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Poly(ε-caprolactone) (PCL) nanocapsules have been previously developed as a carrier

system for atrazine. However, the efficacy of this nanoformulation against weeds

commonly found in crop cultures has not been tested yet. Here, we evaluated

the post-emergence herbicidal activity of PCL nanocapsules containing atrazine

against Amaranthus viridis (slender amaranth) and Bidens pilosa (hairy beggarticks),

in comparison with a commercial formulation of atrazine. For both species, treatment

with atrazine-loaded nanocapsules (at 2,000 g ha−1) led to a greater decrease in the

photosystem II activity (above 50% inhibition relative to the control) than the commercial

atrazine formulation at the same concentration (around 40% inhibition). The growth of

A. viridis plants was equally reduced by nanoatrazine and commercial formulation (above

64% for root and 75% for shoot). In the case of B. pilosa, atrazine-loaded nanocapsules

decreased more effectively the root and shoot growth than the commercial formulation,

leading to a loss of plant biomass. Moreover, for both species, the use of 10-fold

diluted atrazine-loaded PCL nanocapsules (200 g ha−1) resulted in the same inhibitory

effect in root and shoot growth as the commercial formulation at the standard atrazine

dose. These results suggest that the utilization of atrazine-containing PCL nanocapsules

potentiated the post-emergence control of A. viridis and B. pilosa by the herbicide. Thus,

this nanoformulation emerges as an efficient alternative for weed control.

Keywords: Amaranthus viridis, Bidens pilosa, nanopesticides, nanotechnology, polymeric nanoparticles, trianize

herbicides

INTRODUCTION

Atrazine (6-chloro-N-ethyl-N’-(1-methylethyl)-1,3,5-triazine-2,4-diamine) is a triazine herbicide
widely applied for the control of broadleaf weeds in maize, sorghum and sugarcane cultures
(Rodrigues and Almeida, 2011; Domínguez-Garay et al., 2016; Kong et al., 2016). It inhibits the
electron flux in photosystem II, thereby decreasing biomass accumulation and inducing oxidative
stress (Hess, 2000; Mou et al., 2011).

Due to its slow degradation in natural conditions, the indiscriminate use of atrazine has been
associated with contamination of soil and water resources (Khan et al., 2015; Ouyang et al., 2016),
which results in deleterious effects on soil microbiota, on plant and animal non-target species and
even on human health (Graymore et al., 2001; Dalton and Boutin, 2010; Sathiakumar et al., 2011;
Chen et al., 2015). In this context, modified-release systems offer an alternative technique that may
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reduce environmental contamination by herbicides, as well as
increase the efficiency of the bioactive compound (Campos et al.,
2014; Prasad et al., 2017).

Different types of nanoparticles have been developed by
our group as carrier systems for atrazine, including polymeric
nanocapsules and nanospheres (Grillo et al., 2012, 2014a; Pereira
et al., 2014), and solid lipid nanoparticles (de Oliveira et al.,
2015). In particular, atrazine-loaded poly(ε-caprolactone) (PCL)
nanocapsules have emerged as a nanoherbicide with promising
applications in agriculture (Grillo et al., 2012, 2014a; Pereira et al.,
2014). PCL is a biodegradable, aliphatic polyester used in the
production of controlled-release systems, and it is non-toxic in
humans and the environment (Woodruff and Hutmacher, 2010).

In vitro assays demonstrated the high efficiency of
encapsulation of atrazine into the PCL nanocapsules and
the high stability of the nanoformulation, as well as the
controlled release of the herbicide from the nanocapsules (Grillo
et al., 2012; Pereira et al., 2014). Toxicity assays conducted with
the alga Pseudokirchneriella subcapitata, Allium cepa and human
cells showed that atrazine-containing nanocapsules were less
toxic to non-target organisms than the free herbicide (Grillo
et al., 2012; Clemente et al., 2014; Pereira et al., 2014).

At the same time, the nanoencapsulation increased the
post-emergent herbicidal activity of atrazine against mustard
plants, resulting in higher efficiency than the free herbicide.
Thus, the dose of the nanoherbicide could be decreased 10-
fold without compromising its biological activity (Oliveira
et al., 2015a). However, the efficacy of atrazine-containing
nanocapsules against weeds found in agricultural cultures has not
yet been tested.

Here, we evaluated the post-emergence herbicidal activity
of atrazine-loaded PCL nanocapsules against Bidens pilosa (L.)
and Amaranthus viridis (L.), comparing it with a commercial
formulation of atrazine in order to show the potential use of the
nanoherbicides in weed control.

MATERIALS AND METHODS

Preparation of the Formulations
Nanocapsules were prepared using the method of interfacial
deposition of the pre-formed polymer (Grillo et al., 2012).
Briefly, an organic phase (composed of PCL, triglycerides of
capric and caprylic acids - Myritol R© 318, sorbitan monostearate
surfactant—Span R© 60, atrazine and acetone) was slowly added,
with magnetic stirring, to an aqueous solution of polysorbate 80
surfactant (Tween R© 80). After continuous stirring for 10min, the
organic solvent was evaporated until the formulation reached a
volume of 10mL and an atrazine concentration of 1mg mL−1.
As the control, empty PCL nanocapsules were prepared with
the absence of atrazine in the organic phase. A commercial
formulation of atrazine at 1mg mL−1 (Gesaprim R© 500 CG,
from Syngenta) was also used in the herbicide activity assays for
comparison.

The atrazine-containing PCL nanocapsules have been
previously described by Grillo et al. (2012), showing mean
diameter around 260 nm, polydispersity index below 0.2 and
zeta potential −30mV. All these evaluated parameters did

not change significantly during the storage (270 days). The
encapsulation efficiency of atrazine was very high (86.7 ± 0.7%)
and nanoparticles had a spherical morphology. In vitro release
kinetics experiments revealed sustained release of ATZ from
the nanocapsules, which was governed by relaxation of the
polymeric chains (Grillo et al., 2012).

Soil Sampling and Characterization
The soil was collected (10–20 cm depth) from herbicide-free
grassland located at the campus of the State University of
Londrina, Londrina, PR, Brazil (−23◦08’47” latitude,−50◦52’23"
longitude). After air-drying, the soil (a Rhodic Ferralsol) was
homogenized and sieved through 2-mm mesh. The soil was
then mixed with sand and vermiculite (50% soil, 35% sand,
and 15% vermiculite). The granulometric and chemical analysis
(performed by LaborSolo, Londrina, Brazil) showed that the
obtained soil comprised 57.9% sand, 12.7% silt, and 24.9% clay,
8.67 g dm−3 organic matter and had a pH in water of 6.39.

Plant Material and Growth Conditions
Bidens pilosa L. (Asteraceae) and Amaranthus viridis L.
(Amaranthaceae) were used as model weeds in the assays for
herbicidal activity. The seeds of B. pilosa were collected from
a population of plants at the campus of the State University
of Londrina, while the seeds of A. viridis were purchased from
Bayer Corporation. In order to break the dormancy, B. pilosa
seeds were washed in running water and A. viridis seeds
were treated with KNO3 0.2%. The seeds were sown in pots
(10.5 cm high, 9.5 cm lower diameter, 14.0 cm higher diameter)
containing the substrate described above. The plants were kept in
a greenhouse under natural conditions of light and temperature.
The experiments were carried out from September to December.

Treatment With the Formulations
Thirty-day-old plants were sprayed with each of the following
formulations: distilled water, nanocapsules without atrazine
(NC), commercial atrazine (ATZ), and nanocapsules containing
atrazine (NC+ATZ). The formulations were applied at the dose
of atrazine recommended by the manufacturer (2,000 g ha−1).
A 10-fold lower dose of atrazine (200 g ha−1) was also tested.
Unloaded nanocapsules were applied at volumes equivalent to
those of the atrazine-containing nanoformulation.

Chlorophyll Fluorescence Measurements
The chlorophyll a fluorescence parameters were measured 3
days after treatment using an OS1p fluorometer (Opti-Sciences,
Hudson, NH, USA). The maximum quantum yield of the
photosystem II was analyzed before dawn in dark-adapted leaves
as the Fv/Fm ratio (Baker, 2008). The relative electron transport
rate of photosystem II (rETR) was determined at 10:00 am in
light-adapted leaves (Baker, 2008). Five plants per treatment were
used for chlorophyll fluorescence analysis.

Growth Analysis
The relative growth rates of roots and shoots were calculated
according to the procedure described by Hoffmann and Poorter
(2002). Immediately before treatment started, root and shoot
dry weights were determined for 12 plants and mean values
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for natural logarithm-transformed initial root and shoot weights
were calculated (lnW0). Fourteen days after spray application of
the formulations, 12 plants per treatment were harvested and
their root and shoot dry weights determined (W14). The relative
growth rates (RGR) were calculated according to Equation (1).

RGR =
(lnW14− lnW0)

Number of days after treatment
. (1)

For dry weight determination, roots and shoots were kept at 60◦C
for 3 days.

Statistical Analysis
Data were analyzed using one-way ANOVA followed by
the Scott-Knot post-test (P < 0.05), using software R (R
Development Core Team, 2016).

RESULTS

As shown in Figure 1, the post-emergence treatment of B. pilosa
and A. viridis plants with all atrazine-containing formulations
led to drastic reductions in maximum quantum yield (Fv/Fm)
(by above 40%) and relative electron transport rate (rETR)
of PSII (from 80 to 98%) compared with the water control,
as expected for this PSII-inhibiting herbicide (Roman et al.,
2007). In comparison with atrazine-containing formulations,
unloaded nanocapsules were much less effective in inhibiting
PSII photochemistry. In B. pilosa plants, only NC decreased
the rETR (by 6.9%), while the Fv/Fm remained unchanged
by NC and NC 1/10 treatments. In the case of A. viridis
plants, NC decreased the Fv/Fm and rETR by 6.9 and 13.6%,
respectively, while NC 1/10 negatively affected only the rETR
(9.7% reduction).

The intensity of Fv/Fm inhibition greatly differed between the
atrazine-containing formulations (Figure 1A). In both species,
NC+ATZ induced a more pronounced decrease of the Fv/Fm
than the other formulations (by 54 and 53% in B. pilosa and
A. viridis, respectively, compared to control values). The Fv/Fm
was negatively affected by ATZ treatment, but to a lower extent
than that of plants treated with NC+ATZ (inhibition of 44 and
40% in B. pilosa and A. viridis, respectively). The Fv/Fm of plants
treated with ATZ 1/10 and NC+ATZ 1/10 did not differ from
each other.

Regarding the rETR (Figure 1B), in B. pilosa plants NC+ATZ
and ATZ led to similar decreases in this parameter (by around
98% relative to water control), while in A. viridis NC+ATZ led
to a higher inhibition (97%) of rETR compared with ATZ. In
A. viridis, the rETR of plants treated with NC+ATZ 1/10 did not
differ from that of ATZ treatment (∼91%). For both species, ATZ
1/10 led to lower inhibitions of rETR in comparison with other
atrazine-containing formulations (87 and 81% for B. pilosa and
A. viridis, respectively).

The growth analysis showed that NC+ATZ induced greater
inhibition of B. pilosa root and shoot relative growth rates (RGR)
than the other atrazine-containing formulations (Figure 2A).
Indeed, the RGR of roots and shoots of NC+ATZ-treated plants

FIGURE 1 | (A) Maximum quantum yield of photosystem II (Fv/Fm) and (B)

relative electron transport rate of photosystem II (rETR) of Bidens pilosa and

Amaranthus viridis leaves measured 3 days after the treatment with water

(Water), concentrated (NC) or 10-fold diluted (NC 1/10) nanocapsules without

atrazine, commercial atrazine at 2,000 g ha−1 (ATZ) or 200 g ha−1 (ATZ 1/10)

and nanocapsules containing atrazine at 2,000 g ha−1 (NC+ATZ) or

200 g ha−1 (NC+ATZ 1/10). Data represent mean ± SE (n = 5). Different

letters above the columns indicate significantly different values according to

ANOVA followed by Scott-Knott’s test (P < 0.05).

was negative (−17.88 and−3.70mg g−1 d−1, respectively), which
indicates a loss of biomass caused only by this treatment. Similar
RGRs were observed in plants subjected to ATZ, NC+ATZ 1/10,
and ATZ 1/10 treatments.

In the case of A. viridis plants, NC+ATZ, ATZ, and NC+ATZ
1/10 did not differ from each other in the inhibition of root
and shoot growth (Figure 2B). Compared to these treatments,
ATZ 1/10 was less effective in inhibiting root and shoot growth.
Additionally, NC reduced shoot growth of A. viridis plants only
by 26%.

DISCUSSION

Altogether, the results demonstrate that atrazine-loaded PCL
nanocapsules were more effective than the commercial atrazine
in the inhibition of growth and physiological parameters of
B. pilosa and A. viridis plants. Thus, the nanoencapsulation of
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FIGURE 2 | Root and shoot relative growth rates (RGR; mg g−1 d−1) of (A)

Bidens pilosa and (B) Amaranthus viridis plants treated with water (Water),

concentrated (NC) or 10-fold diluted (NC 1/10) nanocapsules without atrazine,

commercial atrazine at 2,000 g ha−1 (ATZ) or 200 g ha−1 (ATZ 1/10) and

nanocapsules containing atrazine at 2,000 g ha−1 (NC+ATZ) or 200 g ha−1

(NC+ATZ 1/10). Data represent mean ± SE (n = 12). Different letters above

the columns indicate significantly different values according to ANOVA

followed by Scott-Knott’s test (P < 0.05).

atrazine increased its post-emergence herbicidal activity against
these weeds, which supports the potential application of this
nanoherbicide in the control of different weed species. It is
noteworthy that the efficiency of the nanoherbicide was observed
regardless of the distinct photosynthetic metabolisms of the
weeds (B. pilosa is a C3 plant and A. viridis is a C4 plant).

Given that unloaded PCL nanocapsules led only to minor
effects on the analyzed parameters, the increase of the herbicidal
activity cannot be explained by a phytotoxic effect of nanocapsule
components per se. Conversely, it may be associated with the
modified release of atrazine by the nanocapsules, with a better
adhesion of the nanoformulation to the leaves or with the uptake
of the nanocapsules by the leaf stomates, thereby preventing
atrazine loss into the environment and improving the delivery
of the herbicide to the target organism (Grillo et al., 2012; Pereira
et al., 2014; Oliveira et al., 2015a).

These results of this study corroborate previous phytotoxicity
assays in which mustard plants were used as the model
target species (Oliveira et al., 2015a). In this study, the post-
emergence herbicidal activity of atrazine was also improved by
its incorporation into PCL nanocapsules. Moreover, the use
of 10-fold diluted atrazine-loaded PCL nanocapsules resulted
in the same herbicidal activity against mustard plants as the
commercial formulation at the standard atrazine dose (Oliveira
et al., 2015a). Similarly, we observed here that ATZ andNC+ATZ
1/10 led to the same inhibitory effect on the growth parameters
of B. pilosa and A. viridis. The use of nanoencapsulated atrazine
would, therefore, enable the application of lower doses of the
herbicide; this could result in reduced release of atrazine into
the environment and, in this way, decreased effects on non-target
organisms.

Oliveira et al. (2015b) demonstrated that atrazine-containing
PCL nanocapsules had no persistent toxic effects onmaize plants,
a crop where atrazine is widely applied for weed control. Despite
small effects on oxidative stress and photosynthetic parameters
that were detected in maize leaves after treatment with the
nanoherbicide, these effects were transient and shoot growth
remained unaffected. These results, together with the reduced
toxicity of nanoherbicides compared with free atrazine in non-
target organisms, such as Allium cepa, algae and human cells
(Grillo et al., 2012; Clemente et al., 2014; Pereira et al., 2014),
suggest that atrazine-loaded PCL nanocapsules offer a promising
strategy for weed control, without compromising crop growth
and with less deleterious effects on the environment.

In addition to atrazine-loaded PCL nanocapsules, recent
studies have described the development of polymeric
nanoparticles composed by different nanomaterials for
the controlled release of herbicides. Alginate/chitosan and
chitosan/tripolyphosphate nanoparticles co-loaded with
imazapic and imazapyr and chitosan/tripolyphosphate
nanoparticles containing paraquat were less toxic to non-
target organisms than the conventional herbicides, while keeping
an effective herbicidal activity against target plants (Grillo
et al., 2014b; Maruyama et al., 2016). An increased herbicidal
activity of nanoherbicides compared to non-nano formulations
have been observed for diuron-loaded carboxymethyl chitosan
nanoparticles, metsulfuron methyl-loaded pectin nanocapsules
and metolachlor-loaded poly (lactide-co-glycolides) and
polyethylene glycol nanoparticles (Yu et al., 2015; Kumar et al.,
2017; Tong et al., 2017).

The development of a sustainable and efficient system
of food production with the involvement of nanotechnology
may be an excellent strategy for revolutionizing conventional
agricultural practices and thus attenuate the negative impacts
of agrochemicals on the environment, as well as improving
crop yield and increasing food security (Sekhon, 2014; Liu and
Lal, 2015). However, some barriers still hinder the effective
application of nanomaterials in agriculture, such as the lack of
specific regulatory frameworks for ecological risk assessments
(Walker et al., 2017) and the perception of the agricultural market
concerning the potential of nanomaterials (Kah, 2015).

The cost of production of nanomaterials is also crucial, but
promising studies, particularly using natural polymers, indicate
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that nanomaterials can be obtained in high quantities at low cost
(Pérez-de-Luque, 2017). Finally, field experiments evaluating
the effects of nanomaterials from sowing to harvest are an
essential step in order to nanoformulations effectively reach the
agricultural market.
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