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Neural networks for NLP are becoming increasingly complex and widespread, and there is a growing concern
if these models are responsible to use. Explaining models helps to address the safety and ethical concerns
and is essential for accountability. Interpretability serves to provide these explanations in terms that are
understandable to humans. Additionally, post-hoc methods provide explanations after a model is learned and
are generally model-agnostic. This survey provides a categorization of how recent post-hoc interpretability
methods communicate explanations to humans, it discusses each method in-depth, and how they are validated,
as the latter is often a common concern.
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1 INTRODUCTION

Large neural NLP models, most notably BERT-like models [20, 36, 70], have become highly wide-
spread, both in research and industry applications [134]. This increase of model complexity is
motivated by a general correlation between model size and test performance [20, 56]. Due to their
immense complexity, these models are generally considered black-box models. A growing concern
is therefore if it is responsible to deploy these models.
Concerns such as safety, ethics, and accountability are particularly important when machine

learning is used for high-stakes decisions, such as healthcare, criminal justice, �nance, etc. [102],
including NLP-focused applications such as translation, dialog systems, resume screening, search,
etc. [38]. For many of these applications, neural models have been shown to exhibit unwanted
biases and similar ethical issues [16, 20, 42, 75, 83, 102].

Doshi-Velez and Kim [37] argue, among others [68], that these ethical and safety issues stem from
an “incompleteness in the problem formalization”. While these issues can be partially prevented
with robustness and fairness metrics, it is often not possible to consider all failure modes. Therefore,
quality assessment should also be done through model explanations. Furthermore, when models do
fail in critical applications, explanations must be provided to facilitate the accountability process.
Providing these explanations is often a core motivation for interpretability. In Section 2 we provide
aditional motivating factors.
Doshi-Velez and Kim [37] de�ne interpretability as the “ability to explain or to present in un-

derstandable terms to a human”. However, what constitutes as an “understandable” explanation is
an interdisciplinary question. An important work from social science by Miller [79], argues that
e�ective explanations must be selective in the sense one must select “one or two causes from a
sometimes in�nite number of causes”. Such observation necessitates organizing interpretability
methods by how and what they selectively communicate.
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This survey presents such an organization in Table 1, where each row represents a communication
approach. For example, the �rst row describes input feature explanations that communicate what
tokens are most relevant for a prediction. In general, each row is ordered by how abstract the
communication approach is, although this is an approximation. Organizing by the method of
communication is discussed further in Section 1.1.
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SHAP § 6.4
LIME § 6.3,

Anchors § 6.5
Gradient § 6.1,

IG § 6.2
Attention

SEAM § 7.2 HotFlip § 7.1

In�uence FunctionsH § 8.1
TracInC § 8.3

Representer Pointers† § 8.2
Prototype
Networks

PolyjuiceM,D

§ 9.1
MiCEM § 9.2

CAGEM,D

§ 10.1
GEFD , NILED

NIED § 11.1

Project § 12.1,
Rotate § 12.2

SP-LIME § 13.1

Behavioral
ProbesD § 14.1

Structural
ProbesD § 14.2

Structural
ProbesD § 14.2

Auxiliary
TaskD

SEARM § 15.1 Compositional Explanations of Neurons† § 15.2

Table 1. Overview of post-hoc interpretability methods, where § indicates the section the method is discussed.

Rows describe how the explanation is communicated, while columns describe what information is used to

produce the explanation. The order of both rows and columns indicates level of abstraction and amount of

information, respectively. However, this order is only approximate.

Furthermore, because this survey focuses on post-hoc methods, the intrinsic section of this table is incomplete

and merely meant to provide a few comparative examples. The specifc intrinsic methods shown are: A�ention

[9], GEF [69], NILE [63]. Prototype Networks and Auxiliary Task refer to types of models.
C : Depends on checkpoints during training. D : Depends on supplementary dataset. H : Depends on second-

order derivative. M : Depends on supplementary model. †: Depends only on dataset and white-box access.

Each interpretability method uses di�erent kinds of information to produce its explanation,
in Table 1 this is indicated by the columns1. The columns are ordered by an increasing level of
information. Again, this is an inexact ranking but serves as a useful tool to contrast the methods.

1Black-box: the method only evaluates the model. Dataset: the method has access to all training and validation observations.
Gradient: the gradient of the model is computed. Embeddings: the method uses the word embedding matrix. White-box: the
method knows everything about the model, such as all weights and all operations. However, the method is not speci�c to a
particular architecture. Model speci�c: the method is speci�c to the architecture. Note, neural model in NLP are usually
di�erentiability and have an embedding matrix. We therefore do not consider these properties constraints.
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Post-hoc Interpretability for Neural NLP: A Survey 3

Table 1 frames the overall structure of this survey. Where each method section from 6 to 15 covers
a row of Table 1. However, �rst we cover motivation (section 2), how to validate interpretability
(section 4), and a motivating example (section 3). The method sections can be read somewhat
independently but will refer back to these general topics.
In contrast to other surveys and tutorials on interpretability methods [14, 15, 17, 25, 35, 80,

114, 120, 126] which only discusses the most popular approaches (usually 3 among input features,
adversarial examples, in�uential examples, projection, and linguistic information), this survey o�ers a
more diverse overview of communication approaches. We hope this leads to more questioning about
how we communicate. Additionally, we consistently comment on how each method is validated
(groundedness), an important discussion we �nd is often missing.

Finally, the survey limits itself to post-hoc interpretability methods. These are methods that
provide their explanation after a model is trained and are often model-agnostic. This is in contrast
to intrinsic methods, where the model architecture itself helps to provide the explanation. These
terms are described further in Section 1.2.

1.1 Organizing by method of communication

As a categorization of communication strategies, it’s standard in the interpretability literature
to distinguish between methods that explain a single observation, called local explanations, and
methods that explain the entire model called global explanations [2, 17, 24, 27, 37, 80]. In this survey,
we also consider an additional category of methods that explains an entire output-class, which we
call class explanations.
To subdivide these categories further, Table 1 orders each communication strategy by their

abstraction level. As an example, see Figure 1, where an input features explanation highlights the
input tokens that are most responsible for a prediction; because this must refer to speci�c tokens,
its ability to provide abstract explanations is limited. For a highly abstract explanation, consider
the natural language category which explains a prediction using a sentence and can therefore use
abstract concepts in its explanation.

natural language

input featurethe year 's best and most unpredictable comedy

unpredictable comedies are funny

explanation 

fi

fi

ff

fi

pos

-

communiation
approach

Fig. 1. Fictive visualization of an input features explanation which highlights tokens and a natural language

explanation, applied on a sentiment classification task [127].~ = posmeans the gold label is positive sentiment.

Communication methods that have a higher abstraction level are typically easier to understand
(more human-grounded), but the trade-o� is that they may re�ect the model’s behavior less (less
functionally-grounded). Because the purpose of interpretability is to communicate the model to a
human, this trade-o� is necessary [79, 102]. Which communication strategy should be used must
be decided by considering the applications and to whom the explanation is communicated to. In
Section 4 we discuss human-groundedness and functionally-groundedness in-depth and how to
measure them, such that an informed decision can be made.
Table 1 does have some limitations. Firstly, ordering explanation methods by their abstraction

level is an approximation, and while global explanations are generally more abstract than local

explanations this is not always true. For example, the explanation “simply print all weights” (not
included in Table 1), is arguably the lowest possible abstraction level, however it’s also a global
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4 Andreas Madsen, Siva Reddy, and Sarath Chandar

explanation. Secondly, there are explanation categories that are not included, such as intermediate

representations. This category of explanation depends on models that are intrinsically interpretable,
which are not the subject of this survey. We elaborate on this in Section 1.2.

1.2 Intrinsic versus post-hoc interpretability

A fundamental motivation for interpretability is accountability. For example, if a predictive mistake
happens which caused harm, it is important to explain why this mistake happened [38]. Similarly,
for high-stakes decisions, it is important to minimize the risk of model failure by explaining the
model before deployment [102]. In other words, it is important to distinguish between when
interpretability is applied proactively or retroactively to the model’s deployment.

It is standard in the literature to categorize if an interpretability method can be applied retroac-
tively or proactively. Unfortunately, the terminology for this taxonomy is not standardized [24].
This survey focuses on the methods that can be applied retroactively, for which the term post-hoc

is used. Similarly, we use the term intrinsic to refer to models that are interpretable by design.
These terms were chosen as the best compromise between established terminology [39, 53, 80] and
correctness in terms of their dictionary de�nition.

Intrinsic methods. These inherently depend on models that by design are interpretable. Because
of this relation, it is also often referred to as white-box models [27, 39, 102]. However, the term
white-box is slightly misleading, as it is often only a part of the transparent model.
As an example, consider intermediate representation explanations, this category depends on a

model that is constrained to produce a meaningful intermediate representation. In Neural Modular
Networks [7, 46] this could be find-max-num(filter(find())), which represents how to extract
an answer from a question-paragraph-pair. However, how this representation is produced is not
necessarily intrinsically interpretable.
Intrinsic methods are attractive because they may be more responsible to use in high-stakes

decision processes. However, as Jacovi and Goldberg [53] argue, “a method being inherently inter-

pretable is merely a claim that needs to be veri�ed before it can be trusted”. Verifying this is often
non-trivial, as has repeatedly been shown with Attention [9], where multiple papers have found
contradicting conclusions regarding interpretability [54, 106, 122, 130].

Post-hoc methods. These are the focus of this survey. While many post-hoc methods are model-
agnostic, this is not a necessary property, and in some cases does only apply to a category of models.
Indeed, in this survey, only methods that apply to neural networks are discussed.

Because of the inherent ability to explain the model after training, post-hoc methods are valuable
in legal proceedings, where models may need to be explained retroactively [38]. Additionally, they
�t into existing quality assessment structures, such as those used to regulate banking, where quality
assessment is also done after a model has been built [17]. Finally, it is guaranteed that they will not
a�ect model performance.

However, post-hoc methods are often criticized for providing false explanations, and it has been
questioned if it is reasonable to expect models, that were not designed to be explained, to be
explained anyway [102]. This is a valid concern, however producing intrinsic methods is often very
task dependent and therefore a di�cult process which is rarely done in the industry [17]. Post-hoc
method are often much more adaptable and their impact can therefore be much greater if they
can provide accuate explanations. The question of how to validate explanations is therefore very
important and is covered in detail in Section 4. Furthermore, we pay special attention to how each
method is validated in the literature throughout the survey.
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Post-hoc Interpretability for Neural NLP: A Survey 5

Comparing. Both Intrinsic and post-hoc methods have their merits, but often provide di�erent
values in terms of accountability. Finally, post-hoc methods can often be applied also to intrinsicly

interpretable models. Observing a correlation between methods from these two categories can
therefore provide validation of both methods [54].

2 MOTIVATIONS FOR INTERPRETABILITY

The need for interpretability comes primarily from an “incompleteness in the problem formalization”
[37], meaning if the model was constrained and optimized to prevent all possible ethical issues,
interpretability would be much less relevant. However, because perfect optimization is unlikely,
hence safety and ethics are strong motivations for interpretability.
Additionally, when models misbehave there is a need for explanations, to hold people or com-

panies accountable, hence acountability is often a core motivation for interpretability. Finally,
explanations are often useful, or sometimes necessary, for gaining scienti�c understanding about
models. This section aims to elaborate on what exactly is understood by these terms and how
interpretability can address them.

Ethics, in the context of interpretability, is about ensuring that the model’s behavior is aligned
with common ethical and moral values. Because there does not exist an exact measure for this
desideratum, this is ultimately something that should be judged qualitatively by humans, for
example by an ethics review committee, who will inspect the model explanations.

For some ethical concerns, such as discrimination, it may be possible to measure and satisfy this
ethical concern via fairness metrics and debiasing techniques [42]. However, this often requires a
�nite list of protected attributes [50], and such a list will likely be incomplete, hence the need for a
qualitative assessment [37, 68].

Safety, is about ensuring the model performs within expectations in deployment. As it is nearly
impossible to truly test the model, in the end-to-end context that it will be deployed, ensuring
safety does to some extent involve qualitative assessment [37]. Lipton [68] frames this as trust, and
suggests one interpretation of this is “that we feel comfortable relinquishing control to it”.
While all types of interpretability can help with safety, in particular, adversarial examples and

counterfactuals are useful, as they evaluate the model on data outside the test distribution. Lipton
[68] frames this in the broader context of transferability, which is the model’s robustness to
adversarial attacks and distributional shifts.

Accountability, relates to explaining the model when it does fail in production. The “right to
explanation”, regarding the logic involved in the model’s prediction, is increasingly being adopted,
most notably in the EU via its GDPR legislation. However, also the US and UK have expressed
support for such regulation [38]. Additionally, industries such as banking, are already required to
audit their models [17].
Accountability is perhaps the core motivation of interpretability, as Miller [79] writes “Inter-

pretability is the degree to which a human can understand the cause of a decision”, and it is exactly
the causal reasoning that is relevant in accountability [38].

Scienti�c Understanding, addresses a need from researchers and scientists, which is to generate
hypotheses and knowledge. As Doshi-Velez and Kim [37] frames it, sometimes the best way to start
such a process is to ask for explanations. In model development, explanations can also be useful for
model debugging [17], which is often facilitated by the same kinds of explanations.
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6 Andreas Madsen, Siva Reddy, and Sarath Chandar

3 MOTIVATING EXAMPLE

Because post-hoc methods are often model-agnostic, explaining and discussing them can often
become abstract. To make the method sections as concrete and comparable as possible this survey
will show �ctive examples often based on the “Stanford Sentiment Treebank” (SST) dataset [111].
The SST dataset has been modeled using LSTM [127], Self-Attention-based models [36], etc., all of
which are popular examples of neural networks.

We use a sequence-to-class problem because this is what most interpretability methods applies
to. Although some are agnostic to the problem type and others are speci�c to sequence-to-sequence
problems. Throughout this survey we attempt to highlight what problems each method applies to.

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

pos

neg

neg

fi

fi

ff

fi

Fig. 2. Three examples from the SST dataset [111]. x is the input, with each token denoted by an underline.

~ is the gold target label, where pos is positive and neg is negative sentiment. Finally, ? (~ |x) is the model’s

estimate of x belonging to category ~. Note that the model predicts the 3rd (last) wrong, indicated with red.

The model responsible for the predictions in Figure 2 can be explained by asking di�erent
questions, each of which communicates a di�erent aspect of the model that is covered in the
sections of this survey. Sometimes these explanation relates to a single observation, other times
the explanation relates to the whole model.

local explanations. explain a single observation:

Input Features Which tokens are most important for the prediction, Section 6.

Adversarial Examples What would break the model’s prediction, Section 7.

Influential Examples What training examples in�uenced the prediction, Section 8.

Counterfactuals What does the model consider a valid opposite example, Section 9.

Natural Language What would a generated natural language explanation be, Section 10.

Class explanations. summarize the model, but only with regard to one selected class:

Concepts What concepts (e.g. movie genre) can explain a class, Section 11.

Global explanations. summarize the entire model with regards to a speci�c aspect:

Vocabulary How does the model relate words to each other, Section 12.

Ensemble What examples are representative of the model, Section 13.

Linguistic information What linguistic information does the model use, Section 14.

Rules Which general rules can summarize an aspect of the model, Section 15.

4 MEASURES OF INTERPRETABILITY

Because interpretability is by de�nition about explaining the model to humans [37, 79], and these
explanations are often qualitative, it is not clear how to quantitatively evaluate and compare inter-
pretability methods. This ambiguity has lead to much discussion. Most notable is the intrinsically
interpretable method Attention, where di�erent measures of interpretability have been published
resulting in con�icting �ndings [54, 106, 130].
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In general, there is no consensus on how to measure interpretability. However, validation is still
paramount. As such, this section attempts to cover the general categories, themes, and methods that
have been proposed. Additionally, each method section, starting from input features, in Section 6,
will brie�y cover how the authors choose to evaluate their method.

To describe the evaluation strategies, we use the terminology de�ned by Doshi-Velez and Kim
[37], which separates the evaluation of interpretability into three categories, functionally-grounded,
human-grounded, and application-grounded. This categorization re�ects the need to have explana-
tions that are useful to humans (human-grounded) and accurately re�ect the model (functionally-
grounded).

Application-grounded. evaluation is when the interpretability method is evaluated in the envi-
ronment it will be deployed. For example, does the explanations result in higher survival-rates in a
medical setting, a higher-grades in a homework-hint system, or a better model in a label-correction
setting [37, 133]. Importantly, this evaluation should include the baseline where the explanations
are provided by humans.

Due to the application-speci�c and time-consuming nature of this approach, application-grounded
evaluation is rarely done in NLP interpretability research. Instead, more synthetic and general
evaluation setups can be used, which is what functionally-grounded and human-grounded eval-
uation is about. These categories each provide an important but di�erent aspect for validating
interpretability and should therefore be used in combination.

Human-grounded. evaluation checks if the explanations are useful to humans. Unlike application-
grounded, the task is often simpler and the task itself can be evaluated immediately. Additionally,
expert humans are often not required [37]. In other literature this is known as simulatability [68]
and comprehensibility [99].
Although, human-grounded evaluation is much more e�cient than application-grounded eval-

uation, the human aspect still takes time. An unfortunate but common approach is therefore to
replace the human with a simulated user. This is unfortunate as providing explanations that are
informative to humans is a non-trivial task, and often involves interdisciplinary knowledge from the
human-computer interaction (HCI) and social science �elds. Replacing a human with a simulated
user, therefore leads to over optimistic results.

Miller [79] provides an excellent overview on what e�ective explanation is from the social science
perspective, and criticizes current works by saying “most work in explainable arti�cial intelligence
uses only the researchers’ intuition of what constitutes a ‘good’ explanation”.
It is therefore critical that interpretability methods are human-grounded; common strategies to

measure this are:

• Humans have to choose the best model based on an explanation [96].

• Humans have to predict the model’s behavior on new data [94].

• Humans have to identify an outlier example called an intruder [26]. This is often used for
vocabulary explanations [85].

Functionally-grounded. evaluation checks how well the explanation re�ects the model. This is
more commonly known as faithfulness [39, 53, 96, 130] or sometimes �delity [99].

It might seem surprising that an explanation, which is directly produced from the model, would
not re�ect the model. However, even intrinsically interpretable methods such as Attention and
Neural Modular Networks have been shown to not re�ect the model [54, 113].
Interestingly, human-grounded interpretability methods can not re�ect the model perfectly,

because humans require explanations to be selective, meaning the explanation should select “one or
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8 Andreas Madsen, Siva Reddy, and Sarath Chandar

two causes from a sometimes in�nite number of causes” [79]. Regardless, the explanations must still
re�ect the model to some extent, which surprisingly is not always the case [53, 102]. Additionally,
explanations that provide a similar type of explanation, with similar selectiveness, should compete
on proving the explanation that best re�ects the model.

For some tasks, measuring if an interpretability method is functionally-grounded is trivial. In the
case of adversarial examples, it is enough to show that the prediction changed and the adversarial
example is a paraphrase. In other cases, most notably input features, providing a functionally-

grounded metric can be very challenging [3, 51, 53, 60, 136].
In general, common evaluation strategies are:

• Comparing with an intrinsically interpretable model, such as logistic regression [96].

• Comparing with other post-hoc methods [54].

• Proposing axiomatic desirables [115].

• Benchmarking against random explanations [51, 73].

5 METHODS OF INTERPRETABILITY

The main objective of this survey is to give an overview of post-hoc interpretability methods and
categorize them by how they communicate. Section 6 to Section 15 will be dedicated towards this
goal.
Table 1 represents a table-of-content, relating each section to a communication approach, but

also contrasts the di�erent methods by what information they use. In addition, the motivating
example in Section 3 gives a brief idea of the di�erent communication approaches.

Eachmethod section from input features (section 6) to rules (section 15) covers one communication
approach, corresponding to one row in Table 1, and can be read somewhat independently. Each
section discusses the purpose of the communication approach and covers the most relevant methods
and how they are evaluated. Because interpretability is a large �eld, this survey chooses methods
based on historical progression and diversity regarding what information they use, this is discussed
more in limitations (section 16). Finally, at the end of each method section we discuss the general
trends and issues related to that communication approach.

Eachmethod sectionwill use the terminology2 covered inmotivation for interpretability (section 2)
and measures of interpretability (section 4).

6 INPUT FEATURES

An Input feature explanation is a local explanation, where the goal is to determine how important
an input feature, e.g. a token, is for a given prediction. This approach is highly adaptable to di�erent
problems, as the input features are always known and are often meaningful to humans. Especially
in NLP, the input features will often represent words, sub-words, or characters. Knowing which
words are the most important, can be a powerful explanation method. An input feature explanation
of the input x, is represented as

E(x, 2) : Id → Rd, where I is the input domain and d is the input dimensionality. (1)

Note that, when the output is a score of importance the explanation is called an importance measure.
Importantly, input feature explanations can only explain one scalar, meaning one class at one

timestep. In a sequence-to-sequence application, the explanation is therefore repeated for each
time step [66, 72] although this may not respect the combinatorial complexities [5]. Additionally,
the selected class is either the most likely class or the true-label class, in this section the explained
class is denoted with 2 . For all methods in this section, except Anchors, 2 can be set as desired.

2If you are viewing this survey in a PDF reader, each term will link to the section where it’s de�ned.
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6.1 Gradient

One simple importance measure, is taking the gradient w.r.t. the input [8, 66].

Egradient (x, 2) = !? (∇x? (2 |x;\ )), where !? ∈ {!1, !2, !∞}

and ? (2 |x;\ ) is the model’s probability output.
(2)

This essentially measures the change of the output, given an n-change to each input feature.
Note, while NLP features are often discrete, it is still possible to take the gradient w.r.t. the one-
hot-encoding by treating it as continuous. Although, because the one-hot-encoding has shape
x ∈ I+×) , where+ is the vocabulary size and) is the input length, it is necessary to reduce away the
vocabulary dimension (often using an !? -norm) such E(x) ∈ R) , when visualizing the importance
per word as seen in Figure 3.

The primary argument for the gradient method being functionally-grounded, is that for a linear
model xW, the explanation would beW⊤

2,: which is clearly a valid explanation [3]. However, this
does not guarantee functionally-groundedness for non-linear models, as the explanation mearly
relates to a �rst-order Taylor approximation [66]. Additionally, areas of the input may be important
but have zero gradients, this issue is discussed Section 6.2.
Finally, it can be sensible to consier the scale of x too, hence the extension x ⊙ ∇x? (2 |x;\ ) is

sometimes preferred. Although, a counter-argument is that x does not directly relate to the model,
and this can therefore result in a less faithful explanation [3].

pos

neg

neg

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

pos

neg

pos

fi

fi

ff

fi

Fig. 3. Hypothetical visualization of applying Egradient (x), where 2 is the explained class. Note that because

the vocabulary dimension is reduced away, typically using the !2-norm, it is not possible to separate positive

influence (red) from negative influence (blue).

6.2 Integrated Gradient (IG)

The gradient approach has been further developed, the most notable development is Integrated
Gradient [115].
Sundararajan et al. [115] primarily motivate Integrated Gradient via the desirables they call

sensitivity and completeness. Sensitivity means, if there exists a combination of x and baseline b
(often an empty sequence), where the logit outputs of 5 (x;\ ) and 5 (b;\ ) are di�erent, then the
feature that changed should get a non-zero attribution. This desirable is not satis�ed for the gradient
method, for example due to the truncation in ReLU(·). Completeness means, the sum of importance
scores assigned to each token should equal the model output relative to the baseline b.
To satify these desirables, Sundararajan et al. [115] develop equation (3) which integrates the

gradients between an uninformative baseline b and the observation x [115].

Eintegrated-gradient (x, 2) = (x − b) ⊙
1

:

:∑

8=1

∇x̃8
5 (x̃8 ;\ )2 , x̃8 = b + 8/:(x − b),

where 5 (x;\ ) is the model logits.

(3)

This approach has been successfully applied to NLP, where the uninformative baseline can be an
empty sentence, such as padding tokens [82].
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Although Integrated Gradient has become a popular approach, it has recently received criticism
in computer vision (CV) community for not being functionally-grounded [51]. More recent work
have applied a similar analysis to NLP, and found that the functionally-groundedness is at the very
least task dependent [73]. Additonally, Bastings et al. [11] uses synthetic NLP tasks and arrived at
the same task-dependent conclusion. One explanation for the lack of functionally-groundedness is
the input mutiplication which is not directly related to the model [3].

6.3 LIME

Another popular approach is LIME [96]. This distinguishes itself from the gradient-based methods
by not relying on gradients. Instead, it samples nearby observations x̃ and uses the model estimate
? (2 |x̃) to �t a logistic regression. The parameters w of the logistic regression then represents the
importance measure, since larger parameters would mean a greater e�ect on the output.

ELIME (x, 2) = argmin
w

1

:

:∑

8=1

(? (2 |x̃8 ;\ ) log(@(x̃8 )) + (1 − ? (2 |x̃8 ;\ )) log(1 − @(x̃8 )) + _∥w∥1

where @(x̃) = f (wx̃)

(4)

One major complication of LIME is how to sample x̃, representing the nearby observations. In the
original paper [96], they use a Bag-Of-Words (BoW) representation with a cosine distance. While
this approach remains possible with a model that works on sequential data, such distance metrics
may not e�ectively match the model’s internal space. In more recent work [135], they sample x̃ by
masking words of x. However, this requires a model that supports such masking.

pos

neg

neg

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

pos

neg

pos

fi

fi

ff

fi

Fig. 4. A fictive visualization of LIME, where the weights of the logistic regression determine the importance

measure. Note that for LIME, it is possible to have negative importance (indicated by blue). Furthermore,

some tokens have no importance score, due to the !1-regularizer.

The advantages of LIME are that it only depends on black-box information and the dataset,
therefore no gradient calculations are required. Secondly, it uses a LASSO logistic regression, which
is a normal logistic regression with an !1-regularizer. This means that its explanation is selective,
as in sparse, which may be essential for providing a human-friendly explanation [79].
Ribeiro et al. [96] show that LIME is functionally-grounded by applying LIME on intrinsically

interpretable models, such as a logistic regression model, and then compare the LIME explanation
with the intrinsic explanation from the logistic regression. They also show human-groundedness by
conducting a human trial experiment, where non-experts have to choose the best model, based
on the provided explanation, given a “wrong classifer” tranined on a bias dataset and a “correct
classifer” trained on a curated dataset.

6.4 Kernel SHAP

A limitation of LIME is that the weights in a linear model are not necessarily intrinsically inter-
pretable. When there exists multicollinearity (input features are linearly correlated with each other)
then the model weights can be scaled arbitrarily creating a false sense of importance.
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To avoid the multicollinearity issue, one approach is to compute Shapley values [107] which are
derived from game theory. The central idea is to �t a linear model for every permutation of features
enabled. For example, if there are two features {G1, G2}, the Shapley values would aggregate the
weights from �tting the datasets with features {∅}, {G1}, {G2}, {G1, G2}. If there are ) features this
would require O(2) ) models.

While this method works in theory, it is clearly intractable. Lundberg and Lee [71] present a
framework for producing Shapley values in a more tractable manner. The model-agnostic approach
they introduce is called Kernel SHAP . It combines 3 ideas: it reduces the number of features via a
mapping function ℎx (z), it uses squared-loss instead of cross-entropy by working on logits, and it
weighs each observation by how many features there are enabled.

ESHAP (x, 2) = argmin
w

∑

z∈Z"

c (z) (5 (ℎx (z);\ )2 − 6(z))2

where 6(z) = wz

c (z) =
" − 1

(" choose |z|) |z| (" − |z|)

(5)

In (5), z is a {0, 1}" vector that describes which combined features are enabled. This is then used
in ℎx (z), which enables those features in x. Furthermore, Z" represents all permutations of enabled
combined features and |z| is the number of enabled combined-features. Figure 5, demonstrates a
�ctive example of how input features can be combined and visualize their shapley values.

pos

neg

neg

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

pos

neg

pos

fi

fi

ff

fi

Fig. 5. Fictive visualization of Kernel SHAP . Note how input tokens are combined to a single feature to make

SHAP more tractable to compute, this is the role of ℎx (I) in (5).

Lundberg and Lee [71] show functionally-groundedness by using that Shapley values uniquely
satisfy a set of desirables and that SHAP values are also Shapley values. Furthermore, Lundberg and
Lee [71] show human-groundedness by asking humans to manually produce importance measures
and correlate them with the SHAP values.

A criticism of both SHAP and LIME is that they depend on pertubation of the input, this makes
it possible to create adverserial models that appear ethical when explained using pertubated inputs
but is in reality not ethical when evaluted without pertubation [110]. This means that LIME and
SHAP can only provide a functionally-grounded explanation as long as the model is trained without
malicious intent.

SHAP and Shapley values in general are heavily used in the industry [17]. In NLP literature SHAP
has been used by Wu et al. [135]. This popularity is likely due to their mathematical foundation
and the shap library. In particular, the shap library also presents Partition SHAP which claims to
reduce the number of model evaluations to"2, instead of 2" 3. One major disadvantage of SHAP
is it inherently depends on the masked inputs still being valid inputs. For some NLP models, this

3See documentation https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/model_agnostic/Simple%2
0Boston%20Demo.html
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can be accomplished with a [MASK] token, while for it is not possible in a post-hoc setting. For this
reason, SHAP exists at an intersection between post-hoc and intrinsic interpretability methods. This
intersection is discussed more in Section 18.

6.5 Anchors

A further development of the idea, that sparse explanations are easier to understand, is Anchors.
Instead of giving an importance score, like in the case of the gradient-based methods or LIME, the
Anchors simply provides a shortlist of words that were most relevant for making the prediction
[97]. The authors show human-groundedness with a similar user setup as in LIME [96].

pos

neg

neg

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

pos

neg

pos

fi

fi

ff

fi

Fig. 6. Fictive visalization, showing the anchors that are responsible for the prediction.

The list-of-words called “anchors” (�) is formalized in (6). Note that 2 = argmax8 ? (8 |x;\ ) is
a requirement for anchors, as using prec(�) = ED(x̃ |�)

[

1~=~̃

]

in (6) would cause anchors to be
una�ected by the model.

Eanchors (x) = argmax
� s.t. prec(�) ≥g ∧�(x)=1

cov(�)

where prec(�) = ED(x̃ |�)

[

1[argmax
8
? (8 |x;\ )=argmax

8
? (8 |x̃;\ ) ]

]

cov(�) = ED(x̃) [�(x̃)]

�(x) =

{

1 if the anchors � are in x

0 otherwise

(6)

This formalization says the anchor words should have the highest coverage (cov(�)), meaning the
most sentences in the dataset � (x̃) contains the anchors �. Furthermore, only consider anchors �
that are su�ciently precise (prec(�) ≥ g ) and in x. Precision is de�ned as the ratio of observations
x̃ with anchors �, denoted D(x̃|�), where the predicted label of x̃ matches the predicted label of x.
Solving this optimization problem exactly is infeasible, as the number of anchors is combina-

torially large. To approximate it, Ribeiro et al. [97] model prec(�) ≥ g probabilistically [57] and
then use a bottom-up approach, where they add a new word to the :-best anchor candidate in each
iteration similar to beam-search.

6.6 Discussion

Groundedness. The functionally-groundedness of input feature explanations have recived a lot of
attention and discussion, however there is still little consensus on what is functionally-grounded or
how to even measure it [3, 11, 54, 60, 73, 76, 89, 106, 122, 130].

Future work. It has been suggested, that a general functionally-grounded post-hoc input feature
explanation method just doesn’t exists [102], an analogue to the no-free-lunch theorem. For this
reason, a new trend in NLP is to develop architecture speci�c input feature explanations [1, 21], for
example using attention. Although others are aganist this direction and do not think that attention
can provide more functionally-grounded explanations than general alternatives [12].
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Such high-level questions are likely di�cult to answerwithout amore fundamental understanding
of what the functionally-groundedness desirables are. We therefore advocate for continuing the
e�ort in measuring functionally-groundedness but to focus more on establishing the fundamental
desirables.

7 ADVERSARIAL EXAMPLES

An adversarial example, is an input that causes a model to produce a wrong prediction, due to
limitations of the model. The adversarial example is often produced from an existing example,
for which the model produces a correct prediction. Because the adversarial example serves as an
explanation, in the context of an existing example it is a local explanation.

Wang et al. [128] provide a thorough survey on adversarial example explanations, and also goes
in depth regarding taxonomy, using adversarial examples for robustness, and similarity scores
between the existing example and the adversarial example. Additonally, the survey by Belinkov
and Glass [15] also have a section on adversarial examples.
In this survey we therefore focus on just two explanation methods. These adversarial example

methods informs us about the support boundaries of a given example, which then informs us about
the logic involved and therefore provides interpretability. In fact, this explanation can be similar to
the input feature methods, discussed in Section 6. Many of those methods also indicate what words
should be changed to alter the prediction. An important di�erence is that adversarial explanations
are contrastive, meaning they explain by comparing with another example, while input features
explain only concerning the original example. Contrastive explanations are, from a social science
perspective, generally considered more human-grounded [79].

In the following discussions, we refer the original example as x and the adversarial example as x̃.
The goal is to develop an adversarial method �, that maps from x to x̃:

�(x) → x̃ (7)

Importantly, to ensure that an adverserial example method is functionally-grounded, one only
needs to assert that the predicted label changes while the gold label remains the same. Additionally,
it’s a desireable to have the original and adverserial example to be similar, in many applications
this can be framed as paraphrasing. Compared to other explanation types, these properties are
reasonably trivial to measure. See Section 4 for a general discussion on measures of interpretability.
Finally, because adverserial example explanations are framed by the output class, these expla-

nations do not generalize easily to sequence-to-sequence problems. Although one could imagine
for example an o�ensive-text classi�er, which reduces the sequence-to-sequence model back to a
sequence-to-class model.

7.1 HotFlip

A great example of the relation between input feature explanations and adversarial examples is
HotFlip [40]. Here the e�ect of changing token E to another token Ẽ at position C , on the model loss
L, is estimated via using gradients

L(~, x̃C :E→Ẽ) − L(~, x;\ ) ≈
mL(~, x;\ )

mGC,Ẽ
−
mL(~, x;\ )

mGC,E
, (8)

where x̃C :E→Ẽ is the one-hot-encoded input x, with the token E at position C changed to Ẽ . Additionally,
GC,Ẽ and GC,E are the scalar components of the one-hot-encoded input x.

Had a gradient approximation not been used, the alternative would be to exactly compute a
forward pass for every possible token swap. Instead, this approximation only requires one backward
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pass. To produce an adversarial sentence with multiple tokens changed, the authors use a beam-
search approach. A visualization of HotFlip can be seen in Figure 7.

�HotFlip (x) = argmax
x̃C :E→Ẽ

mL(~, x;\ )

mGC,Ẽ
−
mL(~, x;\ )

mGC,E
(9)

0.91

0.95

pos

neg we never feel anything for these characters

the year 's best and most unpredictable comedy

the year 's finest and most unpredictable comedy

 we never feel anything for these people

0.30

0.03

the year 's finest and most unforeseeable comedy 0.08

fi

fi

ff

-

-

-

fi

Fig. 7. Hypothetical visualization of HotFlip. The highlight indicates the gradient w.r.t. the input, which

HotFlip uses to select which token to change. x indicates the original sentence, and x̃ indicates the adversarial

sentence.

The HotFlip paper [40] primarily investigates character-level models, for which the desire is to
build a model that is robust against typos. However, in terms of word-level models, it is necessary
to constrain the possible changes, such that the adversarial sentence is a paraphrase. They do this
via the word-embeddings, such that the adversarial word and the original word are constrained to
have a cosine similarity of at least 0.8.
The HotFlip approach has proven e�ective for other adversarial explanation methods, such as

the aforementioned Universal Adversarial Triggers [125].

7.2 Semantically Equivalent Adversaries (SEA)

An alternative approach to produce adversarial examples that are ensured to be paraphrases is to
sample from a paraphrasing model @(x̃|x). Ribeiro et al. [98] do this by measuring a semantical-
equivalency-score ( (x, x̃), as the relative likelihood of @(x̃|x) compared to @(x|x). It is then possible
to maximize the similarity, while still having a di�erent model prediction. The exact method is
de�ned in (10), which also constrains the optimization with a minimum semantical-equivalency-
score and ensures the predicted label is di�erent.

�SEA (x) = argmax
x̃∼@ (x̃ |x)

( (x, x̃)

s.t. ( (x, x̃) ≥ 0.8

argmax
8

? (8 |x;\ ) ≠ argmax
8

? (8 | ˜x;\ )

where ( (x, x̃) = min

(

1,
@(x̃|x)

@(x|x)

)

(10)

The reason why a relative score is necessary, as opposed to just using ( (x, x̃) = @(x̃|x), is that
for two normal sentences x1 and x2 of di�erent length, longer sentences are just inherently less
likely. Therefore, to maintain a comparative semantical-equivalency-score normalizing by @(x|x)
is necessary [98].
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fi
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 we never empathize for these characters

Fig. 8. Hypothetical results of using SEA [98]. Note that unlike HotFlip, SEA can change and delete multiple

tokens simultaneously as it samples from a paraphrasing model. Again, x indicates the original sentence, x̃

indicates the adversarial sentence, and ( (x, x̃) is the semantical-equivalency-score which must be at least 0.8.

7.3 Discussion

Groundedness. Adversarial example are as mentioned, easy to measure functionally-groundedness
on and should be human-grounded due to their contrastive nature [79]. However, we are not aware
of any work which explicitly tests for human-groundedness. This is likely because it is considered
to be a given, but we advocate for testing such a hypothesis anyway.

Future work. The di�culty with adversarial example explanations lies in the search procedure.
For example, HotFlip [40] uses a greedy sequential search algorithm and would therefore not be
able to identify combinatorial e�ects like a double-negative. While SEA Ribeiro et al. [98] depends
on an expensive paraphrase generation model.
One typical limitation of adversarial example methods is that they provide no control of the

search direction. Hypothetically, while changing “unpredictable” to “unforeseeable” could provide
the largest source of error due to a robustness issue, it might be more interesting to discover
that changing “womans’ chess club” to “mens’ chess club” also �ips the label. Unfortunately, this
aspect is usually not considered because the motivation for adversarial example generation is often
robustness and debiasing.

8 SIMILAR EXAMPLES

For a given input example, an in�uential examples explanation �nds examples from the training
dataset, that in terms of the model’s understanding, looks like the input example. Because this
explanation method centers around a speci�c input example it is a local explanation. Note that is
di�erent from just an distance metric on the inputs, such as BLEU [84], as this does not depend on
the model.

In�uential examples explanations can be quite useful. For example, for discovering dataset artifacts
as some of the in�uential examples may have nothing to do with the input example, except for the
artifacts. Additonally, they are commonly used to discover mislabeled observations.
The in�uential examples can always be presented as just the examples and a similarity score,

see Figure 9. Because the only presentation di�erence is the similarity score, this chapter does not
include example �gures for each method.

8.1 Influence functions

In�uence functions is a classical technique from robust statistics [32]. However, in robust statistics,
there are strong assumptions regarding convexity, low-dimensionality, and di�erentiability. Recent
e�orts in deep learning remove the low-dimensionality constraint and to some extent the convexity
constraint [61].
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posa delightfully unpredictable , hilarious comedy 3.82

-1.51loud and thoroughly obnoxious comedy

fi

fi

ff

0.95

0.98

fi

0.21

Fig. 9. Fictive result showing the influential examples x̃, in relation to the input example x, showing both

examples with positive and negative influence. Δ is the similarity score, the scale and range may depend on

the specific method. Note, it is possible to measure the influence of an example on itself. This can be useful

to identify mislabled observations, as such observations will be important for their own prediction.

The central idea in in�uence functions, is to estimate the e�ect on the loss L, of removing the
observation x̃ from the dataset. The most in�uential examples are those where the loss changes the
most. Let \̃ be the model parameters if x̃ had not been included in the training dataset, then the
loss di�erence can be estimated using

L(~, x; \̃ ) − L(~, x;\ ) ≈
1

=
∇\L(~, x;\ )⊤�−1

\ ∇\L(~̃, x̃;\ ). (11)

Importantly, the Hessian �\ needs to be positive-de�nite, which can only be guaranteed for
convex models. The authors Koh and Liang [61] avoid this issue, by adding a diagonal to the
Hessian, until it is positive-de�nite. Additionally, they solve the computational issue of computing
an inverse Hessian, by formulating (11) as an inverse Hessian-vector product. Such formulation
can be approximated in O(=?) time, where = is the number of observations and ? is the number of
parameters, hence a computational complexity identical to one training epoch. Note however, that
the inverse Hessian-vector product needs to be computed for every explained test observation x.
One limitation of in�uence functions is that computing the in�uence functions is not always

numerically stable [137], because (11) uses the gradient ∇\L(~̃, x̃;\ ) which is optimized to be close
to zero.
Koh and Liang [61] looked at support-vector-machines, which are known to be convex, and

convolutional neural networks which are generally non-convex. Han et al. [47] then extended the
analysis of in�uence functions to BERT [36]. This is a crucial step, as BERT may be much further
from convexity than CNNs, thus cause the in�uence functions to be less functionally-grounded.
Han et al. [47] validates for functionally-groundedness by removing the 10% most in�uential

training examples from the dataset and then retrain the model. The results show a signi�cant
decrease in the model’s performance on the test split, compared to removing the 10% least in�uential
examples and 10% random examples, validating that the in�uential examples are important.

Additionally, Koh and Liang [61] measures functionally-groundedness by setting 10% of training
observations to a wrong label. In�uence functions is then used to select a fraction of the dataset, for
which labels are corrected. The metric is then how many mislabeled observations were identi�ed
and the performance di�erence. The idea being, wrongly labeled observations should a�ect the loss
more than correctly labeled observations, hence in�uence functions will tend to �nd wrongly labeled
observations. Han et al. [47] perform a similar experiment, but instead removes observations based
on importance and then measures the performance di�erence. Both experiments validates that
in�uence functions are functionally-grounded.

Performance considerations. A criticism of in�uence functions has been that it is computationally
expensive. Although ∇\L(~, x;\ )⊤�−1

\
can be cached for each test example, it is still too compu-

tationally intensive for real-time inspection of the model. Additionally, having to compute the
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weight-gradient ∇\L(~̃, x̃;\ ) and inner-product for every training observation, does not scale
su�ciently. To this end, Guo et al. [45] propose to only use a subset of training data, using a KNN
clustering. Additionally, they show that the hyperparameters when computing ∇\L(~, x;\ )⊤�−1

\
can be tuned to reduce the computation to less than half.

8.2 Representer Point Selection

An alternative to in�uence functions, is the Representer theorem [105]. The central idea is that
the logits of a test example x, can be expressed as a decomposition of all training samples 5 (x) =
∑=

8=1 "8^ (x, x̃8 ). The original Representer theorem [105] works on reproducing kernel Hilbert spaces,
which is not applicable for deep learning. However, recent work has applied the idea to neural
networks [137].

Let )! be the weight matrix of the �nal layer, such that the logits 5 (x;\ ) = )!z!−1 (x;\ ), then if
the regularized loss 1

=

∑=
8=1 L(~̃8 , x̃8 ;\ ) + _∥)! ∥

2, is a stationary point and _ > 0, then

5 (x) =

=∑

8=1

"8z!−1 (x̃8 ;\ )
⊤
z!−1 (x;\ ), where "8 =

1

2_ · =

mL(~̃8 , x̃8 ;\ )

mz!−1 (x8 ;\ )
. (12)

To understand the importance of each training observation x̃8 , regarding the prediction of class
2 for the test example x, one just looks at the 2’th element of each term "8z!−1 (x̃8 ;\ )

⊤
z!−1 (x;\ ).

This approach is more numerically stable than in�uence functions [137], but has the downside of
only depending on intermediate representation of the �nal layer, while in�uence functions employs
the entire model.

Because Representer Point Selection does depend on a speci�c model setup, where the last layer is
regularized, this could be considered an intrinsic method. However, Yeh et al. [137] show that the
stationary solution can be achieved post-hoc, meaning after learning, with minimal impact on the
model predictions. They do this via the optimization problem

)! = argmin
]

(

1

=

=∑

8=1

L(? (·|x̃8 ;\ ),]z!−1 (x̃8 ;\ )) + _∥] ∥2

)

, (13)

where \ is the original model parameters, )! are the new parameters for the last layer, and L is the
full cross-entropy loss. Because this is a fairly low-dimensional problem, �ne-tuning this can be
done with an L-BFGS optimizer or similar [137].
Yeh et al. [137] show this method is functionally-grounded on a computer vision task, using a

label-correction experiment similar to that in in�uence functions. In this case, |"8,2 | is used to select
the observations to perform label correction on. Their results show that Representer Point Selection
and in�uence functions can identify wrong labels equally well, but that the observations which
Representer Point Selection selects a�ects the models performance more. Unfortunately, Yeh et al.
[137] do only show anecdotal results on an NLP task.

8.3 TracIn

The idea behind TracIn by Pruthi et al. [90] is to accumulate loss changes during training. Speci�cally,
the loss change on the test observation x when optimizing x̃. Pruthi et al. [90] �rst introduce an
idealized version of this, which assumes optimization is done on one observation at a time (for
example, SGD):

TracInIdeal(x̃, x) =
∑

C ∈T̃x

L(~, x, \C ) − L(~, x, \C+1),where T̃x is timestep which optimized x̃ (14)
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TracIn TracIn is then a relaxation of this idealized version. Rather than using a direct loss
di�erence, gradients are used. Rather than assuming stochastic gradient descent (or similar) mini-
batches can be used. Rather than checking every time step, checkpoints collected during training
can be used.

TracIn(x̃, x) =
1

1

∑

C ∈C

[C∇\CL(~, x, \C ) · ∇\CL(~̃, x̃, \C ),

where C are checkpoints, 1 is batch-size, and [C is learning-rate.

(15)

Note, that the (15) formulation is still based on plain gradient descent. However, Pruthi et al. [90]
instruct how to adapt this to most learning algorithms (AdaGrad, Adam, Newton, etc).
As a functionally-grounded evaluation, Pruthi et al. [90] repeat the label-correction experiment

of in�uence functions and Representer Point Selection, and �nd that their method can better select
mislabeled observations. Note that this was evaluated on CIFAR-10 and MNIST. Unfortunately,
Pruthi et al. [90] does not do any evaluation on NLP tasks, but they do anecdotally show it works
on an NLP application.

8.4 Discussion

Groundedness. In�uential example explanations, is one of the few categories with a non-trival but
appropiate functionally-grounded metric, namely the label-correction experiment, which is used
somewhat consistently across papers. Unfortunately, this experiment has not been used on NLP
tasks and in general very little functionally-grounded validation have been done in NLP.

Additionally, the label-correction experiment is somewhat limited, as it evaluates the in�uence
of a training observation on itself. This is not how a In�uential examples explanation would be
used in most applications, for example dataset artifact discovery. We therefore suggest future work
also include the experiment from Guo et al. [45] which uses information removal.

Future work. A natural question, when asking what training observations are in�uencial is to
also what part of them are important. In�uence functions can answer this, although at an increased
computational cost. However, Representer Point Selection and TracIn can not. For sequential outputs
it is interesting to also be able to select parts of the output and ask what in�uenced this. Both of
these questions, are becomming increasingly relevant with large-scale langauge models, where
there is a large interest in understand what caused a particular generation.

9 COUNTERFACTUALS

Counterfactual explanations are essentially answering the question “how would the input need
to change for the prediction to be di�erent?”. Furthermore, these counterfactual examples should
be a minimal-edit from the original example and �uent. However, all of these properties can
also be said of adversarial explanations, and indeed some works confuse these terms. The critical
di�erence is that adversarial examples should have the same gold label as the original example,
while counterfactual examples should have a di�erent gold label (often opposite) as the original
example [101]. Because Counterfactual explanations are de�ned by the output class they are limited
to sequence-to-class models.
Another common confusion is with counterfactual datasets, also known as Contrast Sets. These

datasets are used in robustness research and could consist of counterfactual examples. However,
these datasets are generated without using a model [41, 58], and can therefore not be used to
explain the model. Contrast Sets are however important for ensuring a robust model.

In social sciences, counterfactual explanations are considered highly useful for a person’s ability
to understand causal connections. Miller [79] explains that “why” questions are often answered
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by comparing facts with foils, where the term foils is the social sciences term for counterfactual
examples.

9.1 Polyjuice

Polyjuice by Wu et al. [135] is primarily a counterfactual dataset generator, and the generation is
therefore detached from the model. However, by strategically �ltering these generated examples
such that the model’s prediction is changed the most, they condition the counterfactual generation
on the model, thereby making a post-hoc explanation.
The generation is done by �ne-tuning a GPT-2 model [92] on existing counterfactual datasets

[41, 58, 74, 103, 131, 139]. For each pair of original and counterfactual example, they produce a
training prompt, see (16) for the exact structure. What the conditoning code is and what is replaced
in (16) is determined by the existing counterfactual datasets.

?A><?C = “ It is great for kids
︸                 ︷︷                 ︸

original sentence

<GENERATE>

[negation]
︸         ︷︷         ︸

conditioning code

It is [BLANK] great for [BLANK]
︸                                    ︷︷                                    ︸

masked counterfactual

<REPLACE> not [ANSWER] children [ANSWER]
︸                                      ︷︷                                      ︸

masking answers

<EOS>”

(16)

For counterfactual generation, they specify the original sentence and optionally the condition
code, and then let the model generate the counterfactuals. These counterfactuals are independent
of the model. To make them dependent on the model, they �lter the counterfactuals and select
those examples that change the prediction the most. One important detail is that they adjust the
prediction change with an importance measure (SHAP), such that the counterfactual examples that
could have been generated by an importance measure are valued less. An example of this explanation
can be seen in Figure 10.

posthe year 's best and most unpredictable comedy 0.91

the year 's worst and least unpredictable comedy 0.11

neg we never feel anything for these characters 0.95

 we feel everything for these characters 0.02

fi

fi

ff

-

-

fi

Fig. 10. Hypothetical results of Polyjuice, showing how some words were either replaced or removed to

produce counterfactual examples.

To validate Polyjuice, for a human-grounded experiment, they show that humans were unable to
predict the model’s behavior for the counterfactual examples, thereby concluding that their method
highlights potential robustness issues. Whether Polyjuice is functionally-grounded is somewhat
questionable, because the model is not a part of the generation process itself, it is merely used as a
�ltering step.
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9.2 MiCE

Like Polyjuice [135], MiCE [101] also uses an auxiliary model to generate counterfactuals. However,
unlike Polyjuice, MiCE does not depend on auxiliary datasets and the counterfactual generation is
more tied to the model being explained, rather than just using the model’s predictions to �lter the
counterfactual examples.
The counterfactual generator is a T5 model [93], a sequence-to-sequence model, which is �ne-

tuned by input-output-pairs, where the input consists of the gold label and the masked sentence,
while the output is the masking answer, see (17) for an example.

8=?DC = “label: positive
︸   ︷︷   ︸

gold label

, input: This movie is [BLANK]!
︸                         ︷︷                         ︸

masked sentence

”

C0A64C = “[CLR] really great
︸        ︷︷        ︸

masking answer

[EOS]”
(17)

TheMiCE approach to selecting which tokens tomask is to use an importance measure, speci�cally
the gradient w.r.t. the input, and then mask the top x% most important consecutive tokens.

For generating counterfactuals, MiCE again masks tokens based on the importance measure, but
then also inverts the gold label used for the T5-input (17). This way the model will attempt to in�ll
the mask, such that the sentence will have an opposite semantic meaning. This process is then
repeated via a beam-search algorithm which stops when the model prediction changes, an example
of this can be seen in Figure 11.

pos

neg we never feel anything for these characters

the year 's best and most unpredictable comedy 0.91

0.95

the year 's worst and most predictable comedy 0.04

 we can feel anything for these animals 0.01

the year 's worst and most unpredictable comedy 0.59

 we can feel anything for these characters 0.73

fi

fi

ff

-

-

-

-

fi

Fig. 11. Hypothetical visualization of howMiCE progressively creates a counterfactual x̃ from an original

sentence x. The highlight shows the gradient ∇x 5 (x;\ )~ , which MiCE uses to know what tokens to replace.

BecauseMiCE uses the model prediction to stop the beam-search, it will inherently be somewhat
functionally-grounded. However, it may be that using the gradient as the importance measure, is not
functionally-grounded. Ross et al. [101] validate that using the gradient is functionally-grounded, by
looking at the number of edits and �uency of MiCE and compare it to a version of MiCE where
random tokens are masked. They �nd that using the gradient signi�cantly improves both �uency
and reduces the number of edits it takes to change a prediction.

9.3 Discussion

Groundedness. While counterfactual examples are great for human-grounded explanation, they
struggle with functionally-groundedness. The challenge comes from the desirables. On one side, a
desirable is to provide a counterfactual example with the opposite gold label, an objective that is
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independent of the model. Simultaneously the search procedure should be directed by the model
behavior. These objectives can at times appear opposite, although MiCE provide a great example of
how it can be done.

Future work. Because the motivation for counterfactual examples is often robustness, the search
procedure often becomes only weakly dependent on the model such as Polyjuice or sometimes
completly independent such as Contrast Sets.
While robustness is a perfectly valid research objective, we recommend being careful when

using both robustness with interpretability to motivate the same method, as this often leads to
functionally-groundedness issues. We would therefore advocate for more counterfactual research
which focuses only on interpretability and functionally-groundedness.

10 NATURAL LANGUAGE

A common concern for many of the explanation methods presented in this survey is that they
are di�cult to understand for people without specialized knowledge. It is therefore attractive to
directly generate an explanation in the form of natural language, which can be understood by
simply reading the explanation for a given example. Because these utterances explain just a single
example, they are a local explanation.

Most research in the area of natural language explanation uses the explanations to improve the
predictive performance of the model itself. The idea is that by enforcing the model to reason about
its behavior, the model can generalize better [23, 63–65, 69, 94]. These approaches are however
in the category of intrinsic methods. While those methods are often quite general, they are not
discussed in this survey which focuses on post-hoc methods.

These post-hoc methods are referred to as rationalization methods, in the sense that they attempt
to explain after a prediction has beenmade [94]. Note that the term is a misnomer, as rationalizations
in the dictionary sense4 can also be false.

10.1 Rationalizing Commonsense Auto-Generated Explanations (CAGE)

Rajani et al. [94] provide explanations to the Common sense Question Answering (CQA) dataset,
which is a multiple-choice question answering dataset [116]. The explanations are independent of
the model and are provided via Amazon Mechanical Turk. To provide rationalization explanations,
they then �ne-tune the GPT model [91], using the question, answers, and explanation. See (18) for
an example of the exact prompt construction.

8=?DC = “What could people do that involves talking?
︸                                                      ︷︷                                                      ︸

question

confession
︸       ︷︷       ︸

choice 1

, carnival
︸   ︷︷   ︸

choice 2

, or state park
︸      ︷︷      ︸

choice 3

? confession
︸       ︷︷       ︸

answer

because ”

C0A64C = “ confession is the only vocal action.
︸                                         ︷︷                                         ︸

rational explanation

”

(18)

For simpler tasks, such as “Stanford Sentiment Treebank” [127], the prompt could simply be
“[input]. [answer] because [explanation]”, see Figure 12 for hypothetical explanations using
such a setup. It is worth nothing, that because CAGE uses a generative model, where [answer] can
be a sequence, it is not limited to sequence-to-class problems.

4“the action of attempting to explain or justify behaviour or an attitude with logical reasons, even if these are not appropriate.”
– Oxford De�ntion of rationalization.
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pos

neg we never feel anything for these characters

the year 's best and most unpredictable comedy 0.91

0.95

unpredictable comedies are funny

it is important to feel for characters

fi

fi
ff

-

--

-

fi

Fig. 12. Hypothetical explanations from using CAGE to produce rationalizations for the prediction.

They �nd that rationalization explanations provide nearly identical explanations as reasoning
explanations (those where the answer is not known by the explanation model). The method is
validated to be human-grounded, by tasking humans to use the explanation to predict the model
behavior, again they �nd identical performance.
It is questionable how functionally-grounded CAGE is, as its only connection to the model is

during inference of an explanation, where the answer is produced by the model. Because there are
no other connections to the explained model, the GPT model may not truly depend on the answer,
indeed their comparative experiments with reasoning explanations (where the answer is not given)
show that the explanations are similar.

10.2 Discussion

Groundedness. This sub-�eld of natural natural language explanations have received criticism in
NLP for not evaluating functionally-grounded [48]. This issue is even more problematic because the
annotated explanations are provided by humans who have no insights into the model’s behavior
[129]. The explanation model therefore just learns about humans’ thought processes rather than the
model’s logical process. This issue is somewhat unique to the NLP literature and is better treated in
other �elds [6].

Future work. Most work on natural natural language explanations uses intrinsic methods, under
the motivation that forcing the model to “reason about itself” will make it more accurate. Unfortu-
nately, this hypothesis has received criticism because the little post-hoc work there exists shows
that this is not the case. Additionally, there are theoretical arguments for why this would not be
the case [55].

11 CONCEPTS

A concept explanation attempts to explain the model, in terms of an abstraction of the input, called
a concept. A classical example in computer vision, is to explain how the concept of stripes a�ects
the classi�cation of a zebra. Understanding this relationship is important, as a computer vision
model could classify a zebra based on a horse-like shape and a savana background. Such relation
may yield a high accuracy score but is logically wrong.
The term concept is much more common in computer vision [44, 59, 81] than in NLP. Instead,

the subject is often framed more concretly as bias-detection, in NLP. For example, Vig et al. [123]
uses the concept of occupation-words like nurse, and relates it to the classi�cation of the words he
and she.
Regardless of the �eld, in both NLP and CV, only a single class or small subset of classes are

analyzed. For this reason, concept explanation belong in its own category of class explanations.
However, in the future, we will likely see more types of class explanations.

Pre-print



Post-hoc Interpretability for Neural NLP: A Survey 23

11.1 Natural Indirect E�ect (NIE)

Consider a language model with the prompt x = “The nurse said that”. To measure if the gender-
stereotype of “nurse” is female, it is natural to compare ? (she|x;\ ) with ? (he|x;\ ), or alternatively
? (they|x;\ ). Generalized, Vig et al. [123] express this as

bias-e�ect(x;\ ) =
? (anti-stereotypical |x;\ )

? (stereotypical |x;\ )
. (19)

Vig et al. [123] then provide insight into which parts of the model are responsible for the bias.
They do this by measuring theNatural Indirect E�ect (NIE) from causal mediation analysis. Although
this appraoch applies to a sequence-to-sequence model, only one token being considered at a time.
It is therefore possible also apply it to purely sequence-to-class models.
Given a model 5 (x;\ ), mediation analysis is used to understand how a latent representation

I (x;\ ) (called the mediator) a�ects the �nal model output. This latent representation can either be
a single neuron or several neurons, like an attention head. The Natural Indirect E�ect measures the
e�ect that goes though this mediator.
To measure causality, an intervention on the concept measured must be made. As intervention,

Vig et al. [123] replace “nurse” with “man”, or “woman” for oppositely biased occupations. They
call this replace operation set-gender.
Then to measure the e�ect of the mediator Vig et al. [123] introduce

mediation-e�ect<1,I,<2
(x;\ ) =

bias-e�ectI (<2 (x) ;\ ) (<1 (x);\ )

bias-e�ect(x;\ )
, (20)

where< ∈ {identity, set-gender} and bias-e�ectI (<2 (x)) (·) is bias-e�ect(·) but uses a modi�ed
model with the mediator values for I (<1 (x)) �xed. With this de�nition, the Natural Indirect E�ect
follows from causal mediation analysis literature [86].

NIEI = Ex∈D [mediation-e�ectidentity,I,set-gender (x;\ )

−mediation-e�ectidentity,I,identity (x;\ )]
(21)

Vig et al. [123] apply Natural Indirect E�ect to a small GPT-2 model, where the mediator is
an attention head. By doing this, Vig et al. [123] can identify which attention heads are most
responsible for the gender bias, when considering the occupation concept. Hypothetical results,
but results similar to those presented in Vig et al. [123], are presented in Figure 13.

fi

fi

0 .4.2
effect

la
y
er

attention head
1 2 3 54 6 7 8 9

1

2

3

4

5

fi

Fig. 13. Visualization of hypothetical Natural Indirect E�ect (NIE) results, similar to Vig et al. [123]. Such

visualization can reveal which a�ention-head are responsible for gender bias, in a small GPT-2 model. A

stronger color indicates a higher NIE, meaning more responsible for the bias.
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11.2 Discussion

Groundedness. As a new �eld, there is not much work on groundedness. Vig et al. [123] do not
measure either functionally-groundedness or human-groundedness on Natural Indirect E�ect. It is
also not obvious how functionally-groundedness could be measured. Note, that this situation is
not unique to concept explanation, as many other communication appraoches also don’t have an
established measure of functionally-groundedness.

Future work. Concept explanation requires either a new dataset or annotation of an existing
dataset. This can be quite expensive and impractical, especially when there is no concrete concept
in mind and the user wants a more exploratory explanation. However, there is new research towards
discovering concepts automatically [43].

12 VOCABULARY

For this category, we de�ne the term vocabulary explanation as methods which explain the whole
model in relation to each word in the vocabulary and is therefore a global explanation.
In the sentiment classi�cation context, a useful insight could be if positive and negative words

are clustered together respectively. Furthermore, perhaps there are words in those clusters which
can not be considered of either positive or negative sentiment. Such a �nding could indicate a bias
in the dataset.
Because vocabulary explanations explain using the model’s vocabulary, they can often be ap-

plied to both sequence-to-class and sequence-to-sequence models. This is esspecially true for
explainations based on the embedding matrix, which so is almost exclusively the case.

Because an embedding matrix is often used and because neural NLP models often use pre-trained
word embeddings, most research on vocabulary explanations is applied to the pre-trained word
embeddings [78, 88]. However, in general, these explanation methods can also be applied to the
word embeddings after training.

12.1 Projection

A common visual explanation is to project embeddings to two or three dimensions. This is particu-
larly attractive, as word embeddings are of a �xed number of dimensions, and can therefore draw
from the very rich literature on projection visualizations of tabular data, most notable is perhaps
Principal Component Analysis (PCA) [87].

t-SNE. Another popular and more recent method is t-SNE [121], which has been applied to
word embeddings [66]. This method has in particular been attractive as it allows for non-linear
transformations, while still keeping points that are close in the word embedding space, also close
in the visualization space. t-SNE does this by representing the two spaces with two distance-
distributions, it then minimizes the KL-divergence by moving the points in the visualization space.

Note that Li et al. [66] does not go further to validate t-SNE in the context of word embeddings,
except to highlight that words of similar semantic meaning are close together, we provide a similar
example in Figure 14.

Supervised projection. A problem with using PCA and t-SNE, is that they are unsupervised. Hence,
while they might �nd a projection that o�ers high contrast, this projection might not correlate
with what is of interest. An attractive alternative is therefore to de�ne the projection, such that it
reveals the subject of interest.

Bolukbasi et al. [19] are interested in how gender-biased a word is. They explore gender-bias, by
projecting each word onto a gender-speci�c vector and a gender-neutral vector. Such vectors can
either be de�ned as the directional vector between “he” and “she”, or alternative. Bolukbasi et al.
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Fig. 14. PCA [87] and t-SNE [121] projection of GloVe [88] embeddings for the words in the semantic

classification examples, as shown in Section 3 and elsewhere in this survey.

[19] also use multiple gender-speci�c pairs such as “daughter-son“ and “herself-himself”, and then
use their �rst Principal Component as a common projection vector.

12.2 Rotation

The category of, for example, all positive sentiment words may have similar word embeddings.
However, it is unlikely that a particular basis dimension describes positive sentiment itself. A useful
interpretability method, is therefore to rotate the embedding space such that the basis-dimensions
in the new rotated embedding space represents signi�cant concepts. This is distinct from projection

methods because there is no loss of information as only a rotation is applied.
Park et al. [85] perform such rotation using Exploratory Factor Analysis (EFA) [33]. The idea is

to formalize a class of rotation matrices, called the Crawford-Ferguson Rotation Family [34]. The
parameters of this rotation formulation are then optimized, to make the rotated embedding matrix
only have a few large values in each row or column. As an hypothetical example see Table 2.

Basis-dimension top-3 words

1 handsome, feel, unpredictable
2 most, best, anything
3 suspense, drama, comedy

Table 2. Fictive example of the top-3 words for each basis-dimension in the rotated word embeddings.

Park et al. [85] validate this method to be human-grounded by using the word intrusion test. The
classical word Intrusion test [26] provides 6 words to a human annotator, 5 of which should be
semantically related, the 6th is the intruder which is semantically di�erent. The human annotator
then has to identify the intruder word. Importantly, semantic relatedness is in this case de�ned as
the top-5 words of a given basis-dimension in the rotated embedding matrix.
Unfortunately, rather than having humans detect the intruder, Park et al. [85] use a distance

ratio, related to the cosine-distance, as the detector. This is problematic, as distance is directly
related to how the semantically related words were chosen. In this case the intruder should have
been identi�ed either by a human or an oracle model.

12.3 Discussion

Groundedness. In terms of human-grounded, vocabulary explanation are one of the few sub-�elds
that have a well established test, namely the word intrusion test [26]. It is therefore hard to justify

Pre-print



26 Andreas Madsen, Siva Reddy, and Sarath Chandar

when methods in this category replace humans with an algorithm, as this largely invalidates the
test.

Future work. While past work, such as Latent Dirichlet Allocation (LDA) [18], have provided
great vocabulary explanations, contemporary work using neural networks is quite limited and is
mostly based on the embedding matrix. This is a pity, as the embedding matrix only provides a
limited picture and it is not hard to imagine using other information sources to create vocabulary
explanations. For example, one could aggregate the word-contributions provided by input feature

explanations.

13 ENSEMBLE

Ensemble explanations attempts to provide a global explanation by combining multiple local ex-
planations. This is done such that each local explaination represents the di�erent modes of the
model.
Ensemble explanations is a very broad category of explanations, as for every type of local

explanation method there is, an ensemble explanation could in principle be constructed. As such, if
it can be applied to sequence-to-class or sequence-to-sequence models depends depends on the
speci�c method. However, in practice very few ensemble methods have been proposed, and most of
them apply only to tabular data [52, 95, 104].

13.1 Submodular Pick LIME (SP-LIME)

SP-LIME by Ribeiro et al. [96] attempts to select � observations (a budget), such that they represent
the most important features based on their LIME explanation. Note that, while LIME explanations
can be made for each output token and can therefore be used in a sequence-to-sequence context,
SP-LIME do assume a sequence-to-class model.

SP-LIME calculates the importance of each feature E , by summing the absolute importance for all
observations in the dataset, this total importance is IE in (22). The objective is then to maximize the
sum of IE given a subset of features, by strategically selecting � observations. Note that selecting
multiple observations which represent the same features will not improve the objective. The speci�c
objective is formalized in (22), which Ribeiro et al. [96] optimize greedily.

GSP-LIME = argmax
D̃ s.t. | D̃ |≤�

+∑

E=1

1[∃x̃8 ∈D̃ : |ELIME (x̃8 ,argmax
8
? (8 |x̃8 ;\ ))

E
|>0] IE

where D̃ ⊆ D

IE =

∑

x̃8 ∈D

�
�
�
�
ELIME

(

x̃8 , argmax
8

? (8 |x̃8 ;\ )

)

E

�
�
�
�

(22)

A major challenge with SP-LIME is that it requires computing a LIME explanation for every
observation. Because each LIME explanation involves optimizing a logistic regression this can be
quite expensive. To reduce the number of observations that need to be explained, Sangroya et al.
[104] proposed using Formal Concept Analysis to strategically select which observations to explain.
However, this approach has not yet been applied to NLP.
Ribeiro et al. [96] validate SP-LIME to be human-grounded by asking humans to select the best

classi�er, where a “wrong classi�er” is trained on a biased dataset and a “correct classi�er” is
trained on a curated dataset. Ribeiro et al. [96] then compare SP-LIME with a random baseline,
which simply selects random observations. From this experiment, they �nd that 89% of humans
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Fig. 15. Visualization of SP-LIME in a hypothetical se�ing. The matrix shows how each selected observation

represents the di�erent modes of the model. The le�-side shows two out of the four selected example and

their LIME explanation.

can select the best classi�er using SP-LIME, where as only 75% can select the best classi�er based
on the random baseline.

13.2 Discussion

Groundedness. The functionally-groundedness of ensemble explanations is very much dependent
on the functionally-groundedness of the local explanation. It is therefore di�cult to imagine a
general evaluation appraoch for ensemble explanations. However, even for local explanations
with established validation functionally-groundedness does not come for free, as also the selection
algorithm also needs to be validated.

Future work. As mentioned there is not much work using ensemble explanations. This is because
when non-tabular data is used, it is more challenging to compare the selected explanations to ensure
they represent di�erent modes. Even SP-LIME [96] which does apply to NLP tasks, uses a Bag-of-
Word representation as a tabular proxy. Additionally, we can imagine that ensemble explanations
are hard to scale, as datasets increases and models get more complex with more modes.
That being said, we would be curious to see more work in this category. For example, an

ensemble explanation which used a in�uential example method to show the overall most relevant
observations.

14 LINGUISTIC INFORMATION

To validate that a natural language model does something reasonable, a popular approach is
to attempt to align the model with the large body of linguistic theory that has been developed
for hundreds of years. Because these methods summarize the model, they are a case of global
explanation.

Methods in this category either probe by strategically modifying the input to observe the model’s
reaction or show alignment between a latent representation and some linguistic representation.
The former is called behavioral probes or behavioral analysis, the latter is called structural probes

or structural analysis. Which type of models these strategies applies to depends on the speci�c
method. However, in general behavioral probes applies primarily to sequence-to-class models and
structural probes applies to both sequence-to-class and sequence-to-sequence models.
One especially noteworthy subcategory of Structural Probes is BERTology, which speci�cally

focuses on explaining the BERT-like models [20, 36, 70]. BERT’s popularity and e�ectiveness have
resulted in countless papers in this category [28, 30, 77, 100, 117], hence the name BERTology. Some
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of the works use the attention of BERT and are therefore intrinsic explanations, while others simply
probe the intermediate representations and are therefore post-hoc explanations.

There already exist well-written survey papers on Linguistic Information explanations. In partic-
ular, Belinkov et al. [14] cover behavioral probes and structural probes, Rogers et al. [100] discuss
BERTology, and Belinkov and Glass [15] cover structural probing in detail. In this section, we will
therefore not go in-depth, but simply provide enough context to understand the �eld and impor-
tantly mention some of the criticisms, that we believe have not been su�ciently highlighted by
other surveys.

14.1 Behavioral Probes

The research being done in behavioral probes, also called behavioral analysis, is not just for inter-
pretability but also to measure the robustness and generalization ability of the model. For this
reason, many challenge datasets are in the category of behavioral analysis. These datasets are
meant to test the model’s generalization capabilities, often by containing many observations of
underrepresented modes in the training datasets. However, the model’s performance on challenge

datasets does not necessarily provide interpretability.
One of the initial papers providing interpretability via behavioral probes is that by Linzen et al.

[67]. They probe a language model’s ability to reason about subject-verb agreement correctly. A
recent work, by Clouatre et al. [29], Sinha et al. [109], �nd that destroying syntax by shu�ing
words does not signi�cantly a�ect a model trained on an NLI task, indicating that the model does
not achieve natural language understanding.
As mentioned, this area of research is quite large and Belinkov et al. [14] cover behavioral

probes in detail. Therefore, we just brie�y discuss the work by McCoy et al. [74], which provide a
particularly useful example on how behavioral probes can be used to provide interpretability.

McCoy et al. [74] look at Natural Language Inference (NLI), a task where a premise (for example,
“The judge was paid by the actor”) and a hypothesis (for example, “The actor paid the judge”) are
provided, and the model should inform if these sentences are in agreement (called entailment). The
other options are contradiction and neutral. McCoy et al. [74] hypothesise that models may not
actually learn to understand the sentences but merely use heuristics to identify entailment.
They propose 3 heuristics based on the linguistic properties: lexical overlap, subsequence, and

constituent. An example of lexical overlap is the premise “The doctor was paid by the actor” and
hypothesis “The doctor paid the actor”. The proposed heuristic is that this observation would be
classi�ed as entailment by the model due to lexical overlap, even though this is not the correct
classi�cation.

To test for these heuristics, McCoy et al. [74] developed a dataset, called HANS, which contains
examples with these linguistic properties but do not have entailment. The results (table 3) validates
the hypothesis that the model relies on these heuristics rather than a true understanding of the
content. Had just an average score across all heuristics been provided, this would just be a robustness
measure. However, by providing meta-information on which pattern each observation follows, the
accuracy scores provide interpretability on where the model fails.

In terms of functionally-groundedness, McCoy et al. [74] perform no explicit evaluation. However,
given that behavioral probes merely evaluate the model, functionally-groundedness is generally not
a concern. Furthermore, while McCoy et al. [74] do evaluate with humans, this is not a human-

grounded evaluation. Because they only use humans to evaluate the dataset, not if the explanation
itself is suitable to humans.
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Lexical Overlap Subsequence Constituent Average

BERT [36] 17% 5% 17% –
Human (Mechanical Turk) – – – 77%

Table 3. Performance on the HANS dataset provided by McCoy et al. [74]. Unfortunately, McCoy et al. [74]

do not provide enough information to make a direct comparision possible. For comparison, BERT has 83%

accuracy on MNLI [132], which was used for training.

14.2 Structural Probes

Probing methods primarily use a simple neural network, often just a logistic regression, to learn a
mapping from an intermediate representation to a linguistic representation, such as the Part-Of-
Speech (POS).

One of the early papers, by Shi et al. [108], analyzed the sentence-embeddings of a sequence-to-
sequence LSTM, by looking at POS (part-of-speech), TSS (top-level syntactic sequence), SPC (the
smallest phrase constituent for each word), tense (past or non-past), and voice (active or passive).
Similarly, Adi et al. [4] used a multi-layer-perceptron (MLP) to analyze sentence-embeddings for
sentence-length, word-presence, and word-order. More recently Conneau et al. [31] have been
using similar linguistic tasks and MLP probes but have extended previous analyses to multiple
models and training methods.

Analog to these papers, a few methods use cluster algorithms instead of logistic regression [22].
Additionally, some methods only look at word embeddings [62]. The list of papers is very long, we
suggest looking at the survey paper by Belinkov and Glass [15].

BERTology. As an instructive example of probing in BERTology, the paper by Tenney et al. [117]
is brie�y described. Note that this is just one example of a vast number of papers. Rogers et al.
[100] o�er a much more comprehensive survey on BERTology.

Tenney et al. [117] probe a BERT model [36] by computing a learned weighted-sum z8 (x;\ ) for
each intermediate representation h;,8 (x;\ ) of the token 8 , as described in (23).

z8 (x;\ ) = W

!∑

;=1

B;h;,8 (x;\ )

where s = so�max(w)

(23)

The weighted-sum z8 (x) is then used by a classi�er [119], and the weights B; , parameterized by
w, describe how important each layer ; is. The results can be seen in Figure 16.

Criticisms. A growing concern in the �eld of probing methods is that given a su�ciently high-
dimensional embedding, complex probe, and large auxiliary dataset, the probe can learn everything
from anything. If this concern is valid, it would mean that the probing methods do not provide
functionally-grounded explanations [13].
Recent work attempts to overcome this concern by developing baselines. Zhang and Bowman

[138] suggest learning a probe from an untrained model, as a baseline. In that paper, they �nd
probes can indeed achieve high accuracy from an untrained model unless the auxiliary dataset size
is decreased dramatically. Similarly, Hewitt and Liang [49] use randomized datasets as a baseline,
called a control task. For example, for POS they assign a random POS-tag to each word, following
the same empirical distribution of the non-randomized dataset. They �nd that equally high accuracy
can be achieved on the randomized dataset unless the probe is made extraordinarily small.

Pre-print



30 Andreas Madsen, Siva Reddy, and Sarath Chandar

fi

fi

ff

0 2 4 6 8 10 12 14 16 18 20 22 24
layer

Part-of-Speech

Constituents

Dependencies

Entities

Semantic Role Labeling

Coreference 91.9

91.4

96.1

95.5

87.0

96.7

fi

Fig. 16. Results by Tenney et al. [117] which shows how much each BERT [36] layer is used for each linguistic

task. The �1 score for each task is also presented.

Information-Theoretic Probing. The solutions presented by Zhang and Bowman [138] and Hewitt
and Liang [49] are useful. However, limiting the probe and dataset size could make it impossible to
�nd complex hidden structures in the embeddings.
Voita and Titov [124] attempt to overcome the criticism by a more principled approach, using

information theory. More speci�cally, they measure the required complexity of the probe as a
communication e�ort, called Minimum Description Length (MDL), and compare the MDL with a
control task similar to Hewitt and Liang [49]. They �nd, similar to Hewitt and Liang [49], that the
probes achieve similar accuracy on the probe dataset as on the control task. However, the control
task is much harder to communicate (the MDL is higher), indicating that the probe is much more
complex, compared to training on the probe dataset.

14.3 Discussion

Groundedness. Considering the vast amount of research on linguistic information explanations,
we �nd it worrying that there isn’t more work on evaluating if these explanations are actually
useful, in terms of the human-groundedness and functionally-groundedness. Without such evaluation,
it is di�cult to ensure that the �eld of linguistic information explanations moves in a productive
direction.

Future work. Considering the groundedness issues in linguistic information explanations, we
advocate for more focus on groundedness. Voita and Titov [124] provide a great solution to how the
functionally-groundedness issues can be overcome. However, the �eld still lacks independent study
on human-groundedness and functionally-groundedness.

15 RULES

Rule explanations attempt to explain the model by a simple set of rules, therefore they are an
example of global explanations.

Reducing highly complex models like neural networks to a simple set of rules is likely impossible.
Therefore, methods that attempt this simplify the objectivity by only explaining one particular
aspect of the model.
Due to the challenges of producing rules, there is little research attempting it. We will present

Compositional Explanations of Neurons [81] and SEAR [98].

15.1 Semantically Equivalent Adversaries Rules (SEAR)

SEAR is an extension of the Semantically Equivalent Adversaries (SEA) method [98], where they
developed a sampling algorithm for �nding adversarial examples. Hence, the rule-generation
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objective is simpli�ed, as only rules that describe what breaks the model needs to be generated.
Additionally, because SEAR uses an adversarial examples explanation, it only applies to sequence-
to-class models.

rule

rule

fi

fi

ff

0.91

0.95

pos

neg we never feel anything for these characters

the year 's best and most unpredictable comedy

 we never empathize for these characters

0.13

0.11

the best and most unpredictable comedy this year

DET year 's    this year

feel    empatize 4%

1%- -

- -

-

-

--

--

fi

Flips

Fig. 17. Hypothetical example showing rules which commonly break the model. The flip-rate describes how

o�en these rules break the model. x represents the original sentence and x̃ represents an adversarial example.

Ribeiro et al. [98] propose rules by simply observing individual word changes found by the SEA
method discussed earlier, and then compute statistics on the bi-grams of the changed word and the
Part of Speech of the adjacent word, Figure 18 shows examples of this. If the proposed rule has
a high success-rate (called �lp-rate), in terms of providing a semantically equivalent adversarial
sample, it is considered a rule.
The authors validate this approach by asking experts to produce rules, and then compare the

success-rate of human-generated rules and SEAR-generated rules. They �nd that the rules generated
by SEAR have a higher success-rate.

15.2 Compositional Explanations of Neurons

In Compositional Explanations of Neurons by Mu and Andreas [81], the rule generation problem is
simpli�ed by only relating the presence of input words to the activation of a single neuron.

The rules typically have the form of logical rules, meaning not, and, and or, where the booleans
indicate a word is present, although Mu and Andreas [81] do not make any hard constraints here.
For example, in an NLI task they also have indicators for POS-presence and word-overlap between
the hypothesis and premise. If these rules are satis�ed it means the neuron activation is above a
de�ned threshold. For example, in a ReLU(·) unit one can threshold if its post-activation is above 0.

fi

fi

ff

fi

((moving AND NOT house) OR feel) OR emotional

((best OR greatest) OR most) AND NOT bad 21%

13%

IoU

Fig. 18. Hypothetical example showing rules which activates a selected neuron. IoU is how o�en the rule

activated the neuron, compared to cases where either the rule is true or the neuron activated (higher is be�er).

Given a dataset D, a neuron activation I= (x), a threshold g , and a indicator function for the rule
'(x), the the aggrement between the rule and the neuron activation can be measured with the
Intersection over Union score:

IoU(=, ') =

∑

G ∈D 1(I= (x) > g ∧ '(x))
∑

G ∈D 1(I= (x) > g ∨ '(x))
(24)
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For one particular neuron =, the combinatorial rule ' is then constructed using beam-search
which stops at a pre-de�ned number of iterations. At each iteration, all feature indicator functions
(e.g. word in x) and their negative, combined with the logical operators and and or, are scored
using IoU(=, ').

Unfortunately, Mu and Andreas [81] do not perform any groundedness validation of this approach.
Furthermore, as the method only looks at the relation between the input and the neuron, it is
unclear how much the selected neuron a�ects the output.

15.3 Discussion

Future work. As mentioned, there is little work on rule explanations. While this is de�netly due to
the inherent challenge, it is not too hard to imagine something like the Anchor method be modi�ed
towards global explanation, in which case it would be a rule explanation.

Groundedness. Because the category of rule explanations can be very diverse, groundedness
evaluation would likely depend on the speci�c explanationmethod. However, generally functionally-
groundedness can be measured by asserting if the rule holds true by evaluating it on the dataset and
compare with the model response. Additionally, human-groundedness can be evaluated by asking
humans to predict the model’s output or choose the better model.

16 LIMITATIONS

While it is the goal of this survey to provide an overview and categorization of current post-hoc
interpretability for neural NLPmodels, we also recognize that the �eld is too vast to include all works
in this survey. To decide what works to include, the overall has been to focus on diversity in terms
of communication approach and information used. Essentially, to make Table 1 as comprehensive
as possible.

Communication approaches like input features and lingustic information have a particularly large
amount of literature, which we did not discuss, as that would outweigh other communication
approaches. For these two approaches we focus on highlighting the progression of the �eld.
Beyond this overarching limitation, the following two limitations are worth discussing.

Quantitative comparisons. Ideally, this survey would include quantitative comparisons of the
methods. However, there currently does not exist an uni�ed and principled benchmark yet. Pro-
ducing a principal benchmark is in itself extreamly di�cult and out of scope for this survey, in
Section 18 we discuss further where this di�culty comes from. Performing quantitative comparisons
would therefore best be left for future work on interpretability benchmarks.

Visual examples. Because communication is essential to this survey, visual examples of how the
method communicates have been provided throughout this survey. These examples are however
�ctive and optimistic, showing often the best case for each explanation method. However, in
practice, accurate and highly useful explanations can only be produced for some examples for
local explanations, or some datasets in the case of class and global explanations. Furthermore, the
visualizations are not necessarily the most e�ective visualizations but are instead what we believe
to be the most canonical visualizations.

How an explanation method should be visualized is its own �eld of study and should draw from
human-computer interface literature. This is something that was not covered in this survey.

17 FINDINGS

This survey covers a large range of methods. In particular, we discuss how each method communi-
cates and is evaluated. However, some discussion is not speci�c to any motivation, measure, or
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method for interpretability. Therefore, this section covers a few valuable �ndings which should be
discussed from a holistic perspective.

Terminology. Because interpretability is an emerging �eld, terminology still varies signi�cantly
from paper to paper. In particular, the terminology regarding measures of interpretability vary.
For example, human-groundedness is often confused with functionally-groundedness, and for each
measure category there are synonyms such as simulatability, and comprehensibility for human-

groundedness. Additionally, the terms for the communication types are sometimes confused. Espe-
cially, adversarial examples and counterfactuals are occasionally interchanged.

This survey does not seek to unify the terminology, but we hope it will at least serve as a source
to understand which terms mean the same and which terms are di�erent.

Synergy. Methods from di�erent communication approaches can bene�t each other. For example,
both the adverserial examples method HotFlip and the counterfactual methodMiCE uses the gradient
w.r.t. the input method from the input feature explanation literature. Recognizing these connections
allows for �exibility in explanation methods. In the aforementioned example, other input feature
explanations could have been used as well. Additionally, criticisms on the faithfulness of input
feature methods could a�ect its dependents.

Helpful complex models. Models like GPT and T5 are immensely complex and thereby contribute
to the interpretability challenge. However, importantly these models are not exclusively bad from
an interpretability perspective, as they are also used to provide �uent explanations. For example, in
counterfactual explanations Polyjuice uses the GPT-2 model and MiCE uses the T5 model. Similarly,
in natural language explanations CAGE uses GPT. As such, these complex models can not be said
to be exclusively counterproductive to interpretability.

18 FUTURE DIRECTIONS AND CHALLENGES

Interpretability for NLP is a fast-growing research �eld, with many methods being proposed each
year. This survey provides an overview and categorization of many of these methods. In particular,
we present Table 1 as a way to frame existing research. It is also the hope that Table 1 will help
frame future research. In this section, we provide our opinions on what the most relevant challenges
and future directions are in interpretability.

Measuring Interpretability. How interpretability is measured varies signi�cantly. Throughout this
paper, we have brie�y documented how each method measures interpretability. A general observa-
tion is that each method paper often introduces its own measures of functionally-groundedness or
human-groundedness. Even when established standards exist, such as the word intrusion test [26],
they get modi�ed. This trend reduces comparability and risks invalidating the measure itself.

It is important to recognize that measuring interpretability is, in some cases, inherently di�cult.
For example, in the case of measuring the functionally-groundedness of input feature explanations, it
is inherently impossible to provide gold labels for what is a correct explanation, because if humans
could provide gold labels we wouldn’t need the explanation in the �rst place. This fundamentally
leaves only proxy measures and axioms of functionally-groundedness. However, this doesn’t mean
highly principled proxy measures can’t be developed [51].
For this reason, we are encouraging researchers and reviewers to value principled papers on

measuring interpretability. Even if those measures don’t become established standards, a dedicated
focus on measuring interpretability is a necessity for the integrity of the interpretability �eld.

Class explanations. There is a large number of papers on explanation methods. However, class
explanations remain an underrepresented middle ground between local and global explanations.
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The speci�c communication approach chosen should re�ect its application, and for this reason,
no explanation type can be said to be superior. However, it’s important to recognize that local
explanations can only provide anecdotal evidence and global explanations can be too abstract to
ground what is explained. As such class explanations have their value, as they are not speci�c
enough to be anecdotal. Simultaneously, they are grounded in the class they explain, making them
easier to reason about. For this reason, we would encourage that class explanation gain equal
representation in interpretability research.

Sequence-to-sequence explanations. In this survey we frequently comment on if a explanation
method can be applied to sequence-to-class models or sequence-to-sequence models. Most methods
are primarily made for sequence-to-class models, and the few that apply to sequence-to-sequence
models are often not directly made for that purpose.
We suspect a reason for primarily explaining sequence-to-class models, is that sequence-to-

sequence explanations may depend on interactive visualization to a greater extent [72, 112, 118],
which is harder to implement and write about in typical machine learning venues.

Regardless, sequence-to-sequence models are widely used in real-life applications, for example
in machine translation. We therefore advocate for developing more explanations for sequence-to-
sequence models, or at the very least include an evaluation on a sequence-to-sequence model in
papers that provide methods that can operate on both types of models.

Combining post-hoc with intrinsic methods. Post-hoc and intrinsic methods are in literature,
including this paper, represented as distinct. However, there are important middle grounds.
As mentioned in the introduction, most intrinsic methods are not purely intrinsic. They often

have an intermediate representation, which can be intrinsically interpretable. However, producing
this representation is often done with a black-box model. For this reason, post-hoc explanations are
needed if the entire model is to be understood.
Beyond this direction, there are works where the training objective and procedure helps to

provide better post-hoc explanations. This survey brie�y argues that the Kernel SHAP method exists
in this middle ground, as it depends on input-masking being part of the training procedure. In
computer vision, Bansal et al. [10] show that adding noise to the input images creates better input
feature explanations. In general, we hope to see more work in this direction.

19 CONCLUSION

This survey presents an overview of post-hoc interpretability methods for neural networks in
NLP. The main content of this surveyis on the interpretability methods themself and how they
communicate their explanation of the model. This content is categorized through Table 1.

Throughout the survey, we also refer back to measures of interpretability (section 4) to describe
how each paper evaluates its proposed method. Measuring interpretability is an often underval-
ued aspect of interpretability with little standardization of the benchmarks. However, by brie�y
mentioning each method of measurement, we hope that this will lead to less fragmentation.
Finally, we discuss interesting �ndings and future directions, which we consider particularly

important. Overall, we hope that Table 1, the discussions of each communication approach and
their methods, and the �nal discussion sections help frame future research and provide broad
insight to those who apply interpretability.
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