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Abstract

Observational data are often accompanied
by natural structural indices, such as time
stamps or geographic locations, which are
meaningful to prediction tasks but are often
discarded. We leverage semantically mean-
ingful indexing data while ensuring robust-
ness to potentially uninformative or mislead-
ing indices. We propose a post-estimation
smoothing operator as a fast and effective
method for incorporating structural index
data into prediction. Because the smoothing
step is separate from the original predictor,
it applies to a broad class of machine learn-
ing tasks, with no need to retrain models.
Our theoretical analysis details simple con-
ditions under which post-estimation smooth-
ing will improve accuracy over that of the
original predictor. Our experiments on large
scale spatial and temporal datasets highlight
the speed and accuracy of post-estimation
smoothing in practice. Together, these re-
sults illuminate a novel way to consider and
incorporate the natural structure of index
variables in machine learning.

1 INTRODUCTION

The canonical machine learning setup models pairs of
features and labels as originating from some underly-
ing distribution, {xi, yi} ⇠ D(x, y); the problem is to
learn a predictor by(x) which describes y as faithfully
as possible. However, a recent narrative in machine
learning is that well-annotated, large-scale datasets are
rare, whereas less curated data are abundant; this has
led to a taxonomy of supervision including distant-,
weak-, and semi- supervision. Whether labels are
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noisy by nature (distant) (Mintz et al., 2009), pro-
grammatically generated (weak) (Ratner et al., 2016),
or missing altogether (semi) (Zhu, 2005), it stands that
characteristics of some data necessitate making use of
additional sources of constraints.

Semi-supervised methods in particular aim to lever-
age unlabeled data to elicit an underlying structure
which can aid prediction (Singh et al., 2009). In prac-
tice, however, semi-supervised methods can be compu-
tationally expensive, and are sensitive to distribution
shifts (Oliver et al., 2018). We propose to use readily-
available data that is inherently structural, and apply
a robust post-processing method which is independent
of the original predictor to incorporate this structure.

We consider scenarios where each datum (x, y) has an
associated index t with some linking or semantic mean-
ing. We thus represent observations as triplets:

{xi, yi, ti} i = 1, ..., n

Examples of such triplets include {image, annota-
tion, frame number} in video prediction, {house at-
tributes, price, address} in house price prediction, and
{document, sentiment, keywords} in sentiment anal-
ysis. While intuition suggests that index variables t
may be correlated with the label values y and thus
are highly informative to the prediction task, in many
cases they are not well suited as predictors of y without
major modification. For example, in object detection
in videos, we may expect objects to move smoothly
across frames, but the frame number itself does not
carry predictive power from one video to another.

We aim to leverage the structural information encoded
in t without over-relying on it. This motivates a main
question of our work: how can we utilize the depen-
dence of x and y on t even for predictors that might ig-
nore or underestimate such dependence? We propose
a post-estimation smoothing (P-ES) operator S(t) that
only depends on t to obtain smoothed predictions:

ey = S(t)by(x).
Decoupling smoothing S(t) from the initial feature-
based prediction step by(x) allows us to efficiently
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smooth any off-the-shelf model. P-ES applies to any
precomputed predictions made over time or space, re-
gardless of the original predictive model. The ease of
applying P-ES facilitates robust and reproducible in-
corporation of index variable structure in predictions.

Problem Statement Throughout this work we
consider the setting in which we have a dataset indexed
by ti 2 R

l, as well as predictions byi 2 R associated
with each index. It is natural to consider that there is
also a set of features xi 2 R

d and model f : Rd ! R

from which predictions by = f(x) were generated; we
take this as given and work with directly with by.
We study the post-prediction application of a P-ES
matrix operator S(t) : Rn ! R

n to form smoothed
predictions, ey := S(t)by, such that the ey are closer to
the true labels y than the original unsmoothed predic-
tions by are. In our theoretical analysis in Section 3, this
is measured using the expected mean-squared error:
E
⇥
1
n
key � yk22

⇤
= E

⇥
1
n

Pn

i=1(eyi � yi)
2
⇤
, while experi-

ments in Section 4 consider different accuracy metrics
suitable to different contexts.

Our main contributions are:

• The formulation of a structural-index-based post-
process smoothing procedure, P-ES, which is ap-
plicable to any predictor.

• Theoretical results proving that under mild condi-
tions, P-ES will improve accuracy relative to the
original predictor (Theorem 1), and characteriz-
ing when a linear smoothing operation can greatly
increase predictive accuracy (Lemma 1).

• Experiments on large-scale datasets for hu-
man pose estimation and house price prediction
demonstrating that P-ES improves accuracy of
state-of-the-art predictors at minimal extra cost.

These contributions are made possible by incorporat-
ing the general index variables separately from the fea-
ture based predictor. This results in a fast, accurate,
and robust method for local variance reduction, with
the potential to change how we consider and leverage
structural variables in machine learning predictions.

More broadly, we demonstrate the effectiveness of a
simple method that extends and generalizes previous
scholarship in locality-based semi-supervised learning
and nonparametric regression, applied in a modern
context of abundant but weakly predictive data. Given
recent exposition of the systematic underreporting of
simple baselines (Dacrema et al., 2019; Mania et al.,
2018) in machine learning and especially in semi-
supervised learning (Oliver et al., 2018), it is worth
considering P-ES as a theoretically motivated and eas-

ily implementable baseline for semi-supervised learn-
ing and smoothing in large scale, real-data contexts.

2 RELATED WORK

Semi-supervised learning (SSL) methods leverage large
amounts of unlabeled data along with some labeled
data under a local consistency assumption: instances
which are near to each other should have similar label
values. Distance is commonly determined with respect
to an underlying manifold or graph defined by the fea-
tures (Belkin and Niyogi, 2004; Zhu et al., 2003).

To encourage local consistency of predictions, Belkin
et al. (2006) add a Laplacian regularization term to
least squares and support vector machines, and Jean
et al. (2018) add a spatial regularization to the loss
function of deep neural nets. There is also a consid-
erable amount of work incorporating additive consis-
tency regularization and similar notions in neural nets
(Tarvainen and Valpola, 2017; Bachman et al., 2014;
Grandvalet and Bengio, 2005). As noted by Oliver
et al. (2018), however, such methods can be sensitive
to distribution shifts and require large validation sets
and heavy computation to tune parameters; thus they
are often poorly suited for “real-world” applications.

Unfortunately, adding a local consistency regulariza-
tion term multiplies the number of parameter config-
urations in the optimization problem, and only works
for predictors with an explicit objective function. For
example, it not straightforward to add a spatial consis-
tency term to random forests. An alternative method,
Gaussian harmonic energy minimization (HEM) (Zhu
et al., 2003), augments an underlying graph with noisy
predictions, and solves for spatially consistent predic-
tions on this larger graph. The local and global con-
sistency (LCG) algorithm (Zhou et al., 2004a) solves
a similar optimization problem iteratively.

Singh et al. (2009) show that unlabeled data is use-
ful in SSL precisely when it illuminates the underlying
structure of the data beyond what was discernible by
the labeled data alone. However, if modeling assump-
tions incorrectly summarize the true structure of the
data, unlabeled data can be misleading and even de-
grade performance (Cozman and Cohen, 2002; Oliver
et al., 2018). One approach to mitigate this is to
fortify semi-supervised learning methods to be robust
to this mismatch (Li and Zhou, 2014); we obtain ro-
bustness by decoupling feature-based prediction from
a nonparametric incorporation of structural indices.

The literature on nonparametric regression methods is
extensive (Tsybakov, 2010; Györfi et al., 2006); we fo-
cus on two prominent approaches. Gaussian Process
Regression (GPR) places a Gaussian prior on label co-
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variances, specified by feature variables (Williams and
Rasmussen, 2006). GPR has been widely adopted and
extended in the geospatial statistics community, un-
der the names of “kriging” and “inverse distance in-
terpolation” (Babak and Deutsch, 2009; Lu and Wong,
2008). As pointed out by Banerjee et al. (2008), when
applied to large datasets, GPR has large computation
and memory requirements, or necessitates approxima-
tions (Williams and Rasmussen, 2006).

Kernel smoothing (Tsybakov, 2010) is another type
of nonparametric regression in which predictions are
locally weighted averages of observations. Of particu-
lar note is the Nadaraya-Watson estimator (Nadaraya,
1964; Watson, 1964) in which weights are determined
by a kernel relation on all instances. GPR, Lapla-
cian regularized least squares (Belkin et al., 2006),
HEM (Zhu et al., 2003), and exact LCG (Zhou et al.,
2004a) can all be cast as instances of linear smoothing
operators for which computing the smoothing matrix
involves inverting a matrix of size n⇥ n.

Lastly, recent work on the statistical optimality of data
interpolation in machine learning (Belkin et al., 2018)
highlights that averaging methods are quite powerful
for prediction. We apply a locally-weighted average to
predictions themselves, which are the output of some
prior model. Like semi-supervised learning methods,
P-ES encodes spatial consistency properties, but takes
the perspective of refining given predictions with min-
imal restrictions on the underlying structure. In light
of the previous work, P-ES can be seen as a fast and
robust way to leverage structure, and to interpolate.
Application-specific references are provided in Sec. 4.

3 ANALYSIS

Here we answer the questions (i) how should we form
a useful post-estimation smoothing matrix while main-
taining robustness to possible distributional misspecifi-
cation? and (ii) for what data distributions and pre-
dictors is linear smoothing beneficial? Throughout the
analysis, we model true values y, predictions by, and er-
ror residuals " as stochastic processes indexed by t:

by(t) = y(t) + "(t) . (1)

3.1 Accuracy Increases with General

Smoothing Matrices

While we may have strong intuition that there is some
locality-based structure in certain domains, the choice
of distributional priors governing this structure will
most often be inexact. We use a matrix W (t) 2 R

n⇥n,
where weights Wij denote how much the jth prediction
should contribute to a smoothed estimate for the ith

instance, depending on the values of ti and tj .

Theorem 1 below shows that using a reasonable weight
matrix W (t) which captures correlation in the under-
lying data can improve performance. A key insight
is that shrinking W towards the identity matrix tem-
pers potential misspecification gracefully. Therefore,
we form our smoothing matrix as the convex combi-
nation:

Sc(t) = c ·W (t) + (1� c) · I , (2)

where in practice c 2 [0, 1] can be chosen through
cross-validation along with any parameters of W .

For any weight matrix, define the following quantities:
�(",W ), which describes the amount by which W acts
as a zero operator on the errors, and �(",W ; y), which
describes the amount by which W acts as the identity
operator on the true labels, both scaled by E[k"k22]:

�(",W ) := E[">W"]/E[k"k22],

�(",W ; y) := E[">(W � I)y]/E
⇥
k"k22

⇤
.

Intuitively, we want to use a weight matrix W such
that both � and � are small, so that W averages out
erroneous error signals while decreasing correlation be-
tween y and ". Theorem 1 shows that an imperfect W
will suffice, so long as the sum � + � is controlled.

Theorem 1. Given any predictor by of y with error
residuals satisfying E

⇥
k"k22

⇤
6= 0, and any weight ma-

trix W satisfying �(",W )+�(",W ; y) < 1, there exists
a constant c 2 (0, 1] such that the smoothing matrix
Sc = c ·W + (1� c) · I strictly reduces expected MSE:

E
⇥
1
n
kScby � yk22

⇤
< E

⇥
1
n
kby � yk22

⇤
.

(Proof sketch for � = 0.) For unbiased estimators by
with errors " that are independent of the labels, � = 0
and the objective decomposes as

E
⇥
kScby � yk22 � kby � yk22

⇤

 c2
�
E
⇥
kW by � yk22

⇤
+ 2(1� �)E

⇥
k"k22

⇤�

+ 2c(� � 1)E
⇥
k"k22

⇤
.

The upper bound is a convex quadratic function in c
with optimum at

c⇤ =
(1� �)E

⇥
k"k22

⇤

(E [kW by � yk22] + 2(1� �)E [k"k22])

By the theorem conditions, � < 1, so that c⇤ 2 (0, 1].
The resulting upper bound is then given by

E
⇥
1
n
kSc∗by � yk22 �

1
n
kby � yk22

⇤

 �
(1� �)2E

⇥
k"k22

⇤2

n(E [kW by � yk22] + 2(1� �)E [k"k22])
< 0 .
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We present the full proof in Appendix A.2.

Theorem 1 inverts the standard statistical smooth-
ing analysis (Simonoff, 1998; Tsybakov, 2010)—which,
provided generative processes as in Eq. (1), calcu-
lates the bias and variance of the resulting smoothed
estimator—and instead characterizes properties of the
underlying signal y(t), the prediction errors "(t), and
the weight matrix W that make smoothing beneficial.
As in standard kernel smoothing regression (Wand and
Jones, 1994), in P-ES we are willing to tolerate an in-
crease in the bias of our predictor, so long as the vari-
ance decreases. Formulating the conditions in terms
of � and � allows us to assess this trade-off in terms
of the conditions on the prediction errors directly.

We can guarantee that �(",W )  1 by ensuring
�max(W )  1, for example by taking any right-
stochastic matrix (here �max(·) denotes the maximum
eigenvalue). Controlling �(",W ; y) depends on both
the true values and the errors in predictions. A suffi-
cient condition to achieving �  c is to pick W which
satisfies E

⇥
k(W � I)yk22

⇤
 c2E

⇥
k"k22

⇤
, encoding that

we tolerate a deviation in labels due to W limited by
the magnitude of errors that can potentially be re-
duced. See Appendix A.1 for ways to ensure �+� < 1.

In general, the condition �+ � < 1 represents a trade-
off in choosing a weight matrix that acts approxi-
mately as a zero matrix with respect to the errors
(small �), while acting close to an identity matrix with
respect to the true values (small �). In order to keep
the sum small, W needs to incorporate knowledge in
the structure of the domain-specific labels, y, as well
as the distribution of prediction errors, ", for a given
predictor. For all experiments (Section 4), we use the
Nadaraya-Watson smoothing matrix with a Gaussian
kernel (Eq. (4)). This matrix is right-stochastic, and
the Gaussian kernel encodes the constraint that nearby
data points (measured with respect to structural index
variable t) should have similar label values y.

The best-case reduction in MSE attainable by P-ES
is bounded in the final line of the proof of Theorem 1
(for � 6= 0, see Appendix A.1). The MSE reduction
depends on covariances between W , y, and the error
residuals in ŷ. This motivates us to study the form
of the optimal smoothing operator and the resulting
expected error reduction, when these covariances are
known.

3.2 Optimal P-ES for Known Distributions

Having proposed a P-ES matrix Sc in Section 3.1, we
now study the form of an optimal linear smoothing ma-
trix S⇤ when the distributions governing the labels and
error residuals are known. This reinforces the high-
level structures we wish to capture in Sc, and provides

a baseline for simulation experiments in Section 4.1.
Denote the cross-correlation matrices K element-wise
as Kxy[t, s] = E [x(t)y(s)].

Lemma 1. For a predictor by of y with error residuals
distributed as "(t) = by(t)� y(t), when Kbyby � 0, the
optimal linear smoothing matrix has the form

S⇤ = argmin
S2Rn×n

E
⇥
1
n
kSby � yk22

⇤

= I � (Kεε +Kyε)
>(Kyy +Kyε +Kεy +Kεε)

�1 .

The expected MSE reduction of applying S⇤ versus us-
ing the original predictions by is always non-negative,
and is given by

1
n
E
⇥
kby � yk22]� kS⇤by � yk22

⇤
= 1

n
tr
�
K>

byy(Kbyby)
�1Kbyy

�
.

We present the proof of Lemma 1 in Appendix A.3.

Lemma 1 shows that smoothing can reduce prediction
error associated with Kεε and Kyε, but that the ex-
tent to which errors can be smoothed out depends on
the forms of Kyy and Kyε. The following example un-
derscores this point for an illustrative data generating
model and sets the stage for simulation experiments in
Section 4.1. The main details of the example are given
here, with more extensive exposition in Appendix A.4.

Example 3.1. Consider zero-mean stochastic pro-
cesses x(t) and y(t) which are dependent on a third
zero-mean hidden process z(t), but with independent
additive Gaussian noise. In particular:

z ⇠ N (0,Kzz) (3)

x(t) = z(t) + !(t), !(t) ⇠i.i.d. N (0,�2
x)

y(t) = c · z(t) + µ(t), µ(t) ⇠i.i.d. N (0,�2
y) .

The autocorrelation matrices show that there is shared
variation due to the “hidden” process z:

Kxx = Kzz +Kωω, Kyy = c2Kzz +Kµµ, Kxy = cKzz .

Without any specific knowledge of the covariance struc-
ture in z, this could be modeled with an “errors in vari-
ables” model, for which total least squares (TLS) gives
a statistically consistent estimator of c. In the ap-
pendix, we show that as n grows large, the expected
MSE of the TLS predictions approaches

E
⇥
1
n
kbyTLS � yk22

⇤
⇡ �2

y + c2�2
x ,

whereas invoking Lemma 1, the expected smoothed per-
formance using S⇤ approaches

E
⇥
1
n
kS⇤byTLS � yk22

⇤

⇡ �2
y + c2�2

x

�
1� 1

n
tr
�
(��2

x Kzz + I)�1
��

� �2
y .

Using the first line above, the expected MSE reduc-

tion is approximately
c2σ2

x

n
tr
⇣�

��2
x Kzz + I

��1
⌘
which

is strictly positive for �2
x > 0, and increasing with �2

x.
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Figure 1: Simulation results. (a) Two examples of structure in z (left column), where a TLS estimator recovers
structure (middle column), but is improved upon using P-ES (right column). (b) Aggregate performance over
different noise parameters for unsmoothed and P-ES estimates, compared to a lower bound of �2

y for any linear
smoother. Vertical black lines show min and max over 10 trials.

4 EXPERIMENTS

We first use simulated experiments to study situations
in which smoothing is beneficial and to demonstrate
that a simple instantiation of Eq. (2) achieves close
to optimal accuracy in these settings. We then apply
P-ES to predictions on real-world datasets with tem-
poral and spatial structure: human-pose prediction in
video (Sec. 4.2) and house-price prediction over space
(Sec. 4.3). P-ES improves performance of all predic-
tors we consider, including some that already incor-
porate locality. P-ES compares favorably to statisti-
cal smoothing and SSL methods, both in predictive
accuracy and computation time. As a simple local-
averaging weight matrix, all experiments use as W the
Nadaraya-Watson smoothing matrix with squared ex-

ponential kernel on t, where Dij(t;�) = e�
1

2σ2
kti�tjk

2

2 :

Sc(t;�) = c · diag�1
⇣
D~1

⌘
D + (1� c) · I . (4)

4.1 Simulations

We return to the distribution defined in Eq. (3) in
Example 3.1, where the processes x(t) and y(t) are
influenced by a third ‘hidden’ process z(t). We now
make a specific assumption for the covariance of z:

~z = N
⇣
~0,Σ(t)

⌘
, Σij(t) = e

� 1

2σ2
z

(ti�tj)
2

.

We take t = [0, 1/n, 2/n, . . . , (n�2)/n, (n�1)/n] with
n = 2000, and �z = 0.2. Half of the points are chosen
at random to form a training set from which we learn
the total least squares (TLS) estimator by(x). The re-
maining 1000 points are used to evaluate performance
with and without P-ES. To show the expressiveness of

the matrix Sc, in simulations we pick the parameters
c,� of Sc so as to maximize performance on the evalu-
ation set. In Sections 4.2 and 4.3, we pick parameters
on a validation set before applying to a holdout set.

Figure 1(a) shows the process of P-ES as local variance
reduction. Each row shows a different setting of �x,�y.
The leftmost column shows observed labels y(t) as a
function of indices t. The middle and right columns
show the TLS predictions, without and with P-ES, re-
spectively. Errors in by that are made in the horizontal
axis are reducible by smoothing, as Sc(t) gives more
weight to pairs closer in t (similar hue in Figure 1(a)).
The smoothed predictions ey exhibit a similar structure
to the original predictions, with significantly reduced
horizontal error bands. The difference in the perfor-
mance of the TLS estimator with and without P-ES
(Figure 1(b)) indicates that P-ES reduces prediction
errors that are uncorrelated with the index variable t.

4.2 Human Pose Prediction in Video

Recent work has shown that improvements in human
pose estimation (Zhang et al., 2019; Kanazawa et al.,
2019; Dabral et al., 2018) and object detection and
classification in videos (Prest et al., 2012; Yucer et al.,
2015; Zhu et al., 2017) can be obtained by encod-
ing temporal consistency as part of a larger predictive
pipeline. The intuition is that exploiting continuity
of motion over video frames can reduce the noise in
per-frame predictions. For example, a recent state-of-
the-art method for pose estimation (Kanazawa et al.,
2019) learns both a temporal encoder and temporal
human dynamics as part of the predictive pipeline. In
the following experiment, we apply P-ES to predic-
tions from this model as well as to predictions from a
per-frame baseline model (Kanazawa et al., 2018).
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Table 1: Holdout set performance for human pose estimation in video. Arrows indicate the direction of desired
performance; bold numbers indicate the best performance for each metric. For all metrics, P-ES predictions
(italicized methods) have the best performance of all methods considered. Other methods are attributed as
“temporal, temporal + dynamics:” Kanazawa et al. (2019), “per-frame:” Kanazawa et al. (2019, 2018).

3DPW Penn Action

method PCK " MPJPE # PA-MPJPE # Acc. Err. # PCK " Accel #

per-frame 84.06 129.95 76.68 37.41 73.17 79.91
per-frame, with P-ES 84.46 128.44 75.84 20.46 73.74 48.22
temporal 82.59 139.19 78.35 15.15 71.16 29.30
temporal + dynamics 86.37 127.08 80.05 16.42 77.88 29.66
temporal + dynamics with P-ES 86.57 126.14 79.73 8.14 78.07 4.96

We use the same validation and holdout splits for the
3D Poses in the Wild (3DPW) (von Marcard et al.,
2018) and the Penn Action datasets (Zhang et al.,
2013) as in Kanazawa et al. (2019). Before test-
ing results on the holdout set, smoothing parame-
ters were chosen from � 2 [0.5, 1, 2, 3, 4] frames, and
c 2 [0.0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] to maximize
average validation accuracy measured by the key-point
accuracy (PCK) metric (see Appendix B for details).

Holdout test set performance is given in Table 1. PCK
is an accuracy metric on key-points, MPJPE and PA-
MPJPE measure error over predicted pose joints, and
acceleration error penalizes high acceleration predic-
tions (see Appendix B for a discussion of the metrics).
While we optimized according to PCK, P-ES improves
performance in both models, across all metrics.

Smoothing confers greater gains in the time-agnostic
per-frame model than the temporal dynamics model.
Interestingly, the “temporal model” without human
dynamics does worse in almost all metrics than the
“per-frame” model that ignores frame number. This
underscores our motivation, that temporal information
must be encoded with care, as well as our claim that
P-ES is a suitable baseline for such tasks.

The optimal hyperparameter pairs chosen are given in
Table 2. For both models, the optimal � was around 2
frames, but the optimal c for the per-frame predictions
was much smaller for the per-frame model (avg. 0.45)
than for the model that already incorporated temporal
structure (avg. 0.9). This may be because predictions
for the temporal model are smoother, so that we do
not alter the signal in predictions as much with P-ES.

In summary, P-ES confers performance gains to both
the per-frame model and the more accurate temporal
and dynamics model, showing that P-ES can improve
performance even when the base estimator is a com-
plex model incorporating locality.

Table 2: Optimal hyperparameter values on validation
set per predictor for both datasets.

per-frame temporal + dynamics

3DPW PA 3DPW Penn Action

� 2 3 2 2
c 0.5 0.4 0.8 1.0

4.3 Predicting House Price from Attributes

The usefulness of applying semi-parametric techniques
merging feature-based prediction and spatial regular-
ization in predicting house prices has been documented
from many perspectives (see, e.g., Caplin et al., 2008;
Dubin, 1998; Clapp et al., 2002; Can, 1992). This mo-
tivates house price prediction as a domain in which to
compare the performance of P-ES and other methods
exploiting spatial consistency. Using data on house
sales from the Zillow Transaction and Assessment
Database (ZTRAX) (Zillow, 2018), we first demon-
strate the effectiveness of P-ES on various machine
learning regression methods (Figure 2), and then in
comparison to standard semi-supervised learning tech-
niques (Table 3).

In this experiment we predict sale prices y of single
family homes, given features x about the homes (e.g.,
number of bedrooms, year of home sale, etc.). Lo-
cation t is the latitude and longitude of the homes.
After preprocessing (see Appendix B), the dataset
contains roughly 600,000 home sales at unique loca-
tions. We test three diverse machine learning models:
ridge regression, random feature regression (Rahimi
and Recht, 2009), and gradient boosted decision trees
(XGB) (Chen and Guestrin, 2016), with and with-
out post-estimation smoothing. For all three resulting
models, we chose parameters jointly over the model
parameters and P-ES parameters to maximize valida-
tion set accuracy, measured in R2, the percent of label
variation explained by the predictions.
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Table 3: Comparison with nonparametric and semi-supervised methods, for 10 random trials with train, valida-
tion, and holdout sets of size n = 10, 000.

model function (f) or average holdout accuracy average runtime
method post-processing (pp) form mean (std) in r2 mean (std) in secs

kernel smoothing f(t, y) 0.277 (0.185) 20.6 (0.2)
GPR (Kriging) f(t, y) 0.386 (0.011) 1336.1 (4.6)
LapRLS (Belkin et al., 2006) f(x, t, y) 0.452 (0.012) 1683.6 (12.4)
XGB f(x, y) 0.458 (0.014) 7.8 (0.1)
XGB + shrinkage pp(t, byXGB) 0.457 (0.014) + 0.0 (0.0)
XGB + P-ES pp(t, y, byXGB) 0.526 (0.015) + 27.0 (0.2)
HEM (Zhu et al., 2003) f(t, y, byXGB) 0.544 (0.015) + 898.6 (4.8)
HEM (Zhu et al., 2003) + P-ES pp (t, y, f(t, y, byXGB)) 0.546 (0.015) + 287.8 (8.0)

ridge regression random features XGB
.0

.1

0.2

0.3

0.4

0.5

unsmoothed

P-ES with test set predictions

P-ES with test set predictions and training set labels

0

0

absolute performance

legend

R2

0.320 0.335

0.448

0.390

0.482

0.376

0.499

0.553

0.483

Figure 2: P-ES performance for various base predic-
tors. Bars denote average performance; vertical black
lines show min and max over 10 trials. All six aver-
age relative differences (unsmoothed - smoothed) are
positive with p-value < 1e�4, those that include the
training set have p-value < 1e�7.

Figure 2 shows the holdout test set performance of
smoothed and unsmoothed models for the three ma-
chine learning algorithms. Training, validation, and
test sets are of size n = 20, 000 each. We performed
this experiment over 10 random data draws. Smooth-
ing is performed with respect to just the predictions, as
well as with respect to the concatenated training set la-
bels and test set predictions (validated on training set
labels and validation set predictions). See Appendix B
for details on hyperparameter settings.

For all three methods, applying P-ES with the test set
predictions improves accuracy over the original pre-
dictions. Smoothing with the training points, in the
spirit of semi-supervised learning, boosts accuracy fur-
ther, as we might expect since there is no estimation
error for the training labels. Figure 5 in Appendix B.3
shows a similar trend holds across sample set sizes (n).

Table 3 shows a comparison to alternative meth-
ods for reducing variance or inducing spatial consis-
tency: kernel smoothing based only on the training
set labels (without predictions), Gaussian process re-
gression (GPR), Laplacian regularized least squares
(LapRLS), a variance reducing shrinkage estimator
(S = � · ( 1

n
~1~1>) + (1 � �)I), and Gaussian harmonic

energy minimization (HEM) (see Sec. 2).

Timing results underscore that P-ES is a fast way to
incorporate spatial structure (it incurs an O(n2) addi-
tional runtime as opposed to O(n3) for GPR, LapRLS,
and HEM). The high variance in performance of kernel
smoothing alone may be explained by inherent difficul-
ties in choosing hyperparameters in semi-supervised
settings, as discussed by Oliver et al. (2018). Accuracy
of post-processing with P-ES is within 1.2 standard de-
viations of the HEM method which takes roughly 30⇥
as long to run in this instance over the chosen set of
hyperparameters (see Appendix B).

Runtimes for post-processing procedures are reported
as the additional time compared to not running
the post-processing procedure (on average, comput-
ing P-ES predictions takes 27 seconds on top of the
7.8 seconds to run XGB over multiple hyperparam-
eter configurations). The runtime numbers reported
in Table 3 are for solving the exact HEM and LapRLS
problems, using the inverse and with as much shared
computation as possible. We omit experimental com-
parison to LGC (Zhou et al., 2004a,b) as the adaption
from multi-class classification and ranking problems to
regression problems is nontrivial, but we note that it is
an iterative metho where each iteration is O(n2). The
first iteration of the LGC algorithm is very similar to
P-ES, so that similarity of accuracy of HEM and P-ES
with the smoothing matrix defined in Eq. (4) suggests
that a one-iteration approximation of these algorithms
can be sufficient in some cases.

The last line in table Table 3 confirms that we get
a very small increase in accuracy by smoothing the
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XGB trained on [X,t] 

legend

holdout pool

training and validation pool XGB trained on [X] 
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Figure 3: In-sample (unsmoothed) validation performance and out-of-sample holdout performance for different
methods of incorporating spatial index variables. Lines show min and max over 10 trials.

best SSL method; this is consistent with our under-
standing that this smoothing operator acts similarly
to the graph-defined HEM operator. The reduction in
computation to apply P-ES significantly reduces the
barrier to comparing to this family of algorithms as
a baseline. Additionally, the computational speed of
P-ES makes it much easier to explore different choices
of the weight matrix W (t;�) from which to form the
smoothing matrix; we consider this future work since
such a matrix will likely be domain-specific.

We conclude our experiments with a final example
of the danger of incorporating index variables with
unique characteristics as predictive features. We com-
pare the out-of-sample generalizability of a model
by(x, t) trained on the concatenated set of home at-
tributes and geographic location as features with that
of the model from previous experiments by(x) trained
only on attributes with smoothing applied.

Figure 3 shows the results of these two approaches for a
spatial extrapolation experiment, where a training set
and validation set of size 20, 000 each are sampled from
the northern U.S., and a holdout set of size 20, 000 is
sampled from a disjoint southern segment.1

Wemight expect that incorporating latitude and longi-
tude as features could cause the first model to overfit,
whereas distribution shift in neighborhood structure
might negatively impact the learning of parameters
for P-ES. Indeed, while the XGB predictor trained
with locations and attributes (XGB trained on [X, t])
has better validation performance than the location-
agnostic predictor (XGB trained on [X]), it performs
much worse on the holdout set (0.10 vs 0.35 average
R2). However, applying P-ES does not degrade per-
formance (0.002 average R2 increase). In this scenario,
the distribution shift with respect to t is so severe that
it is possible to overfit by using t as a feature. Incor-
porating structure in t with P-ES, on the other hand,
is much more robust to this distribution shift.

1A figure with all possible data pipelines including
smoothing [X, t] is given in Appendix B.4.

5 CONCLUSION

We introduce post-estimation smoothing as a method
for incorporating structural indices like time or loca-
tion as valuable information sources in machine learn-
ing predictions. Theory and experiments underscore
that P-ES is an effective and robust way to incorpo-
rate structured index variables in prediction, at much
less cost than traditional semi-supervised methods.

The performance of P-ES depends on the accuracy of
the original predictions. If predictions ŷ are very far
from y, smoothing is unlikely to remedy this. While
decoupling smoothing from the original prediction may
be limiting, we have shown that it can be advantageous
when viewing P-ES as a diagnostic method or a base-
line with which to compare more complex methods.

This work opens a door for extensions to applica-
tions where index variables satisfy less physical notions
of distance (e.g., word embeddings), and to analysis
characterizing when decoupling local consistency and
prediction can be close to the optimal integrated ap-
proach. Future work could also consider multivariate
labels y with correlation among their elements. Lastly,
it will likely be worthwhile to investigate more struc-
tured weight matrices W (other than the Nadaraya-
Watson estimator) which form the basis of the smooth-
ing matrix S. Due to the decoupling of smoothing from
the original prediction, practitioners can try domain-
specific weight matrices with marginal extra cost.

When the goal is to obtain accurate predictors, no data
should be overlooked. However, index variables such
as time and space should be incorporated with care.
We propose that post-processing is a natural and effec-
tive way to utilize this structure, and show it is robust
to different tasks, predictors, and sampling patterns.
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Selsam, and Christopher Ré. Data programming: Cre-
ating large training sets, quickly. In Advances in neural
information processing systems, pages 3567–3575, 2016.

H Schneeweiss. Consistent estimation of a regression with
errors in the variables. Metrika, 23(1):101–115, 1976.

Jeffrey S. Simonoff. Smoothing Methods in Statis-
tics (Springer Series in Statistics). Springer, 1998.



Post-Estimation Smoothing

ISBN 0387947167. URL https://www.amazon.
com/Smoothing-Methods-Statistics-Springer/dp/
0387947167?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&
tag=chimbori05-20&linkCode=xm2&camp=2025&
creative=165953&creativeASIN=0387947167.

Aarti Singh, Robert Nowak, and Xiaojin Zhu. Unlabeled
data: Now it helps, now it doesn’t. In Advances in neural
information processing systems, pages 1513–1520, 2009.

Antti Tarvainen and Harri Valpola. Mean teachers are
better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results. In Ad-
vances in neural information processing systems, pages
1195–1204, 2017.

Alexandre B. Tsybakov. Introduction to Nonparametric
Estimation (Springer Series in Statistics). Springer, nov
2010. ISBN 9781441927095. URL https://www.xarg.
org/ref/a/1441927093/.

Timo von Marcard, Roberto Henschel, Michael Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering
accurate 3d human pose in the wild using imus and a
moving camera. In European Conference on Computer
Vision (ECCV), sep 2018.

Matt PWand and M Chris Jones. Kernel smoothing. Chap-
man and Hall/CRC, 1994.

Geoffrey S Watson. Smooth regression analysis. Sankhyā:
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