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POST-LOCAL-BUCKLING BEHAVIOR OF
THIN-WALLED COLUMNS
by

Shien T. Wang1 and Yei L. Tien2

INTRODUCTION

Concentrically loaded columns can buckle by (1) bending about one of
the principal axes; (2) twisting about the shear center; (3) simultaneous bending
and twisting, i.e. torsional-flexural buckling; and (4) interaction of local and
column buckling. For a compact thin-walled column, buckling will be governed
by one of the first three modes, depending on the sectional geometry and the
slenderness ratio of the column. For a noncompact thin-walled column,
overall column buckling is coupled with local buckling.

For an unsymmetrical compact section, the buckling modes would all
be torsional-flexural. For a singly symmetrical section, in which the centroid
and the shear center do not coincide but are on the axis of symmetry, the buckling
modes would be torsional-flexural along with buckling about the axis perpendi-
cular to the axis of symmetry. For a doubly symmetrical section, flexural
buckling about two axes of symmetry and torsional buckling are not coupled;
these buckling modes can be treated separately. These problems have been
treated extensively in the literature (4, 12).

For noncompact columns, the interaction of torsional-flexural and local
buckling is extremely complex. Even for simple cases, the analysis could be
tedious. Bijlaard (3) was one of the earliest to investigate this problem

regarding the overall buckling of a locally buckled column. Several other
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investigators studied the behavior of noncompact channel sections (6, 25).
Venkataramaiah studied the post-buckling behavior of columns with lipped
channel sections (18). Graves-Smith (7) presented a theory to predict the
ultimate strengths in compression of thin-walled rectangular columns of such
proportions that they buckle locally. In his analysis, the post-buckling behavior
of short columns was studied by a variational principle involving plasticity. The
reduction in strength of longer columns with buckled plates, caused by overall
buckling, was assessed by obtaining the apparent reduced internal bending
stiffness of the locally buckled section. The bending strain was imposed on the
locally buckled plates. The von Karman equations were modified to describe the
new situation of an infinitesimal strain applied to the already strained columm.
A relaxation procedure was employed for the above solution.

Jomb ock and Clark (8) developed an approximate method of analysis for
this type of member based on the concept of effective width of the elemenis.
Bulson (2) suggested an interaction equation to deal with this problem. A brief
review on the design aspect of this subject was presented by Sharp (15). Uribe
and Winter (16) also used the effective width concept to study the noncompact
column strength. Using the same concept, Vaidya and Culver (17) studied
the behavior of thin-walled columns subjected to impact loading.

Rhodes and Harvey (13) studied theoretically the local buckling and post-
local-buckling behavior of thin-walled lipped channel beams subjected to equal
end moments. The results obtained by them showed good agreement with thosé
obtained by using Winter's equation (1, 24) which is an experimental modification
of von Karman's effective width expression (19). This effective width concept
has been used successfully also in the many studies of thin-walled beams sub-
jected to static and impact loads (16, 20, 21, 22, 23, 26).

In the present paper, a numerical method is presented to study the post-

local-buckling behavior of rectangular thin-walled columns. The effective
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width concept is used to account for the pest-local-buckling strength of the
buckled plate elements. The elasto-plastic material characteristics are also
considered. In addition, the effects of local buckling on the column strength and
the behavior of the laterally deflected locally buckled rectangular column are
studied. The results obtained in this study are then compared with the current

AISI design method.

STRENGTH OF LOCALLY BUCKLED COLUMNS

Interaction of Local and Column Buckling. - The study reported herein
is concerned with doubly symmetric noncompact columns under concentrical
axial loading. In this case, only the interaction between local and flexural
buckling need be considered. If the local buckling stress of an individual plate
element is smaller than the column buckling stress about the weak axis of the
section (y axis), the column will buckle locally before the overall column strength
is reached. The locally buckled column can often support considerable extra
load after local buckling depending on the slenderness ratio of the column (7, 8).
This is due to the post-local-buckling strength of the buckled plate elements which
comprise the section of the column.

The available post-buckling strength in these buckled thin compression
elements can be accounted for by the concept of effective width which has been well
established in light-gage steel design (1). A typical buckled rectangular thin-walled
section subjected to a concentric axial load is shown in Fig. 1(a). The effective
width concept of the buckled compression element is shown in Fig. 1 (b). For
this study, Winter's effective width equation (I, 24) is used to account for the

post-buckling 'strength of the buckled compression element of the column.

o

= L9 |-E_ g-0.452t E ) (1)
O max L \Gma.x




56 SECOND SPECIALTY CONFERENCE

when tE > 1.288 Ii— (2)
Omax

in which b = effective width of the compression element stiffened along both

unloaded edges; t = thickness; E = modulus of elasticity in compression, 29.5x

3

10°ksi in this study; w = flat width of the compression element exclusive of

fillets; and Bl e = edge stress. For values smaller than 1. 288] m}zx ., b=w.

For columns with cross-section having small w/t ratios of the component
plate elements or if the slenderness ratio of the column is large, the column
buckling stress may be below the local buckling stress of the element of the
section. In this case,  the column strength is determined by flexural buckling
about the weak axis of the cross-section, i.e. the y axis. For columns with
cross-sections having large w/t ratios of the component plate elements, or if
the column is fairly short, local buckling will occur before the flexural column
buckling load is reached. In this case, the column strength is determined by the
effective cross-sectional area of the column. This strength may be governed
by the yield siress of the steel or by the flexural buckling stress of the
effective area of the column about the weak axis, depending on the slenderness
ratio of the column. Based on the assumptions that the column is perfectly
straight, i.e. without any imperfection, and that it has a constant effective are2
at the instant of flexural buckling, the strength of the locally buckled column
can be obtained by the procedure outlined below.

Method of Analysis. - An iterative procedure is employed to predict
the post-local-buckling strength of the noncompact columns. The following
steps are involved.

(1) The Euler buckling load about the weak axis, Pl’ is first computed

based on the full, i.e. unbuckled, cross-section of the column,
2E 1
™

5 B —a‘l— (3)

in which Iy = moment of inertia of the full cross-section about the y axis; and
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1, = column length.

(2) The stress, rqs ON the full cross-section is computed by

Py
0t E (4)
in which A = full cross-sectional area. Using this stress, the effective widths
of the buckled elements can be computed by using Eq. 1. The effective area of
the cross-section, Aeff’ and the effective moment of inertia of the cross-section,
Iy ofr C2N then be computed.
(3) Based on the effective moment of inertia of the section, a new

load Pi can be computed by

2
E i
P, = "‘ (iy eff)i (5)
1

in which i = number of iteration.

(4) The stress on the effective cross-section, @y can be obtained by

i
o = (6)
s

=]

The effective moment of inertia (I and (A _g). ) can then be computed.

y eff}iﬂ

(5) Repeating steps 3 and 4, the load will rapidly converge to the buckling
load, P_ . The iteration procedure is halted when two loads, consecutively
computed by Eq, 5, are within a predescribed convergence limit.

For a given section, if the buckling stress computed from Eq. 2 is
larger than that computed from Eq. 4, the flexural buckling of the full section
Will take place before the occurrence of local buckling, i.e. P, = P;. Onthe
Other hand, if the computed critical buckling stress of the effective area of the
buckled column is larger than Fy, the yield stress of the steel, the column
buckling load, P__, is

cr

(7

H¥hich (Aeff)y = effective cross-sectional area caused by the uniformly
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distributed yield stress.

A computer program following the above procedure has been prepared.
Five sections, covering a wide range of width to thickness ratios of the ¢
and R flanges, are considered. The dimensions of these sections are shown
in Table 1 with reference to Fig. 1. It should be pointed out that for these
sections, only thea and B flanges are allowed to buckle locally and the other
two sides are compact. The yield stress and the modulus of elasticity of the
steel considered are 50 ksi and 29.5 x 10° ksi, respectively. The computed
buckling loads of the locally buckled columns are shown in Fig. 2. The slender-
ness ratios of the columns are based on the buckled section. It is seen from the
figure that the rate of increase of load carrying capacity of the columns decreases
with the increase of the w/t ratios of the % and ” flanges of the cross-section.

It should be noted, however, that the effects of the deviations from the
elasto-plastic stress-strain response of the sections as well as the possible
cold-forming strengthening effects are not accounted for in the above analysis.
These effects can be taken into account numerically by the method suggested
by Peterson and Bergholm (11) and later by Karren and Winter (9).

Comparison with AISI Design Curves. - In the AISI Specification (1)
the effect of local buckling on column strength is taken into account by using 3
form factor Q@ £ 1 which represents the weakening influence of local buckling:
The Q factor for a noncompact column composed entirely of stiffened elements
may be defined as follows: For a very short column, the load carrying
capacity of the column, P, is given by Eq. 7. Dividing both sides of Eq. 1

by the original full cross-sectional area A, results in

P (A_.)
£f
cr _ eff'y Fy (8)
or [Fcr)avg =QFy (9)
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in which (Fcr)avg is the average critical column buckling stress and Q is the
form factor. This Q factor is the ratio of the effective cross-sectional area
due to a uniformly distributed stress Fy to the original full cross-sectional
area. KEq. 9 indicates that the strength of short noncompact columns can be
predicted by replacing Fy by Q Fy‘

Using the computed Pcr in Fig. 2 for Section 3 of Table 1, @ = 0. 548,
and the slenderness ratio of the column based on the radius of gyration of the
full cross-section, the computed average buckling stresses for the full cross-
section are shown in Fig. 3. This is a typical column curve for a noncompact
column. The slenderness ratio H,fr)y is the upper limit for a locally buckled
column failing by yielding, while (L!r‘)E is the lower limit for Euler buckling
with respect to the weak axis without the influence of local buckling. The
determination of (L{'r)E is based on the stress obtained from Eq. 2 for the
largest given w/t ratio of the compression element of the section. These
limiting slenderness ratios are dependent on the Q factor of the section as well
as on the dimensions and arrangements of the individual component elements.
The effects of local buckling on the column strength can be seen clearly. The
average column buckling stress curve obtained in this manner is in a form similar
to that obtained by Graves-Smith (7) using a more rigorous theoretical approach.

The following parabolic type formula is recommended in the AISI Specifi-
cation for noncompact columns with moderate slenderness ratios:

QF. )2

= = LARY (10)
Fcr)avg Q Fy z—z%—ﬂ (r' )
in which 1/r = slenderness ratio of the column referring to the full cross-section.

Eq. 10 is applicable up to

- |2E (11)

.
limit (R Ty

(%)

beyond which the Euler buckling without local buckling governs. This formula
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is not different from the one used for compact sections in both the AISC and

the AISI Specifications, except that Fy has been replaced by Q Fy. In the
commentary on the AISI Specification it is pointed out that this approach is
conservative. This has been verified recently by tests (16) for columns with small
or moderate slenderness ratios (up to 90) and with Q values slightly less than
one. It is interesting to compare the results obtained in the present study with
the values based on the AISI Q factor approach. Using the actual Q factor of each
section and the slenderness ratio of each column based on the radius of

gyration of the full cross-section, the comparison of the computed average
critical stresses are shown in Fig. 4.

Examining this figure, it appears that: (1) For columns with small and
moderate slenderness ratios (4/r < 90), the AISI approach using a parabolic
formula modified by a Q factor is conservative. This is still true if the inelas-
ticity and the corner strengthening effect are taken into account. Thig has also
been verified by tests by Uribe and Winter (16). (2) For columns with inter-

mediate to large slenderness ratios (90 < 1/r < (4/r) the Q factor approach

B
(Egs. 10 and 11) does not seem to be conservative. This unconservativeness
increases with decreasing Q values. This is especially true for sections with
a Q value smaller than 0.75. (3) For columns with very large slenderness
ratios ( £/r >( M’r)E), the column strength is determined by the Euler buckling
load and not influenced by local buckling. (4) The computed values of (Ur)E
are larger than those obtained from Eq. 11, especially for sections with small
@ factors.

It should be pointed out, however, that the limiting slenderness ratio
(—L}'r)E was determined based on the critical stress computed from Eq. 2 for
the largest w/t ratio of the compression elements of the cross-section. The
computed critical stress from Eq. 2 is lower than the buckling stress of a Perfed

plate since the initial imperfections of real plates are considered in Eq. 2. This



POST - LOCAL - BUCKLING OF COLUMNS 61

(u’r)E is determined based on the local buckling considerations.

Based on these observations, it seems that the approach recommend ed by
AISI using a parabolic formula modified bya Q factor (Eqs. 10 and 11) may not
be conservative for the columns considered in this study with intermediate to

large slenderness ratios and with small @ factors.

INTERACTION OF LOCAL BUCKLING AND COLUMN DEFLECTION

It should be noted that in the preceding analysis, the locally buckled column
is kept straight throughout the whole loading range until the column flexural
buckling 1oad of the effective cross-section is reached. Due to column initial
imperfections, the straight form equilibrium position may not be possible. This
could also happen for a perfectly straight column with initial imperfections in
the component plate elements or with any disturbance during loading process.

It is, therefore, necessary to study the post-local-buckling behavior of thin-
walled columns containing a very small imperfection since such an imperfection
always exists.

Interaction of Local Buckling and Lateral Deflection. - When a bending
stress distribution is imposed on a locally buckled column, the compressive
Stress on the concave side is increased with a further reduction in effective
width. On the other hand, unloading takes place on the convex side of the
column and part of the elastically buckled plate element becomes effective again.
This interaction is shown in Fig. 5 at the end, quarter, and half points of a
locally buckled column. After bending, the effective cross-section of the locally
buckled column becomes singly symmetric. The centroidal axis of the effective
area will shift towards convex side of the column. The column therefore becomes
& nonprismatic member. In addition, the so called P- p effect must be taken into
account. Therefore, the laterally deflected, locally buckled, column has to be

treated as a nonprismatic beam-column. The problem can no longer be treated
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as a bifurcation phenomenon.

Method of Analysis. - A numerical method is presented below to study the
behavior of the locally buckled column subjected to lateral deflection. In this
case, the relationships between moment, curvature, and axial load for a
locally buckled cross-section are required. Using a numerical approach similar
to the one used earlier (20) for establishing the relationship between moment and
curvature for noncompact thin-walled beams, and also similar to one which
has been used for reinforced concrete columns (5, 14), a procedure has been
developed which permits one to obtain the complete axial load - moment - curvatur
relationship of the buckled thin-walled sections directly. The following steps
outline a scheme to completely analyze such a section:

(1) The section is divided into j subareas.

(2) The location of a neutral axis is assumed (parallel to the y axis).

(3) A compressive strain ¢ is assumed at the outmost fiber of the

B flange, and the strains and stresses at the centroid of each
sub-area is computed using the plane section assumption.

(4) The curvature can be computed from strain and the location of the

neutral axis.

(5) The effective widths of the compression elements (& and Rflanges)

are computed based on the stress of the element considered using
Eq. L.

(6) The forces in each sub-area are then found.
(7) Summing forces gives P, the axial force the cross section will be
resisting under the assumed condition. Summing moment of

forces about the y axis, the moment the section is resisting, is

obtained.

(8) A new value may be chosen for the compressive strain and the procedure

repeated from Step 3.
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(9) A new location of the neutral axis may be assumed and the procedure
repeated from Step 2.

(10) The resulis are arranged in a tabular form of P - M - § for the
purposes of interpolation or curve fitting.

For a given P, a set of moment and curvature data can be found for a
given location of neutral axis. Therefore, using many different locations of
the neutral axis, a complete set of moment-curvature data can be found for a
given P. The above procedure is illustrated in Figs. 6 and 7.

Since the deflected equilibrium position of the locally buckled column
subjected to a certain axial load is not known, it has to be determined by
iteration, taking into account the nonlinear moment-curvature relationship of
the section. By dividing the column into segments, Newmark's numerical
integration procedure (10) may be used over the length of the column. When the
desired convergence limit is reached, the deflected shape is obtained. Using
an incremental axial load, the load-deflection relationship of the buckled column
can be established. When convergence is not possible, this signifies the
attainment of the ultimate carrying capacity of the column. In this study, the
Possible torsional response of the buckled column after bending has been ignored.

Typical Load-Deflection Curve of A Locally Buckled Column. - The
typical load-deflection curve for a locally buckled column is shown in Fig. 8.
The local buckling load of the noncompact column, p__, is an important index

cr

which is defined as

Pop = Top A (12)
in whi . . , 5
ich o isequalto @ . in Eq. 2 corresponding to the w/t ratio of
the a and & flanges of the section. Above this load, the column will buckle

locally. For w/t = 100, P, is equal to 7.125 kips for Section 3. For loads well

below this, the column will converge to its original straight position when the
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deflection due to imperfection approaches zero. For loads above this P with
the same imperfection, the locally buckled column will converge to a deflected
position which is influenced by the local buckling, i.e. by the nonlinear moment-
curvature relationship shown in Fig. 7(c). The nonlinear effects become more
pronounced when the axial load becomes larger. However, because of the post-
buckling strength of the locally buckled column, the rate of increase of lateral
deflection of the buckled column with inereasiag axial load is reduced until the
locally buckled section is further weakened by yielding. Finally, the maximum
carrying capacity Pult is reached when convergence of the procedure is not
attainable. This will happen when the external moment due to deflection and the
axial load has reached the horizontal portion of the moment~curvature curve
for this load.

From this discussion, it can be seen that the behavior of a locally buckled
column is somewhat different from an ordinary compact column because of the
influence of local buckling beyond P, It would be of great interest to know
whethe r the ultimate carrying capacity of the locally buckled column with an
extremely small imperfection can go beyond the critical load derived from a
bifurcation analysis without considering the lateral deflection of the column.

Load-Deflection Curves. - Load-deflection curves for Section 3 of
Table 1 (w/t = 100 for @ and » flanges) at slenderness ratios 88,23 and 132. 35
are shown in Fig. 9. In order to obtain these curves different locations of the
neutral axis were assumed to generate the P - M - § data. The maximum
compressive strain used was 3 €y, where €y is the strain at the yield stress of
the steel. The strain increment was taken as 1/30 ey. The generated moment -
curvature data for several loads are shown in Fig. 7(c). The column length was
divided into 10 segments. A 20 segment model was found to yield similar
results as those of the 10 segment model.

For a column with a slenderness ratio ¢/r = 132, 35, it was found that
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the lateral deflection is very much influenced by the weakening effect of
local buckling. For loads slightly larger than the local buckling load Pops
the lateral deflections due to the load remain very small for an extremely small
imperfection. For a slightly larger imperfection, the magnitude of the deflection
increases. At a load about 80% of the computed P,,» the deflection increases
sharply. Due to the larger deflection involved, the external moment increases
rapidly. Because of this large deflection, it does not seem likely that the
carrying capacity of a noncompact long column with an extremely small
imperfection can go beyond Pcr before the horizontal portion of the moment-
curvature curve is reached. The maximum carrying capacity of this column
with an extremely small imperfection is below the P presented earlier in
Fig. 2 (about 85%).

For a column with a slenderness ratio 4/r = 88, 23 with an extremely
small imperfection, the lateral deflection is very small up to about 20 kips,
which is well beyond the P, which is 7.125 kips. The deflection increases
at a much faster rate beyond 20 kips. Due to the post-buckling strength of
the buckled column, the rate of increase of deflection is decreased up to loads
slightly beyond 22 kips. With additional increase of the axial load, the rate of
increase of deflection is then again increased until the external moment caused
by the deflection and the axial load reaches the horizontal portion of the moment-
curvature curve of the particular load considered. At this point, the column
fails. From the data obtained, the maximum carrying capacity of this column
Is in the vicinity of P .+ Because the deflection and the axial load create an
external moment in the vicinity of the horizontal portion of the moment-curvature
curve for P_ , it is likely that the maximum carrying capacity of this column
Will be only very slightly high than P__.

Despite the above, it is quite possible, however, that the maximum load

May go beyond P__ for columns with other slenderness ratios, other Q factors,
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other cross-sectional geometries, and other additional considerations.

Research on this subject is still continuing.

CONCLUSIONS

A numerical method has been presented for predicting the post-local-
buckling response of thin-walled rectangular columns. Nonlinearity due to
local buckling in the post-buckling range is accounted for by the effective
width concept.

For a concentrically loaded, perfectly straight noncompact rectangular
column, the critical column buckling load is derived by iteration from the
flexural buckling of the effective area of the buckled cross-section. The com-
puted average buckling stresses are compared with those obtained by using the
Q factor approach as recommended by the AISI. It seems that for columns
with small Q factors and with intermediate and large slenderness ratios, the
method recommended by the AISI may not be conservative for the cases
considered.

The P-M-§ curves for the locally buckled section are obtained by
numerical integration. The interaction between local buckling and column
deflection is investigated by using the generated P-M-§ data. Using Newmark's
numerical integration procedure, the deflected shape of the locally buckled
column can be predicted. It is shown that the load-deflection curve for a
locally buckled column with an extremely small imperfection is different from
that of a column without local buckling. The effect of local buckling on the
column behavior becomes more pronounced for loads well above the local
buckling load of the column. It is also shown that the locally buckled long
column (2 /r = 132.35) with an extremely small imperfection can not reach
the critical column buckling load P obtained by bifurcation analyses. This

does not exclude the possibility, however, that the deflected locally buckled
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column can not be loaded beyond Pcr fcr ecolumns with other slenderness ratios and
Q values and with geometries other than those considered. In fact, for a
shorter column (4 /r = 88.23), the maximum carrying capacity is in the
vicinity of Pcr' Research on this subject is still continuing.

Experimental verification will be very helpful to confirm the findings in this
report. Further study on this subject and other related problems is

urgently needed.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:
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original unreduced cross-sectional area;

effective cross-sectional area;

effective cross-sectional area corresponding to Fy;

flat widths defined in Fig. 1;

modulus of elasticity in compression, 29.5 x 103 ksi;
column buckling stress on the effective cross-sectional area;
column buckling stress on the full cross-sectional area;
moment of inertia about y axis;

effective moment of inertia about y axis;

moment;

axial load;

Euler buckling load of the full cross-section;

buckling load of the effective cross-section;

maximum carrying capacity of a column;

form factor defined in Eq. 9;

inside radius;

effective width;

number of iteration;

number of sub-areas;

column length

lower limit of the slenderness ratio for Euler buckling
of the full cross-section;

slenderness ratio limit defined in Eq. 1L;

upper limit of the slenderness ratio for column failure by
yvielding of the effective area;

load at which causing local buckling of the column;

71

radius of gyration for the full section with respect 10 the y axis;
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radius of gyration for the effective section with respect to the y axis;
thickness;

flat width exclusive of fillets;

= flat widths exclusive of fillets defined in Fig. 1;

flat width to thickness ratio;

strain;

strain at yield stress F_y;

uniform stress on the full cross-sectional area;

local buckling stress defi i - H
g ss defined in Eq. 2 as O

edge stress; and

curvature.
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TABLE 1. - COLUMN SECTION DIMENSIONS
Sections

Dimensions 1 2 3 4 5

() (2) (3) (4) (5) (6)
B, in in. 2. 025 5. 025 8.025 11.025 14.025
B, in in. 2. 025 2.025 2.025 2. 025 2. 025
R in in, 3/16 3/16 3/16 3/16 3/16
t in in, 0. 075 0.075 0.075 0.075 0.075
wi/t 20 60 100 140 180
wolt 20 20 20 20 20
A% in in, 2 0.556 1.006 1.456 1.906 2. 356
r* in in. 0.783 0.874 0.906 0.923 0.933
QF* 1.0 0.1758 0. 548 0.426 0. 349

* For the full cros s-section

*Form factor based on Fy = 50 ksi
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