
 

Post-Layout Comparison of High Performance 64b Static Adders in Energy-

Delay Space 

 

 

Sheng Sun 

Advanced Micro Devices, Inc. 

Sunnyvale, CA 94088 

sheng.sun@amd.com 

 

Carl Sechen 

EE Dept, University of Texas at Dallas  

Richardson, TX 75083

carl.sechen@utdallas.edu

 

 

Abstract  

 
Our objective was to determine the most energy ef-

ficient 64b static CMOS adder architecture, for a 

range of high-performance delay targets. We examine 

extensively carry-lookahead (CLA) and carry-select 

adders with a wide range of tradeoffs in logic levels, 

fanouts and wiring complexity. We propose sparse 

CLA adder architectures based on buffering tech-

niques to reduce logic redundancy and improve energy 

efficiency. All the designs were implemented using an 

energy-delay layout optimization flow with full RC 

extraction. Our new 64b adder designs have a relative 

delay as low as 9.9 FO4 (fanout-of-four inverter) de-

lays and promise better scaling for smaller technology 

nodes. They yield the best energy efficiency for a wide 

range of delay targets and are 30%, 15% and 7% 

more energy efficient than full Kogge-Stone, sparse-2 

Kogge-Stone and Han-Carlson, respectively, at the 

fastest points. They consume only about 1/3 the energy 

of dynamic adders. 

 

1. Introduction 

 

A 64b adder is an essential component of state-of-

the-art high-performance microprocessors. Tradition-

ally, dynamic circuits were used to achieve best per-

formance [23][24]. However, the dominant concern 

nowadays is energy efficiency and robustness. Static 

CMOS circuits have recently gained renewed interest 

for high performance applications [19]. A static 

CMOS design reduces power considerably since it 

does not consume any clock power and has low 

switching activity.  

Carry lookahead (CLA) [4] and carry select [3] 

are the most popular high performance addition tech-

niques [1]. Brent-Kung [5], Kogge-Stone [7] and Lad-

ner-Fischer [6] are three basic CLA tree structures. 

The most promising high performance architectures 

are those with nearly minimal logic depth. Brent-Kung 

has large logic depth due to back propagation. The 

Knowles family of adders [9], with Kogge-Stone and 

Ladner-Fisher as the two end cases, all have minimum 

logic depth. Logic depth is reduced either by replicat-

ing carry tree as in Kogge-Stone (with large logic re-

dundancy), or by increasing tree node fanouts as in 

Ladner-Fischer. Han-Carlson (HC) [8] is a sparser 

variant of Kogge-Stone and has one extra level. Ling’s 

equations [10] can eliminate a preliminary level. Carry 

select can be combined with the CLA tree to achieve a 

sparser CLA tree, probably reduced fanouts and re-

duced logic levels. 

 This work explores the tradeoffs of high perform-

ance tree adders and their hybrids. We also propose 

sparse CLA architectures based on buffering tech-

niques to reduce logic redundancy and improve energy 

efficiency.  This work aims to demonstrate the best 

architectural candidates in static CMOS for a range of 

energy and delay (E-D) targets. 

Numerous publications have compared major ad-

der architectures [9][13][14]. However, they tend to 

use simplified models or have done layouts on a lim-

ited number of architectures (and only for a single de-

lay point). To evaluate many adder architectures for 

VLSI design in energy-delay space, we utilized the 

automatic layout flow in [16], which seeks to opti-

mally minimize energy via cell sizing for a specific 

delay target. 

 

2. 64b adder architectures 
 

We focus on CLA tree adders, and hybrids with 

carry select, classified as the two basic types in Fig.1. 

For one type, the CLA tree generates a carry at each 

bit, and finally an XOR or XNOR gate is used to ob-

tain the sum. For the other type, the CLA tree only 

generates a carry for each sub-block, and then the 

carry is used to select one of the two pre-computed 

sum blocks. For the hybrid structure, sparseness 2 or 4 

(with carries generated every other bit or every 4 bits) 

is normally appropriate for static CMOS designs. Non-

critical presums (4b for sparseness 4) are computed in 

ripple carry fashion using downsized gates for energy 

efficiency. 

 

1-4244-1258-7/07/$25.00 ©2007 IEEE 401



 

Radix-2 (carry-merge of 2 bits) is most suitable 

for static designs [1]. For a 64b radix-2 adder, the 

minimum logic depth is 1+log264+1=8, which is the 

case for Kogge-Stone, Ladner-Fisher, all other 

Knowles adders and their sparse hybrids. Han-Carlson 

has 9 levels. By applying Ling’s equations [10][25], 

we can eliminate one level. We will first present a 

range of basic architectures that have near minimum 

logic depth. Then we propose adder architectures 

based on buffering techniques to reduce logic redun-

dancy and improve energy efficiency. We also discuss 

Brent-Kung variants that have more logic levels. We 

have a good diversity of architectures, with various 

tradeoffs of logic levels, fanouts and wiring flux. 

 
Fig.1. General structures of two types of CLA ad-

ders (a) pure CLA without carry select 

(b) Hybrid sparse CLA with carry select 

 

Unless otherwise noted, all the architectures im-

plement equation (1) for preliminary single-bit gener-

ate and propagate and (2) for group GP logic, repre-

sented by symbols in Fig. 2. The figure shows non-

inverting logic. But actual carry-merge cells are im-

plemented as CMOS inverting gates as (3)-(4), alter-

nating along logic stages. 

 g i=Ai
�B Bi,  p i=Ai+BiB

  (1) 

jkkikiji GPGG :1::: −•+= , , i ≥ k > j (2) jkkiji PPP :1:: −•=

 jkkikiji GPGG :1::: −•+= , jkkiji PPP :1:: −•= ;    (3) 

 )( :1::: jkkikiji GPGG −+•= , jkkiji PPP :1:: −+=  (4) 

 

i:j

i:j

i:k k-1:j

i:j

i:k k-1:j

i:j

Gi:k

Pk-1:j

Gk-1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk-1:j

Gi:j Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Black cell Gray cell Black Buffer

i:j

i:j

Gi:j

Buffer

 
Fig. 2. Group GP cells 

Our adder implementations use only maximum-

two-stack gates, including inverter, NAND2, NOR2, 

AOI21, and OAI21 complementary static gates. Pass-

transistor gates are also used extensively for their effi-

ciency in implementing XOR/XNOR and MUX func-

tions, essential for adder sum calculation and carry 

select. From now on, we will only show the critical 

CLA trees. 

 

2.1. Basic Architectures with Near Minimum 

Logic Depths 
 

For clarity, only shown are the wirings for the 

most significant and the least significant merge cells, 

unless otherwise noted. The intermediate wirings in 

between are the same but with shifted positions. Bit “-

1” is adder carry-in. Lateral fanout is the fanout to 

higher bit positions, rather than the same bit position. 

 

Full Kogge-Stone [7].  The full Kogge-Stone has fan-

out of 2, almost uniformly. It may be the fastest at 

schematic level. But with its large number of cells 

(with logic redundancy) and wires, it may not be very 

fast with extracted RC parasitics, and certainly not 

energy efficient. 

 

Knowles [2,2,1,1,1,1] (Fig. 3).  The lateral fanouts are 

2 for L5 (logic level 5) and L6. For L5 and L6, only 

lateral fanouts are shown. L1 to L4 are the same as for 

the full Kogge-Stone. The idempotent property [9] is 

used. For instance, the two sub-trees of L6:61 have 

overlap at bit 46. Compared to full Kogge-Stone, it has 

more fanout on the critical paths at L5 and L6, but may 

only have a minor delay penalty due to the signifi-

cance of long wire load (relative to the load of gate 

fanouts). There is only half the number of long wires, 

which improves routing congestion and promises bet-

ter routing quality. The odd bits of L5 and L6 do not 

have any lateral fanout and become less critical, caus-

ing the total number of critical paths to be reduced, 

which promises lower energy. It has almost the same 

number of cells as the full Kogge-Stone approach. 

 
Fig. 3. Knowles [2,2,1,1,1,1]  

 

402



 

Kogge-Stone Sparseness 2 and Han-Carlson.  Based 

on full Kogge-Stone, the two architectures have only 

half of the carry-merge nodes. The difference between 

sparseness 2 (SP2) and Han-Carlson (HC) is that the 

former uses carry select but the latter uses one extra 

level to generate carries for odd bits. SP2 has more 

cells than HC due to pre-computed sums. Both are 

often regarded as energy efficient fast designs. We 

also applied Ling’s approach to SP2 to save one level 

(referred to as KS_SP2_Ling). KS_SP2_Ling shares 

the same CLA tree as SP2 except the first level, and 

uses different sum equations [10][25]. 

 

Kogge-Stone Sparseness 4 (Fig. 4).  The global carry 

merge tree contains only about ¼ of the full KS tree 

(except L2). Carry-select does not reduce node fanouts 

of the Kogge-Stone type of tree structures, but the 

sparseness may provide energy efficiency.  

 
Fig. 4. Kogge-Stone sparseness 4 

Sparse Knowles [8,4,2,1,1,1] (Fig. 5).  We obtain this 

sparse tree from the other end of the Knowles prefix 

adders -- the Ladner-Fischer tree. Only lateral wirings 

are shown. The original 64b Ladner-Fischer tree has 

lateral fanouts of [32,16,8,4,2,1]. The sparse tree has 

fanouts reduced by 4X to [8,4,2,1,1,1]. We refer to this 

structure as Knowles [8,4,2,1,1,1] (shortened as 

KN8421). Compared to Kogge-Stone sparseness 4, it 

has more fanout, but reduced wires for L3 to L6. It has 

fewer full carry-merge cells (replaced by buffers) due 

to the lack of logic redundancy. 

 
Fig. 5. Sparse Knowles [8,4,2,1,1,1] 

The fanouts are still too large for fast implementa-

tion. The design in [15] employs a similar architecture 

but uses two extra levels to buffer large FO. Next we 

show our approaches to mitigate the effective fanout. 

 

2.2. New Architectures with Buffering 

 

Buffering is normally used to drive large loads, ei-

ther due to a large number of fanout gates, or due to 

long wires. We may classify the buffering techniques 

into three types:  1) Buffers are inserted between driv-

ers and their large loads, as in Fig. 6(a). This approach 

increases logic levels. 2) Make multiple copies of the 

driver, as in Fig. 6(b). The replica has been termed a 

“helper” in [12]. The helper essentially sizes up the 

driver. 3) Reduce the load to the critical path by using 

a “reducer”, as in Fig. 6(c). The reducer isolates the 

non-critical loads from the driver. These three tech-

niques can be combined in practice.  

 
Fig. 6. Buffering: (a) normal (b) helper/replica (c) 

reducer 

Based on the sparse Knowles [8,4,2,1,1,1] architec-

ture, we propose two improved architectures that in-

clude specialized buffering.  In Fig. 7, the maximum 

allowable equivalent fanout (FO) is set to about 3 (as-

suming the load of a buffer/inverter is relatively small). 

Bit 30 of L6 uses helpers with 3 replicas to drive 8 

gate loads and long wires. Non-critical bits (24,22,18) 

use a reducer at L6:14. For L6 critical bits (58,54,50), 

a helper was used at bit 46 of L5. We refer to this 

structure as KN8421_FO3. 

 
Fig. 7. New buffered sparse KN8421_FO3 

 

403



 

Similarly in Fig. 8, the maximum allowable 

equivalent FO is set to about 2. The carries at L7 drive 

four fanouts for 4b carry select. However, its L2 stage 

has only one fanout compared to two in the KS2_SP2 

or HanCarlson structures. We also experimented with 

a buffering level at L7 to drive fanouts of 4. Therefore, 

by using just a few extra buffers/replicas, these two 

modified architectures reduce critical path fanouts 

dramatically from the original sparse Knowles 

[8,4,2,1,1,1]. They promise better performance with 

energy efficiency.  

The fanout of 2 is near optimal for 2-stack static 

AOI/OAI gates (carry merge cells), with logical effort 

around 2 and stage effort around 4 [11]. 

Fig. 8 also employs some techniques that reduce 

power by about 10%. Some extra buffers unnecessary 

for speed are removed to save power. In addition, sum 

bits from 0 to 14 are generated by short ripple adders, 

which utilize fast carries at bit 0, 2, 6 and 10, respec-

tively. Carry signals on the critical path (-1, 0, 2, 6) are 

all buffered using reducers to avoid a speed penalty 

due to extra branch load. We refer to this improved 

design as KN8421_FO2_LP (which has 8 levels) and 

the version with an extra buffering level at L7 for carry 

select as KN8421_FO2_LP2 (which has 9 levels).  The 

same power-saving techniques are also applicable to 

the KN8421_FO3 version (referred to as 

KN8421_FO3_LP). 

 
Fig. 8. New buffered sparse KN8421_FO2_LP ( LP2) 

 

2.3. Variants of Brent-Kung (More Levels) 
 

So far we have been focusing on architectures 

with minimum logic depth. It is also worthwhile to 

explore the influence of larger logic depth. Brent-Kung 

structure limits fanout to be unity (not counting buffer 

fanout) and needs many more levels to compute the 

final carries. The 64b Brent-Kung version has 13 lev-

els (including the final sum level), as shown in Fig. 9. 

It is not suitable for an ultimate speed requirement. On 

the other hand, it has much less logic redundancy than 

the Kogge-Stone type of CLA trees and hence many 

fewer cells and consumes less energy. 

 
Fig. 9. Original Brent-Kung 

We would like to explore logic levels between the 

Brent-Kung end and those of nearly minimum depth. 

Fig. 10 is a sparse design with 10 logic levels (final 

sum level not shown), referred to as BK_L10. Sparse-

ness 4 reduces 2 levels. By eliminating the original bit 

30 buffer at L7, we further reduced one level. The 

lower half of the carry tree is either maintained or uses 

carry ripple to achieve low energy consumption. Some 

extra buffers/inverters are needed to maintain signal 

polarities.  

 
Fig. 10. Brent-Kung sparseness 4, with 10 levels 

(BK_L10) 

By increasing the effective load in L6 and L7, we 

can reduce further one level (Fig. 11). By using dupli-

cation, the maximum effective FO in the tree is about 

2. A few buffers are added to act as reducers (e.g., bits 

26 and 18 in L4 and L5).  

 
Fig. 11. Brent-Kung sparseness 4, with 9 levels 

(BK_L9) 

 

404



 

We would expect the BK_L9 to be comparable to 

our previous KN8421_FO2 structures. BK_L9 has 9 

levels, one more level than KN8421_FO2_LP, but 

with slightly smaller load in early carry-merge stages. 

It has same number of stages as KN8421_FO2_LP2, 

but the latter has one dedicated buffer level to drive 

larger carry select load, which could be more efficient.  

 

3. Optimization and implementation flow  

Fig. 12. Sizing and layout flow [16]  

 

Fig. 12 outlines the optimization (with sizing) and 

implementation flow we used [16]. The Synopsys 

tools AMPS, Pathmill, and Nanosim are used for siz-

ing optimization, transistor-level static timing analysis, 

and transistor-level energy simulation, respectively.  

Energy per operation is obtained by averaging over 

5000 random vectors. What is unique in this flow is 

the iTools place and route tool from InternetCAD.com. 

iTools’s great stability eliminates the need of multiple 

iterations as required by a regular P&R tool and guar-

antees rapid convergence. Assura parasitic extraction 

(RCX) from Cadence was used to extract the library 

cells. Star-RCXT from Synopsys was used for faster 

top-level full 3D RC extraction of the interconnect. 

We used the IBM 0.13um process in this work. 

Our cell library was optimized for energy efficiency, 

containing only energy efficient logic gates, each with 

many drive strengths and beta ratios (with transistor 

sizes available in the range of 0.28um to 10.92um.)  

For the adder design, a structural Verilog netlist is 

directly fed into the flow. The whole layout flow for a 

64 adder design only needs one day to get an opti-

mized E-D curve from full layout extraction, with 10-

20 or more energy-delay points. 

 

4. RESULTS AND DISCUSSIONS 
 

Unless otherwise specified, all designs have out-

put load of 30fF; maximum input capacitances are 

reasonably under control in the range of 30-40fF (for 

largest/fastest points); input signals are made realistic 

by being buffered by resistances equivalent to D-flip-

flop (DFF) drive strengths; and the FO4 inverter delay 

is 51ps at 1.5V, using actual (but rather slow) MOSIS 

fabrication run models for the IBM 0.13um process. 

We first compare the architectures using energy-delay 

(E-D) curves. We also tabulate some detailed results 

later in this section. We focus on the fastest points. 

The full Kogge-Stone adder (KS2_full or simply 

KS) gains several picoseconds at a cost of 17% more 

energy than the KN221111. At KN221111’s fastest 

point, KS consumes 9.3% more energy at the same 

speed (Fig. 13). KN221111 is more energy efficient 

when a tiny delay penalty can be tolerated.  
1. Gate sizing (AMPS) runs to determine Energy-

Delay (E-D) plots (using a wire load model) 

2. Select E, D points and execute iTools placement 

and routing  

3. Extract actual 3D wire loads (Assura RCX and 

Star-RCXT) and determine E, D 

4. Re-run sizer for one or more of the layout points 

5. iTools ECO place and route 

6. Extract 3D actual wire loads and determine E, D 

7. If necessary, repeat 4-6 once 

 
Fig. 13. KS vs. KN221111 

 
Fig. 14. KS and sparse variants 

Fig. 14 compares the full Kogge-Stone with its 

sparse variants. KS clearly consumes much more en-

ergy. HanCarlson (HC) is around 20ps slower but is 

about 20% more energy efficient than KS for the same 

speed at its fastest point. KS2_SP2 is only a couple of 

picoseconds slower than KS with 17% less energy for 

same speed. KS2_SP2 is faster than HC with more 

energy. KS2_SP4 has similar energy as KS2_SP2 and 

similar delay as HC at its fastest point. KS2_SP2_Ling 

consumes more energy than KS2_SP2 and is slower. 

Even though it has one fewer level on the critical paths, 

the first level AOI22 and OAI22 are rather slow and 

the more complex pre-sum blocks increase energy 

consumption. We do not see the advantage of the Ling 

method normally reported in dynamic designs, where 

more complex gates are favored to reduce logic depth. 

 

405



 

Overall, the KS2_SP2 and HC are the best candidates 

in this group for energy-efficient designs.  

Fig. 15 shows that the two versions of 

KN8421_FO2 have very similar energy and delay 

characteristics. The FO3 version is clearly slower and 

less energy efficient.  

        

Fig. 15. KN8421 FO2 (both LP and LP2) & FO3 

 

Fig. 16. FO2 vs. HC and SP2 

Fig. 16 compares the KN8421_FO2_LP2 with HC 

and KS2_SP2. Our new design achieves the best speed 

and energy efficiency for the whole delay range. It has 

no logic redundancy, more simple cells (buffers) and 

more cells in non-critical pre-sums. It has fewer long 

wires and is also better at driving wiring capacitance 

due to helpers: KN8421_FO2_LP has 4 drivers for a 

long wire, but HC and KS2_SP2 have only one driver. 

Our new designs promises better performance for 

65nm processes and below (as we observed in recent 

work), where wire capacitance becomes much more 

costly. 

The Brent-Kung (BK) family provides different 

tradeoffs (Fig. 17). The original Brent-Kung is a much 

lower energy design. Carry select structures BK_L9 

and BK_L10 achieve faster speed. The L9 version is 

faster than L10. However, BK_L9 is still worse than 

KN8421_FO2_LP2 in performance. The results indi-

cate that 8-levels with fanout of 2 seems optimal as in 

Kogge-Stone and KN8421_FO2_LP (for 

KN8421_FO2_LP2, the number of levels is 9, but one 

is an efficient buffering level). 

 
Fig. 17. Brent-Kung variants 

Fig. 18 shows how the KN8421_FO2_LP2 design 

points scale with VDD. (It is not a surprise we found 

that all architectures have similar scaling characteris-

tics). Fig. 18(a) shows the un-normalized delay (pico-

seconds) and Fig. 18(b) uses the normalized delay with 

respect to the inverter FO4 delay. 

Adder delays follow FO4 inverter delays closely, 

and the relative delay is almost constant in terms of 

FO4 when VDD varies. There is a different deviation 

for the two ends. For the fast points (with large sizes), 

smaller VDD results in better relative FO4 delays. 

This is possibly because wire RC delays contribute 

significantly for large designs and increasing VDD 

does not provide the same speedup as for pure gate 

delays (since wire RC delays are not sped-up).  On the 

other hand, for the low power points, the FO4 numbers 

increase with lower VDD, possibly due to the effect of 

threshold voltage (Vt) increases for narrow transistor 

widths (pages 48-50 of [2]). Those small transistors 

have a larger Vt loss for overdrive (VDD-Vt) and the 

influence is more significant for lower VDD.   

We can observe another point from Fig. 18(a). 

The highest VDD (1.5V) gives better energy efficiency 

for fast designs in a quite wide delay range (this con-

clusion may need correction when leakage becomes 

more significant for smaller technology nodes). Even 

though VDD is a strong factor of energy (square rule), 

the speed-up by upsizing is even more costly. On the 

other hand for the low power end, low VDD is desired 

as generally expected. 

Fig. 19 shows the wasted current percentage of the 

KN8421_FO2_LP2, with 11 points (number 1 is the 

largest/fastest, and 11 is the smallest). In our technol-

ogy process, the wasted current is mainly short-circuit 

current (leakage is negligible). The wasted current 

consumes from 2% to 10% of the energy; the higher 

the VDD, the larger the percentage. Short-circuit 

power scales faster than VDD2 as for capacitive 

switching power [17].  

 

406



 

 

 
(a) 

 
(b) 

Fig. 18. VDD Scaling (KN8421_FO2_LP2) (FO4 inverter 

delay is 51ps, 55ps, 61ps, 68ps and 79ps for VDD 1.5v, 

1.4v, 1.3v, 1.2v and 1.1v, respectively) (a) Delay in pico-

seconds (b) Delay in fanout-of-four inverter delay 

 

 
Fig. 19. Wasted current (short-circuit current) per-

centage (KN8421_FO2_LP2) 

 

  
 

Table 1. 64b adder results @ fastest points (load=30fF, 

1.5V, FO4 = 51ps. KS_SP2_L: KS_SP2_Ling, FO2_LP: 

KN8421_FO2_LP, FO2_LP2: KN8421_FO2_LP2; #C: 

#cells, #L: #levels, E: Energy,EDP:E-Delay Product) 

 
Table 2.  64b static adder results @ fastest points 

 (load=5fF, 1.5V) 
Delay Adder # 

C 

#

L 

ps FO4 

E 

(pJ) 

EDP

(ns*

pJ) 

Area 

(um^2) 

 

Full KS 904 8 532 10.4 25.0 13.3 32384 

FO2_LP 681 8 534 10.5 16.8 9.0 21634 

526 10.3 18.5 9.7 24126 FO2_LP2 693 9 

532 10.4 17.7 9.4 23602 

BK_L9 677 9 543 10.6 16.3 8.9 20344 

 
Table 3. Comparison with literature (S: static, D: dy-

namic, P: peak, E: energy per op., I: IBM SOI ) 

64b Adder Pro-

cess 

(um) 

Ty

pe 

VDD 

(V) 

De-

lay 

(ps) 

FO4 E  

(pJ) 

 

Area 

(um2) 

1.5 526 10.3 18.5FO2_LP2 
(load: 5fF) 

0.13 S

1.2 671 9.9 10.8

165x146

1.5 558 10.9 19.0FO2_LP2 
(load: 30fF) 

0.13  S

1.2 715 10.5 11.1

154x141

PATMOS  [18] 0.13 S 1.2  12.5 ~18

0.13I S 1.1 326 11.9* 11.5 461x151TVLSI ‘04 [19] 

(load: 40fF) 0.18I S 1.5 541 14.2* 29

ISLPED ’02 [20] 0.18I S 1.5 720  96 735x280

Knowles [9] 0.25 S 2.5  11.8 
TCOMP ‘05[21] 0.18 S 1.8 800  33904

ICECS ‘03[22] 0.18 S 1.8 980  54 14737

ISSCC ’06 [23] 0.13 D 1.2 238 3.9 30

D 1.0 240 7.7 P: 62 ISSCC ’06 [24] 0.09 

D 1.3 180  P:109

417x75

ESSCIRC [25] 0.13 D 1.2  6.8 33.5
*  As in [26], FO4 inverter delay is 38ps for the IBM 0.18um SOI 

process; we assume linear scaling for IBM SOI 0.13um FO4 delay. 

 

Table 1 lists the fastest points (the leftmost point 

in each E-D curve) we obtained for the major architec-

tures we have implemented, with load of 30fF at sum 

bits.  Table 2 presents the results for a couple of repre-

sentative designs with 5fF load (around a DFF load). 

Delay Adder # 

C 

#

L 
ps FO4 

E 

(pJ) 

EDP

(ns*

pJ) 

Area 

(um^2) 

548 10.7 29.7 16.3 34209 KS 904 8 

554 10.9 27.0 15.0 32358 

KN221111 901 8 554 10.9 24.6 13.6 29074 

HC 615 9 566 11.1 20.1 11.4 23950 

KS_SP2 677 8 552 10.8 22.5 12.4 26006 

KS_SP4 670 8 570 11.2 22.3 12.7 25212 

KS_SP2_L 674 7 567 11.1 25.5 14.5 28573 

FO2_LP 681 8 559 11.0 19.6 11.0 23399 

FO2_LP2 693 9 558 10.9 19.0 10.6 21769 

FO3_LP 623 8 612 12.0 20.4 12.5 22587 

Brent-Kung 471 13 667 13.1 14.4 9.6 16969 

BK_L9 677 9 590 11.6 18.3 10.8 20683 

BK_L10 607 10 626 12.3 16.8 10.5 19580 

 

407



 

For 30fF load, the full Kogge-Stone achieves a slight 

speed advantage (10ps or 0.2 FO4). However, when 

we count the input driver delay, our new 

KN8421_FO2 designs achieve the same speed. More 

importantly, the new designs with less wiring cost will 

scale better for a new technology.  

The new design FO2_LP2 is 30%, 15% and 7% 

more energy efficient (in terms of Energy-Delay Prod-

uct) than full Kogge-Stone, sparse-2 Kogge-Stone and 

Han-Carlson, respectively, at the fastest points. 

Table 3 compares our new static 64b adder de-

signs with the most recent high performance and en-

ergy efficient designs, for both static and dynamic cir-

cuits. The best static designs consume around 1/3 the 

energy of the dynamic designs and our designs com-

pare favorably to the other best static designs, in FO4 

delay, energy efficiency and area. 

 

5. Conclusion 
 

We examined extensively CLA and carry select 

adder architectures and considered their variants. We 

proposed improved architectures based on sparse CLA 

trees with specialized buffering techniques to reduce 

logic redundancy. The studied architectures span a 

wide range of tradeoffs in logic levels, fanouts and 

wiring complexity.  

Our newly developed 64b adder designs are the 

fastest static CMOS adders ever reported, with a rela-

tive delay as low as 9.9 FO4 delays (for 1.2V and 5fF 

output loads) and as low as 10.5 FO4 delays (for 30fF 

output loads). They yield the best energy efficiency for 

a wide range of delay targets (except at low power 

where Brent-Kung is preferred) and are 30%, 15% and 

7% more energy efficient than full Kogge-Stone, 

sparse-2 Kogge-Stone and Han-Carlson, respectively, 

at the fastest points.  They consume only about 1/3 the 

energy of the most energy-efficient dynamic adders. 

 

Acknowledgment 
We wish to thank Miodrag Vujkovic and Dave 

Wadkins for the flow support.  

 

References 
 
[1] N. Weste, D. Harris, “CMOS VLSI Design: A Circuits 

and Systems Perspective,” 3rd ed., Addison-Wesley, 

2004 

[2] J. P. Uyemura, “CMOS Logic Circuit Design,” Kluwer 

Academic Publishers, 1999. 

[3] Bedrij, “Carry-select adder,” IRE Trans. Electronic 

Computers, vol. EC-11, June 1962, pp. 340-346. 

[4] A. Weinberger, J.L. Smith, “A Logic for High-Speed 

Addition,” Nat’l Bur. Standard, Cir. 591, pp.3-12, 1958 

[5] R.P. Brent, H.T. Kung, “A Regular Layout for Parallel 

Adders,” IEEE Trans., C-31(3):260-264, March 1982. 

[6] R.E. Ladner, M.J. Fischer, “Parallel Prefix Computa-

tion,” J.ACM, 27(4):831-838, Oct. 1980. 

[7] P. Kogge and H. Stone, “A Parallel Algorithm for the 

Efficient Solution of a General Class of Recursive 

Equations,” IEEE Tran. Comp, August 1973. 

[8] T. Han, D.A. Carlson, “Fast Area-Efficient VLSI Ad-

ders,” IEEE Symp. Comp. Arithmetic, pp.49-56,  1987 

[9] S. Knowles, “A Family of Adders,” Proc. 14th IEEE 

Symp. Computer Arithmetic, pp30-34, April 1999. 

[10] H. Ling, “High-Speed Binary Adder,”  IBM J. Research. 

Develop. Vol. 25, No. 3, May 1981. 

[11] Sutherland, et al. “Logical Effort: Designing Fast 

CMOS Circuits,” Morgan Kaufmann, 1999 

[12] D. Harris, I. Sutherland, “Logical effort of carry propa-

gate adders,” The 37th Asilomar Conf. Signals, Sys-

tems & Computers, Vol 1.1, Nov. 2003, pp:873-878 

[13] V.G. Oklobdzija, et al. “Energy-delay estimation tech-

nique for high-performance microprocessor VLSI ad-

ders,” Proc, ARITH-16, 2003, pp:272-279. 

[14] Y. Choi, E. E. Swartzlander, “Parallel prefix adder de-

sign with matrix representation,” 17th IEEE Symp. 

Comp. Arithmetic, 2005 (ARITH-17),  pp90-98.  

[15] S. Mathew, et al., “A 4GHz 300mW 64b Integer Execu-

tion ALU with dual supply voltages in 90nm CMOS,” 

ISSCC 2004, Dig. Tech. Papers, pp. 162-519. 

[16] M. Vujkovic, D. Wadkins B. Swartz, C. Sechen, “Ef-

ficient timing closure without timing driven placement 

and routing,” Proc. DAC, June 2004, pp 268-273. 

[17] H. Veendrick, “Short-circuit dissipation of static CMOS 

circuitry and its impact on the design of buffer circuits,” 

IEEE JSSC, Vol. 19, no. 4, Aug 1984, pp468-473. 

[18] R. Zlatanovici, et al. “Power - performance optimiza-

tion for custom digital circuits,” Proc. Integrated Circuit 

and System Design: PATMOS 2005, pp.404-414. 

[19] A. Neve, et al. “Power-delay product minimization in 

high-performance 64-bit carry-select adders,” IEEE 

Tran. VLSI, Vol. 12, March 2004, pp. 235-244. 

[20] Neve, et al."Design of a branch-based 64-bit carry-

select adder in 0.18 um partially depleted SOI CMOS," 

Proc. ISLPED, 2002, pp.108-111. 

[21] G. Dimitrakopoulos, D. Nikolos, "High-speed parallel-

prefix VLSI Ling adders," IEEE Tran. Computers, 

Vol.54, Issue 2, Feb. 2005, pp.225 – 231. 

[22] S. Perri, et al. "A low-power sub-nanosecond standard-

cells based adder," ICECS, 2003, vol.1, pp. 296-299. 

[23] K.H.Chong, L. McMurchie, C. Sechen, “A 64b Adder 

Using Self-Calibrating Differential Output Prediction 

Logic” ISSCC 2006, Dig. Tech. Papers, pp. 440-441. 

[24] S. Kao, et al. “A 240ps 64b Carry-Lookahead Adder in 

90nm CMOS,” ISSCC 2006, Dig. Tech. Papers, pp. 

438-439. 

[25] R. Zlatanovici, B. Nikolic, “Power - performance 

optimal 64-bit carry-lookahead adders,” European 

Solid-State Circuits, ESSCIRC 2003, pp.321-324.  

[26] D. Stasiak, F. Mounes-Toussi, S.N. Storino, “A 440-ps 

64-bit adder in 1.5-V 0.18 um partially depleted SOI 

technology”, IEEE JSSC, Oct. 2001, pp. 1546-1552. 

 

 

408


