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Abstract

Rich collections of genomic and epigenomic annotations, availabilities of large population cohorts 

for genome-wide association studies (GWAS), and advancements in data integration techniques 

provide the unprecedented opportunity to accelerate discoveries in complex disease studies 

through integrative analyses. In this paper, we apply a variety of approaches to integrate GWAS 

summary statistics of chronic obstructive pulmonary disease (COPD) with functional annotations 

to illustrate how data integration could help researchers understand complex human diseases. We 

show that incorporating functional annotations can better prioritize GWAS signals at both the 

global and the local levels. Signal prioritization on severe COPD GWAS reveals multiple potential 

risk loci that are linked with pulmonary functions. Enrichment analysis provides novel insights on 

the pathogenesis of COPD and hints the existence of genetic contributions to muscle dysfuncion 

and chronic lung inflammation, two symptoms that are often co-morbid with COPD. Our results 

suggest that rich signals for COPD genetics are still buried under the Bonferroni-corrected 

genome-wide significance threshold. Many more biological findings are expected to emerge as 

more samples are recruited for COPD studies.

Introduction

Since its first success more than a decade ago, GWAS has become a popular and powerful 

approach to study human complex diseases. As of January 15, 2016, more than 15,000 

single nucleotide polymorphisms (SNPs) from over 2,000 publications had been 

documented in the GWAS Catalog (Welter et al. 2014). Despite its great success, GWAS has 
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several notable limitations. First, complex diseases are often polygenic. Even with thousands 

or more individuals enrolled in studies, most GWAS are still only able to identify a small 

fraction of the risk loci with small to moderate effects, and as a result, the loci identified 

from GWAS only explain a small proportion of disease heritability (Visscher et al. 2012). 

Second, linkage disequilibrium (LD) allows us to use a few million single nucleotide 

polymorphisms (SNPs) to tag signals in the whole genome without prior knowledge of 

where they are, but complex LD structures also hinder our ability to identify functional 

variants from highly correlated SNPs. Third, nearly 90% of GWAS hits are located in non-

protein-coding regions in the human genome (Hindorff et al. 2009). Despite years of efforts 

through both computational and experimental approaches, interpreting the etiology behind 

each non-coding risk locus remains challenging (Bernstein et al. 2012; Kellis et al. 2014; 

Ward and Kellis 2012).

A number of recent studies have shown that incorporating external information (e.g. 

pleiotropic effect, functional annotation) could accelerate discoveries in many aspects of 

human genetics research. Joint modeling of multiple diseases have been shown to improve 

risk stratification for autoimmune and psychiatric disorders (Li et al. 2014; Maier et al. 

2015). Genetic correlation studies have revealed novel biological insights for many human 

complex traits (Bulik-Sullivan et al. 2015; Chung et al. 2014; Pickrell et al. 2015). 

Integrative analyses of functional annotations and GWAS summary statistics have also been 

shown to effectively improve GWAS signal identification, prioritization, and interpretation 

(Finucane et al. 2015; Gusev et al. 2014; Kichaev et al. 2014; Lu et al. 2016a; Lu et al. 

2016b; Pickrell 2014).

In this study, we apply a variety of methods to integrate functional annotations of the 

genome with GWAS summary statistics of COPD, one of the leading causes of morbidity 

and death in the world (Naghavi et al. 2015). Genetics plays an important role in COPD 

(Ingebrigtsen et al. 2010). Multiple GWAS have been conducted to identify genetic variants 

affecting COPD (Cho et al. 2010; Cho et al. 2012; Cho et al. 2014; DeMeo et al. 2009; Pillai 

et al. 2009; Wilk et al. 2009). To date, five COPD-associated loci have been identified thus 

far but most heritability for COPD remains unexplained (Zhou et al. 2013). From this 

perspective, COPD is a perfect phenotype to explore and illustrate the effectiveness of data 

integration approaches in complex disease research. The results of these integrative analyses 

could also help researchers generate novel testable hypotheses regarding the etiology of 

COPD and guide future studies.

Methods

Cohort information

Three sets of summary statistics from two GWAS were used in our analyses. First, we 

considered the results from the analysis of 5,346 self-described non-Hispanic white 

individuals participating in COPDGene (Regan et al. 2011), including 2,812 cases and 2,534 

controls. These individuals were genotyped using the Illumina HumanOmniExpress array, 

and genotype imputation was done using 1000 Genomes Phase I v3 European reference 

panel. The summary statistics of this case-control study are referred to as NHW-casecont in 

the following sections. Among the cases, 1,390 had grade 3 or 4 disease (severe or very 
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severe) defined by Global Initiative for Chronic Obstructive Lung Disease (GOLD). The 

summary statistics calculated using this severe sub-cohort as the cases and the same control 

group are referred to as NHW-severe. Additionally, we also used the summary statistics from 

a case-control study of 352 African American individuals with severe COPD and 1,749 

healthy controls. This dataset is referred to as AA-severe in our following discussion. After 

filtering out SNPs with low imputation quality (Info < 0.3) and low minor allele frequency 

(MAF < 0.01), the NHW-casecont, NHW-severe, and AA-severe datasets had 8,119,661, 

8,116,544, and 14,214,106 SNPs, respectively. For each SNP, the summary statistic was 

obtained by applying a logistic regression with adjustment for age, pack-years of smoking, 

and ancestry-based principal components. Meta-analysis was performed using PLINK 

(Purcell et al. 2007). Detailed information about all these cohorts was previously reported 

(Cho et al. 2014).

Functional annotation

GenoCanyon is a statistical framework to predict functional regions in the human genome 

based on integrative analysis of conservation and epigenomic annotations (Lu et al. 2015). 

GenoCanyon scores that quantify the functional potential of each nucleotide in the genome 

have been pre-calculated for the entire hg19 genome. GenoSkyline is a further extension of 

the GenoCanyon framework through integrating Roadmap Epigenomics data (Kundaje et al. 

2015) to quantify tissue-specific functionality in the human genome (Lu et al. 2016a). 

Currently, GenoSkyline annotations for seven tissue types (i.e. brain, gastrointestinal (GI) 

tract, lung, heart, blood, muscle, and epithelium) are readily available at http://

genocanyon.med.yale.edu/GenoSkyline.

GWAS signal prioritization

We recently developed Genome-Wide Association Prioritizer (GenoWAP), a GWAS signal 

prioritization approach based on integrative analysis of GWAS summary statistics and 

functional annotation (Lu et al. 2016b). The GenoWAP algorithm and detailed model 

assumptions can be found in Lu et al. (2015c). Here we briefly describe the approach for 

completeness.

For each SNP, define Z and ZD to be the indicators of general functionality and COPD-

specific functionality, respectively. We use p to denote the p-value acquired from standard 

GWAS analysis. The goal is to use an alternative to the p-value to prioritize all the SNPs. 

When the GenoCanyon annotation is integrated, non-tissue-specific functionality posterior 

(NSFP) score, i.e. P(ZD = 1|p), is used to quantify the importance of each SNP.

NSFP score is calculated using Bayes formula as follows:

(1)

where P(ZD = 1) can be further denoted as:
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(2)

In this formulation, P(Z = 1) is defined as the average GenoCanyon score of the surrounding 

10,000 base pairs for each SNP. First, we partition all the SNPs into two subgroups based on 

a mean GenoCanyon score cutoff of 0.1. In this way, f(p|ZD = 0) can be directly estimated 

by applying density estimation techniques on the SNP subgroup with low annotation scores. 

More specifically, a histogram method is used for density estimation and the optimal number 

of bins is chosen through cross-validation. Second, we assume that, regardless of local LD 

structure, SNPs that are not relevant to the phenotype will have similar p-value behavior to 

the SNPs that are not annotated to be functional. More formally, we can describe this 

relationship as follows:

(3)

The above equation essentially assumes that LD, the major driving force of nonuniformity in 

(p|ZD = 0) and (p|Z = 0), has the same impact on both f(p|ZD = 0) and f(p|Z = 0). Indeed, it 

has been previously shown that the LD pattern in the nonfunctional genome is not 

significantly different from that in the whole genome (Lu et al. 2016b).

Finally, we estimate all the remaining terms in equations 1 and 2, including f(p|ZD = 1) and 

P(ZD = 1|Z =1), using the EM algorithm. In the first step of the estimation procedure, we 

acquired the subset of SNPs located in functional regions. The p-value distribution of these 

SNPs is the following mixture.

(4)

The last equality is the consequence of assumption (3) and the definitions of Z and ZD. 

Density f(p|Z = 0) has been estimated in earlier steps. Similar to Chung et al. (2014), we 

assume a beta distribution of the p-values of functional SNPs, i.e. f(p|ZD = 1) as a reasonable 

approximation under some assumptions of SNP effect size.

(5)

The EM algorithm is then applied to the SNP subset located in the functional genome, i.e. Z 
= 1. The beta assumption guarantees a closed-form expression in each iteration and all the 

remaining parameters can be subsequently estimated.
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LD score regression

LD score regression (Finucane et al. 2015) was used to estimate the signal enrichment in 

SNP categories based on functional annotation. First, annotation-stratified LD scores were 

computed using GenoSkyline annotations (Lu et al. 2016a), 1000 Genomes data of 

European ancestry (Abecasis et al. 2012), and a 1-centiMorgan window. Then, annotation-

stratified LD scores of seven tissue types were jointly analyzed using LD score regression. 

Enrichment was calculated based on the ratio of explained heritability and the proportion of 

SNPs in each annotation category.

Software availability

Implemented GenoWAP software is accessible at our server (http://

genocanyon.med.yale.edu/GenoWAP). A detailed user manual for GWAS signal 

prioritization is also provided. Required files for enrichment analysis using LD score 

regression and sample codes can be accessed at http://genocanyon.med.yale.edu/

GenoSkyline.

Results

Prioritizing signals at GWAS loci for COPD and pulmonary function

NSFP scores for all 8,119,661 SNPs in the NHW-casecont dataset were calculated using 

GenoWAP software (Supplementary Figure 1). P-value distributions for SNPs in the 

functional and non-functional regions (i.e. f (p|Z = 1) and f (p|Z = 0); Methods) are shown 

in Figure 1. Signal enrichment in the functional genome was highly significant (p-value = 

2.69 × 10−42, one-sided Kolmogorov-Smirnov test).

Five risk loci have been identified and replicated in previously published GWAS for COPD. 

In order to compare the signal prioritization performance of different metrics, ranks of the 

lowest p-value and the largest NSFP score at each locus are compared (Table 1). Four out of 

five loci have a tied or improved rank using NSFP score. The locus upstream of HHIP on 

chromosome 4 is the only locus with a decreased rank. This locus will be discussed in detail 

later.

Two large-scale GWAS (Hancock et al. 2010; Repapi et al. 2010) identified 11 loci 

associated with pulmonary function (i.e. FEV1 and FVC). Later, a joint GWAS meta-

analysis (Artigas et al. 2011) further increased the number of risk loci to 27. We compared 

the p-value-based and NSFP-based ranks of these 27 loci (Table 2). 22 out of 27 loci showed 

improved ranks (p-value = 7.57 × 10−4, one-sided binomial test). Only four loci had 

decreased ranks, among which two loci only showed up in the joint meta-analysis. The locus 

on chromosome 2q36 had a drastic decline in its rank under NSFP score. Interestingly, it 

was also the only locus that was not successfully replicated in the meta-analysis (Artigas et 

al. 2011).

Prioritizing signals at HHIP locus

The intergenic region upstream of HHIP on chromosome 4 has been repeatedly identified in 

multiple lung function GWAS (Artigas et al. 2011; Hancock et al. 2010; Repapi et al. 2010) 
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and several COPD studies (Cho et al. 2012; Cho et al. 2014). Moreover, the signal pattern at 

this locus is highly consistent across different studies. A signal plateau that spans 

approximately 300Kb (145.25 – 145.55Mb; hg19) could be observed in all these studies. 

Even more interestingly, the 100Kb region (145.45 – 145.55Mb) near the transcription start 

site of HHIP always showed the strongest signal in this LD block. However, the same 100Kb 

signal peak could not be observed in the NHW-casecont dataset (Figure 2). Instead, several 

SNPs near the middle of this LD block (e.g. rs1032295; chr4: 145,434,584; p-value = 4.66 × 

10−7) showed substantially stronger signals than SNPs in the 100Kb region.

Interestingly, the 100Kb signal peak re-appeared after signal prioritization. NSFP scores 

clearly suggested that the region between 145.45 and 145.55Mb is most likely the signal 

source at this locus. Furthermore, rs13141641, the SNP with the largest NSFP score, showed 

the lowest p-value at this locus in two previously published COPD studies (Cho et al. 2012; 

Cho et al. 2014). In this dataset, however, its raw p-value was unimpressive (p-value = 1.02 

× 10−5), showing substantial gaining of power when integrating external information. This 

also explains why this locus had a lower rank under NSFP score than p-value as stated 

above. In table 1, the p-value-based rank of SNP rs1032295 was compared with the NSFP-

based rank of SNP rs13141641. Since the raw signal at rs13141641 was only moderate, the 

NSFP score remained moderate after annotation integration. Locally, however, it was already 

sufficient to remove noises due to LD and reveal the truly functional element from correlated 

neighboring SNPs.

Despite its strong association with pulmonary function and COPD, the functional 

mechanism at this locus was not clear until chromosome conformation capture (3C) 

experiment suggested its functional impact as a HHIP enhancer (Zhou et al. 2012). Among 

the four distant 3C fragments being tested, one fragment (145,481,550 – 145,488,550; hg19) 

showed strong physical interaction with the HHIP promoter. This fragment is completely 

contained in the 100Kb signal peak favored by our signal prioritization approach. Notably, 

another peak at 145.25 – 145.29Mb also survived signal prioritization (Figure 2), yet none of 

the fragments in the 3C study covered this region (Zhou et al. 2012). Its functional impact 

remains to be investigated in the future.

Identifying genetic loci associated with severe COPD using NSFP score

The COPDGene cohort has been used in several large-scale GWAS meta-analyses, but 

signals for severe COPD cases are relatively less explored. The only GWAS that focused on 

severe COPD replicated signals at four previously established COPD risk loci (CHRNA3, 

FAM13A, HHIP, and RIN3) and identified two additional loci (MMP3 and TGFB2). In this 

section, we explore highly ranked loci based on NSFP scores in the NHW-severe cohort and 

seek signal replication using the AA-severe cohort.

GenoWAP was applied to the NHW-Severe summary statistics (Supplementary Figure 2). 

Signals were significantly enriched in the functional genome (p-value = 4.18 × 10−68, one-

sided Kolmogorov-Smirnov test). 233 SNPs from 14 loci had NSFP scores greater than 0.7. 

This cutoff is comparable to the p-value cutoff of 1 × 10−6 in this dataset, which yields 239 

SNPs. However, the 239 SNPs based on p-value could only cover 4 loci, all of which were 

included in the 14 loci based on NSFP score. Remarkably, compared with the estimated 
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effect sizes in the NHW-casecont dataset, all 233 SNPs have stronger estimated effect sizes 

in the GWAS of severe COPD (Supplementary Table 1). In order to replicate signals in an 

independent cohort, we extracted p-values for these 233 SNPs from the AA-Severe dataset. 

39 were significant under cutoff 0.05. Signals were successfully replicated at four previously 

reported COPD risk loci, and one novel locus on chromosome 20q11.21 (Table 3). Three 

loci (CHRNA3, HHIP, and RIN3) achieved genome-wide significance after random-effect 

meta-analysis. One limitation of this two-stage trans-ethnic analysis strategy is its inability 

to identify population-specific COPD risk loci. Therefore, the unreplicated loci remain to be 

further investigated using independent cohorts with European ancestry.

Both NHW-Severe and AA-Severe cohorts have been used in the GWAS meta-analysis of 

severe COPD published in 2014 (Cho et al. 2014). Therefore, it is not surprising that no 

novel locus achieved genome-wide significance in our analysis. However, a few loci with 

large NSFP scores are related with pulmonary function, and may be replicated in future 

studies using a larger sample size (Supplementary Table 1). First, signals at the POFUT1-

PLAGL2 locus on chromosome 20 were replicated in the African American cohort (Table 3 

and Figure 3). POFUT1 encodes an O-fucosyltransferase essential for NOTCH signaling, 

which plays a crucial role in development and homeostasis of the lung (Xu et al. 2012). The 

pathogenic role of PLAGL2 in pulmonary emphysema, a major component of severe COPD, 

has also been established (Yang et al. 2009). Despite not replicated, a few other loci also 

provided some interesting insights. SNP rs7664805 at the GSTCD-NPNT locus had a very 

high NSFP score (0.9352) in the NHW-severe dataset. This locus had been repeatedly 

identified as an associated locus of FEV1 (Artigas et al. 2011; Hancock et al. 2010; Repapi 

et al. 2010), a commonly used indicator of pulmonary function (Table 2). Gene SFTPC on 

chromosome 4 encodes surfactant protein C, a protein that is essential for pulmonary 

function and homeostasis. Variants in SFTPC have been linked with interstitial lung disease, 

lung function, as well as obstructive lung disease (Baekvad-Hansen et al. 2010). Finally, 

EGLN2 has been previously identified as a COPD-associated locus (Cho et al. 2012). One of 

its important paralogs, EGLN3, also showed up in our analysis.

Finally, for completeness of our analysis, we applied GenoWAP to the fixed-effect meta-

analysis results combining NHW-Severe and AA-Severe cohorts. Due to the absence of 

replication cohort, we chose a more stringent NSFP cutoff of 0.9, which gave 106 SNPs. 

This threshold is comparable to the p-value cutoff of 1 × 10−7 in the meta-analysis, which 

would give 108 SNPs. Seven loci were identified using this NSFP cutoff (Supplementary 

Table 2), from which five loci (HHIP, FAM13A, MMP12, RIN3, CHRNA3) have been 

previously reported in the severe COPD GWAS (Cho et al. 2014). The POFUT1-PLAGL2 
locus has been identified and replicated in our analysis above. The other locus, TRIM2 on 

chromosome 4q31.3, is a novel finding. Its association with COPD or lung function has 

never been identified before. The validity of these signals requires further replication in 

independent and larger cohorts. If validated, these results could help researchers generate 

testable hypotheses regarding the etiology of COPD.
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Partitioning heritability by annotation categories

Signal enrichment in annotated categories can greatly help researchers understand complex 

diseases. Recently, Finucane et al. (2015) proposed to use LD score regression to partition 

heritability by functional annotations and identified some surprising and interesting results, 

e.g. strong enrichment of BMI associations in central nervous system (Finucane et al. 2015). 

We applied LD score regression to the NHW-casecont summary statistics and estimated the 

signal enrichment in seven tissue-specific functional categories (Methods). Interestingly, 

muscle was significantly enriched of COPD signals and it had the largest fold enrichment (p-

value = 0.011, enrichment = 10.004; Figure 4 and Supplementary Table 3). Exercise 

intolerance is one of the major problems in COPD patients (Casaburi 2001). It has long been 

recognized that alterations in skeletal muscle function and structure, independent of 

pulmonary function, significantly limits exercise capacity (Wüst and Degens 2007). It has 

also been established that many systemic and local factors exert strong effects on skeletal 

muscle dysfunction in COPD patients (Kim et al. 2008). Our enrichment result hints the 

existence of genetic contribution.

Besides muscle, blood-specific functional category is also enriched of COPD associations. 

In fact, despite the lower fold change (enrichment = 7.440), the enrichment was even more 

significant (p-value = 0.009). It is widely recognized that COPD is an inflammatory diseases 

of the airways and immunity plays a central role in COPD (Bhat et al. 2015; Rovina et al. 

2013). Our results show that genetic variants located in immune-related regions may be 

involved in the etiology of COPD. Notably, the enrichment in lung was not significant (p-

value = 0.147). However, the estimated fold enrichment was high (enrichment = 8.533; 

Figure 4). The large estimate of standard error is partly due to the low proportion SNPs 

covered by lung annotation (Supplementary Table 3). Whether enrichment in lung exists or 

not needs to be further investigated using summary statistics of larger cohorts. We also 

estimated signal enrichment in the 53 baseline annotations of LD score regression 

(Supplementary Table 4). Significantly enriched categories include super enhancers, histone 

mark H3K4me1, and histone mark H3K9ac. These results suggest a crucial role of non-

coding regulatory regions in COPD etiology. On the contrary, signals are significantly 

depleted in the regressed genome.

Discussion

In this paper, we have applied various methods to integrate COPD GWAS summary statistics 

with genomic functional annotations, and illustrated how these integrative approaches could 

benefit complex disease research. Globally, the ranks of well-established risk loci based on 

NSFP score are substantially higher than the ranks based on p-values. Locally, NSFP score 

identified the HHIP enhancer region within a large LD block on chromosome 4. These 

results demonstrate that functional annotations could effectively reduce the noise due to 

chance and LD structure. Integrating GWAS summary statistics with annotation data could 

better prioritize signals at both global and local levels.

We also used annotation data to prioritize the GWAS signals of severe COPD. It is not 

surprising that no novel risk locus reached genome-wide significance because these data 

have been used in previously published GWAS meta-analysis. However, several top loci 
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based on NSFP score have known functions directly or indirectly related to the etiology of 

COPD. GWAS loci for complex diseases usually have small to moderate effect sizes. 

Different functional variants and distinct LD structure across populations also make it 

challenging to replicate signals in trans-ethnic analysis. Therefore, whether these signals are 

true positives still remains to be investigated using large and homogeneous cohorts of severe 

COPD.

Enrichment of associations in annotated categories has brought novel insights on many 

human complex diseases and traits. Interesting results were also seen for COPD. Significant 

enrichment in muscle and blood is in agreement with the involvement of skeletal muscle 

dysfunction and lung inflammation in COPD, and these results hint a substantial genetic 

contribution to these symptoms. However, LD score regression works better with large 

sample size and strong signals in the GWAS dataset. These results as well as the enrichment 

in other tissue types could be further validated using a larger cohort in the future.

In summary, integrative analysis of COPD GWAS summary statistics and functional 

annotations revealed interesting signals in the current GOPDGene cohort. Many more novel 

and insightful results should be expected as the sample size rapidly grows. Integrative 

approaches that bring in external information from annotation data have been shown to 

greatly benefit GWAS as well as many other aspects of human genetics research. In the era 

of “big data”, with more and more high-quality annotation data becoming available, 

biologically motivated and statistically sound approaches will play a central role in omics 

data integration and continue to accelerate discoveries in complex disease studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. P-value distributions for different SNP categories in the NHW-casecont dataset
From left to right, the three panels show the p-value distributions for non-functional (Z=0), 

functional (Z=1), and disease-specific functional (ZD=1) categories, respectively.

Lu et al. Page 12

Stat Biosci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Signals at the risk locus upstream of HHIP
The upper panel shows the p-values in the NHW-casecont dataset. The lower panel shows 

the NSFP scores. The 3C fragment with strong physical interactions with the HHIP 
promoter is highlighted in a purple box. Locus plots were made using LocusZoom (Pruim et 

al. 2010).
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Figure 3. Signals at a potential risk locus on chromosome 20
The upper panel shows the p-values in the NHW-severe dataset. The lower panel shows the 

NSFP scores. Locus plots were made using LocusZoom (Pruim et al. 2010).
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Figure 4. Enrichment estimates for GenoSkyline annotations
(A) Log-transformed p-values for seven tissue types. The grey line indicates the p-value 

cutoff of 0.05. (B) Fold enrichments and standard errors. The grey line indicates 

enrichment=1.
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