temperature on the TP has increased at twice

the rate of the observed global warming over the last three

decades (Xu et al 2009). Black carbon was recently proposed

as a major cause for the observed dramatic changes by both

heating the high elevation atmosphere (Ramanathan et al

2007) and decreasing albedo after being deposited on glaciers

(Xu et al 2009).

It was identified that Asia is currently the largest source

of black soot emissions in the world (Novakov et al 2003,

Bond et al 2007, Ohara et al 2007), and the TP and

adjacent mountain regions are affected by heavy air pollution

containing a large fraction of black and organic carbon (OC,

here refers to water insoluble organic carbon). The extensive

soot aerosols can be lifted to high altitudes (Ramanathan et al

2007) and reach the glaciers incorporated in snowflakes. Ice

cores drilled at high elevations have shown a rapid increase

of black soot in the monsoon region since the 1990s (Ming

et al 2008, Xu et al 2009) or an even earlier increase since

1975 (Kaspari et al 2011). Studies revealed that the effects

of black soot dominate in the winter and spring due to its

high concentration both in air (Marinoni et al 2010) and snow

cover in the TP region (Flanner et al 2007, Xu et al 2009).

However, the enrichment of black soot in snow-pack with

summer melting may more efficiently absorb sunlight. Surface

snow samples from widely spaced glaciers on the TP revealed

a large and variable range of BC and OC concentrations;

from several parts per billion to parts per million from

site to site (Xu et al 2006, Ming et al 2009, Huang et al

2011). This variability mainly reflects differences in black

soot concentrations between fresh snow and aged snow, each

with different degrees of enrichment. Thus, to quantify the

effect of black soot on the melting of TP glaciers, sampling

of BC and OC concentrations in different seasons is needed,

since the surface snow contains varying amounts of both BC

and OC which differ in their sunlight absorbing effectiveness

in absorbing sunlight and therefore have varying impacts on

melting.

2. Experiment and methods

To investigate post-depositional black soot enrichment in

snow-pack, snow/firn-pits were sampled monthly in the

percolation zone, where some meltwater penetrates down

and refreezes in the glacier, of Urumqi glacier no.1 (UG1,

43◦06′N, 86◦49′E), Tien Shan Mountains, above the ELA at

4130 m asl (figure 1). Snow samples were collected from

the pit wall from the glacier surface to the interface of firn

and ice. The floor of the firn-pack at this site is composed

of superimposed ice (melted and refrozen snow/firn) that is

typically formed in the glacial percolation zone. A total of 13

Figure 1. Map showing the sites of snow-pits on the east branch of
glacier no.1 of the Urumqi River, Tien Shan Mountains.

monthly samplings of the firn pit wall were performed and

77 snow samples were obtained from 28 July 2004 to 26 July

2005. All the collected samples were preserved in glass bottles

with a volume of 300 ml, pre-cleaned using a liquid mixture

of H2O–K2Cr2O2–H2SO4 (25:1:46) and pure water (Milli-Q,

18.2 M�). Sample bottles were wrapped with aluminum

foil and transported frozen to the State Key Laboratory of

Cryospheric Sciences, Cold and Arid Regions Environmental

and Engineering Research Institute in Lanzhou.

In the laboratory, snow samples were weighed and

melted at room temperature in a class 100 clean room, and

immediately filtered through quartz fiber filters which were

pre-heated in an oxygen stream for at least 2 h in a tube

oven with temperature of 800 ◦C. The water samples were

filtered twice, and both the containers and filtration unit were

rinsed three times with ultrapure water (Milli-Q, 18.2 M�;

Millipore) to ensure complete transfer of particles to the filters

(Xu et al 2006). To avoid possible positive BC artifacts that

would result from carbonate production of CO2, carbonates

were removed before analysis by dripping 50 µl of 0.1 M HCl

onto the sample spot three times (Lavanchy et al 1999).

BC and OC on the filters were measured by using the

Interagency Monitoring of Protected Visual Environments

(IMPROVE) thermal/optical reflectance protocol (Chow et al

2004). The analytical uncertainty was assessed to be 15% for

BC and 16% for OC (Xu et al 2009).

3. Result and discussion

Snow and black soot stratigraphies are shown in figure 2.

BC and OC concentrations were largely variable within each

snow-pit, rather than uniformly mixed. BC concentrations

varied from 11 to 3000 ng g−1, while OC varied from 49

to 8370 ng g−1. Each variable range exceeds two orders
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Figure 2. Visual stratigraphy of snow-packs shown together with OC and BC concentrations.

of magnitude, and outstrips the maximum difference of BC
amounts in surface snow on TP glaciers from site to site (Xu
et al 2006, Ming et al 2009). It is shown in the stratigraphies
that the lower part of each snow-pit, which experienced a
longer time of densification or melting, contained higher
BC and OC concentrations, but higher concentrations were
also found in surface snow during summer. The data show
that black soot was redistributed in the snow-pack due to
melting, resulting in enrichment in unmelted snow-packs both
in surface snow and in the bottom firn. For the purpose of this
letter, we use the bottom firn to refer to the coarse-grained firn
at the lowest depths of the firn pit directly above the interface
with the glacier ice (figure 2).

BC and OC concentrations in surface snow and in
the bottom firn for each snow-pit are extracted and shown
in figure 3, together with snow-pack thickness, monthly
average air temperature and precipitation. Although the
amount of precipitation increased rapidly, the snow-pack
thinning reveals that strong snow melting occurred during
summer as temperature increased. This melt resulted in a
remarkable BC and OC accumulation in surface snow, with

the exception of the sample collected on 31 August 2004
which was collected while snow was falling. Immediately
below the fresh snow, the enriched black soot layer from
melting snow was found at a depth of 35–55 cm where BC
concentrations were as high as 255 ng g−1. In general, BC
and OC concentrations in surface snow during summer can
reach 250–500 and 1000–1200 ng g−1, respectively. Snow
melting was weaker during autumn and spring as revealed
by the increased snow-pack thickness, and accordingly BC
concentrations in surface snow decreased to 60–150 ng g−1

for BC and 200–500 ng g−1 for OC. Although precipitation
was infrequent during winter, the snow-pack thickness
was maintained due to very low temperatures. The winter
concentrations in surface snow, 27–31 ng g−1 for BC and
136–153 ng g−1 for OC, may therefore be similar to
the original concentrations incorporated in snowflakes. This
implies that the BC and OC in the surface snow have no
enrichment in winter.

The highest BC and OC concentrations were found in
the bottom firn during late summer and early autumn, when
BC and OC concentrations reached 2440–3000 ng g−1 and
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Figure 3. (a) Monthly precipitation and average air temperature at an elevation of 3539 m asl; (b) snow-pack (SP) thickness and surface
snow temperature (Ts) measured during sampling times; (c) BC and OC concentrations in surface snow, note that the surface snow sample
taken on 31 August 2004 was fresh snow which diluted BC and OC concentrations; (d) BC and OC concentrations in the bottom firn.

6500–8370 ng g−1, respectively (figure 3). This indicates the

downward percolation of meltwater redistributed black soot

in the snow-pack. BC concentration levels in surface snow

are dependent upon melt strength; strong melt can transport

soot particles downwards through the snow-pack resulting

in decreased BC concentrations in surface snow (Conway

et al 1996), while weaker melt can result in elevated BC

concentrations (Wang et al 2012). Results presented here are

from snow-pits located in the percolation zone, where the

summer surface snow melt is not strong enough to elute

surface BC. At certain depths, typically within the depth

interval of 30–110 cm, meltwater has flushed BC through the

snow-pack. The result is a decrease in BC concentrations at

the intermediary depths (figure 2). At the lowermost layers

of the snow-pit, further downward percolation of meltwater

is obstructed by the superimposed ice which formed in the

previous year, causing a buildup of BC. It is noted that the

black soot enrichment in the bottom firn lags that of the

surface snow by two months; this may be the percolation

time of meltwater in the snow-pack. During mid-autumn, the

bottom firn filled with meltwater carrying black soot. When

the meltwater refroze and formed superimposed ice due to

the temperature decrease, the subsequent snow-pit and the

bottom firn above the glacier ice contained less black soot, as

observed in figure 3(d). Data indicate that the glacier ice (here

it is the superimposed ice) underlying the snow-pack formed

in the middle of autumn contained a large amount of BC and

OC, which exceeded 2400 and 6500 ng g−1, respectively. Less

snow meltwater and black soot were found in the bottom firn

between the mid-autumn to mid-summer months.

Seasonal enrichment of BC and OC in surface snow

and the bottom firn are shown in figure 4, plotted as the

ratio of the seasonal average concentrations divided by the

average concentration of OC or BC in surface snow during

the coldest period of January and February. The months of

January and February were chosen to calculate enrichment

since these months are least influenced by melting and can

therefore best represent original snow concentrations. Surface

enrichment was highest during summer (June–August); it

was 13 times higher for BC and eight times higher for OC.
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Figure 4. Seasonal enrichment of BC and OC, and the changes of OC/BC ratios in surface snow (a) and the bottom firn (b). Enrichment is
calculated as the ratio of seasonal average concentration to the January and February average surface snow concentration.

Enrichment in surface snow during spring (March–May)

and autumn (September–November) was also remarkable;

it was 3–4 times higher for BC and 2–3 times higher for

OC. Relative to OC, BC is more inclined to enrichment

in unmelted snow as revealed by the changes of OC/BC

ratios. The highest OC/BC ratio of 5.8 was found in winter

(December–February) surface snow, but it decreased to 2.9 in

summer when the surface melting was the most intense. This

deficit of OC in unmelted snow reveals that OC is more easily

washed away with meltwater compared to BC, resulting in

a large reduction of the OC/BC ratio. BC enrichment in the

bottom firn was prominent in all seasons, but there were large

seasonal variations for both BC and OC, following the same

descending order of autumn > summer > spring > winter.

The remarkable enrichments of BC in the bottom firn were

caused partly by the long melt time period, characterized by

higher OC/BC ratios. The percolation of meltwater should be

considered as the most important factor, especially in summer

and autumn when a large amount of meltwater filled the

bottom firn as identified by the increase of OC/BC ratios.

In addition to the rapid increase of black soot emissions

in Asia (Novakov et al 2003, Bond et al 2007, Ohara et al

2007) and subsequent deposition on glaciers incorporated

in snowflakes in the TP region (Ming et al 2008, Xu

et al 2009, Kaspari et al 2011), the mechanism of mutual

reinforcement between snow melting and increased black soot

concentrations in snow-pack, as shown from these results,

further suggests that black soot is an important factor in

the melting of TP glaciers. The radiative effect of the up to

400 ng g−1 of BC concentration, which is an enrichment of an

order of magnitude or more in surface snow during summer,

must not be ignored. Unlike the large dry-snow zones of the

polar ice sheets, where snow densification is characterized by

compaction, most of the accumulation area on TP glaciers

is a percolation zone where snow quickly densifies by

melting and refreezing, except at very high altitudes. Thus

the surface enrichment of black soot in the snow-pack is a

prevalent phenomenon for TP glaciers. The melting-induced

densification causes black soot to accumulate in the bottom

firn of a snow-pack, because the superimposed ice under

the snow-pack prevents further meltwater infiltration. This

enrichment is critically important for the future, because the

ELA’s of all glaciers on TP is expected to continue rising due

to the coupled impacts of greenhouse-gas warming and black

soot enrichment in surface snow. This will result in the dirty

ice, formed at present in the accumulation zone underlying

the snow-pack, to be exposed with an ELA increase. In this

respect, the present and future impacts of black and organic

carbon on glacier melting may be underestimated.
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