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Abstract

Background: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these

lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind

characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for

the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains,

and conventional histological techniques may indeed be insufficient to fully reflect the consequences of

cerebrovascular disease.

Discussion: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of

cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss

the frequent comorbidity of cerebrovascular pathology and Alzheimer’s disease pathology, as well as the difficult

and controversial issue of clinically differentiating between Alzheimer’s disease, vascular dementia and mixed

Alzheimer’s disease/vascular dementia. Finally, we consider additional novel approaches to complement and

enhance current post-mortem assessment of cerebral human tissue.

Conclusion: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of

in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic

accuracy of clinical diagnoses.

Keywords: Vascular dementia, Vascular cognitive impairment, Cerebrovascular disease, Cerebrovascular lesions,

Neuropathology, Magnetic resonance imaging, Post-mortem MRI, Mixed dementia
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Background
Cerebrovascular disease (CVD) is highly prevalent in

brains of the elderly. However, its impact on cognition is

less clear and while prevalence rates of vascular demen-

tia (VaD) are high in clinical studies CVD is rarely found

to be the neuropathological correlate of clinical demen-

tia in post-mortem studies. In this review we highlight

some of the current problems in the diagnosis of CVD

and present novel approaches that may prove helpful to

elucidate the impact of CVD on cognitive performance.

Methods
This article was conceived at the 9th International Con-

gress of Vascular Dementia by participants of the Neuro-

pathology symposium following a discussion on current

problems regarding the clinical and pathological diagno-

sis of VaD and CVD.

Neuropathology of cerebrovascular disease
Degenerative cerebral vessel pathology

Three diseases of cerebral blood vessels mainly contrib-

ute to vascular cognitive impairment (VCI) and/or VaD:

(1) atherosclerosis (AS), (2) small vessel disease (SVD)

and (3) cerebral amyloid angiopathy (CAA). AS is a de-

generative vessel disorder affecting large to medium

sized cerebral arteries, most commonly the basilar ar-

tery and the circle of Willis [1], and results in the

formation of atherosclerotic plaques due to accumula-

tion of cholesterol-laden macrophages. Mature athero-

sclerotic plaques calcify, which may lead to narrowing

of the artery lumen, and they are prone to rupture,

resulting in subsequent thrombosis and potential

thromboembolism [2].

SVD encompasses three degenerative alterations of the

vessel walls of smaller cerebral arteries and arterioles.

The first, SVD-AS, has a similar pathogenesis to large

vessel AS but affects small intracerebral and leptomenin-

geal arteries (200–800 μm in diameter), which develop

microatheromas. The second, lipohyalinosis, affects

smaller arteries and arterioles (40–300 μm in diameter)

and is characterised by asymmetric fibrosis/hyalinosis as-

sociated with cholesterol-laden macrophage infiltration

that can occur with or without plasma protein leakage

as a result of blood–brain barrier (BBB) breakdown. The

third, arteriolosclerosis, presents as concentric hyaline

thickening of small arterioles (40–150 μm) that may lead

to stenosis of the blood vessel [3]. SVD initially mani-

fests as lipohyalinosis and arteriolosclerosis in vessels of

the basal ganglia, that is, the putamen and globus palli-

dus, and then in leptomeningeal arteries. By contrast,

SVD-AS develops in the leptomeningeal arteries, and af-

fects brain stem arterioles only in the end stages of SVD.

Cortical vessels on the other hand remain relatively free

of SVD pathology [4].

CAA is characterised by the deposition of amyloid-

beta (Aβ) (predominately Aβ-40) in the vessel walls of

leptomeningeal and cortical arteries, arterioles, capillar-

ies and, rarely, veins [5]. This results in the loss of

smooth muscle cells, disruption of vessel architecture

and, in very severe stages, Aβ depositions in the adjacent

neuropil (i.e. dyshoric changes). Topographically, CAA

usually presents in the neocortex, with more frequent

and severe deposition seen in the occipital region,

followed by the allocortex and cerebellum, and finally in

the basal ganglia, thalamus and white matter [6].

Cerebrovascular lesions

AS, SVD and CAA can all lead to various cerebrovascu-

lar lesions (CVLs), including infarcts, haemorrhages and

white matter lesions (WMLs). Ischaemic infarcts are typ-

ically observed after thrombotic or thromboembolic oc-

clusion of large to medium arteries, often as the result of

an AS plaque rupture. Haemorrhagic infarcts can occur

in infarcted regions in which the remaining vessels have

fragile vessel walls as a result of SVD or CAA, or they

may be caused by venous obstruction; less commonly,

haemorrhagic infarcts in the brain can be caused by col-

lateral blood influx into an infarcted area [7]. Large in-

farcts (>15 mm3) are frequently the result of thrombotic

(AS) or thromboembolic (AS, extracranial AS, cardio-

genic) occlusion of the vessel lumen [8]. Lacunar in-

farcts, that is, cavitating infarcts (5–15 mm3), are largely

confined to the white matter and subcortical grey matter,

and they are therefore primarily associated with SVD

[9]. Microinfarcts (<5 mm in diameter) can be present in

both the cortex and white matter, and they are associ-

ated with CAA and SVD respectively [3]. While cerebral

haemorrhages (>10 mm in diameter) can result from all

types of vessel disorders, those located in the subcortical

grey matter, brain stem and deep white matter are

strongly associated with SVD, whereas lobar haemor-

rhages are most commonly associated with CAA. Small

haemorrhages (<10 mm in diameter) and microbleeds

may histologically appear as extravasations of erythro-

cytes, but more frequently the only histological corre-

lates of microbleeds diagnosed by in vivo imaging are

haemosiderin-laden macrophages in the perivascular

space, which may or may not be the residue of a bleed.

In the cortex, small haemorrhages and microbleeds are

associated with CAA [10], whereas those located in the

white matter, subcortical grey matter and brain stem are

associated with SVD [11]. WMLs encompass structural

damage histologically characterised by white matter rar-

efaction, that is, demyelination and axonal loss, mild

astrocytosis, oedema and macrophage reaction [3]. Of

note, subcortical U-fibres are usually spared. WMLs are

generally assumed by clinicians and radiologists to be

the result of SVD-related chronic hypoperfusion and
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BBB alterations [12–14], although it is unclear if peri-

ventricular WMLs and deep WMLs share the same

pathogenesis (Fig. 1). In addition, severe neurodegenera-

tive pathology in the cortex has recently been suggested to

cause WMLs (see section ‘White matter hyperintensities’).

Pathological classifications of vascular dementia

CVLs can result in ‘pure’ VaD, that is, extensive vascular

lesions, without widespread neurodegenerative pathology

such as Alzheimer’s disease (AD) or Lewy body path-

ology, which explains the clinical dementia. VaD can be

classified into three major forms depending on lesion

distribution: multi-infarct dementia, strategic infarct

dementia or subcortical vascular encephalopathy. Multi-

infarct dementia is characterised by multiple lacunar

infarcts and microinfarcts, as well as small and/or large

infarcts in the cortex and subcortical regions. The total

amount of damaged cerebral tissue results in a signifi-

cant decrease in functional brain capacity, surpassing

the threshold for cognitive impairment. In contrast, stra-

tegic infarct dementia is the result of a single infarct in a

strategic region of the brain that results in significant

cognitive deficits, for example, a single lacunar or micro-

infarct in the hippocampus can lead to marked memory

impairment [15, 16]. Lastly, subcortical vascular enceph-

alopathy (synonymous with Binswanger’s disease) de-

scribes confluent severe demyelination and axonal loss

in the white matter with sparing of subcortical U-fibres

([13, 15, 16]; for review see [17]).

Comorbidity of cerebrovascular disease and Alzheimer’s

disease pathology

A large proportion of patients with dementia who have sig-

nificant CVLs also exhibit more severe concomitant AD

pathology [18], such as deposits of hyperphosphorylated

tau (HPτ) and Aβ, and thus fulfil the neuropathological

criteria for AD (Braak neurofibrillary tangle [NFT] stage V/

VI, Consortium to Establish a Registry for Alzheimer’s

Disease [CERAD] score C and Aβ phase 5 according to the

National Institute on Aging–Alzheimer’s Association

[NIA–AA] guidelines [19–22]). They are therefore classi-

fied as having mixed AD/VaD. The distinction between

AD, VaD and mixed AD/VaD remains controversial and

poses a difficult challenge (see section ‘Clinico-pathological

correlations and mismatch in VaD and mixed VaD/AD’).

Prevalence of vascular dementia
In clinical population-based series, the prevalence of

VaD/VCI averages 8–15.8 % (in Japan, 23.6–35 %) with

standardised incidence rates between 0.42 and 2.68 per

1000/year, increasing with age [23]. The range is broader

in clinical studies using convenience series from western

memory clinics, varying from 4.5 to 39 % [23]. However,

the prevalence rates of VaD/VCI are unlikely to be ac-

curate in any of these series because even the best clin-

ical diagnostic criteria show only moderate sensitivity

(approximately 50 %) and variable specificity (range 64–

98 %) [23, 24]. VaD in autopsy series also varies tremen-

dously, ranging from 0.03 to 58 % [23], and this variation

is partly due to the lack of internationally accepted con-

sensus criteria for the neuropathological diagnosis of

VaD. In elderly patients, the prevalence of ‘pure’ VaD

ranges from 5 to 78 %. In the oldest-old, that is,

≥90 years, the prevalence of pure VaD drops (to 4.5–

46.8 %) but that of mixed AD/VaD increases, reflecting a

constant age-related increase of neurodegenerative

changes. Rigorous population-based clinico-pathological

correlative studies addressing the prevalence of VaD are

few, but they are arguably more informative about the

actual prevalence of VaD/VCI. In population-based

clinico-pathological series, the prevalence of pure VaD

ranges from 2.4 to 23.7 %, and that of mixed AD/VaD

Fig. 1 Schematic diagram illustrating the three most commonly observed cerebrovascular diseases and their resulting cerebrovascular lesions

that may lead to specific types of vascular dementia
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from 4.1 to 21.6 % [25, 26]. The range is still wide and

this may reflect regional differences in managing cardio-

vascular risk factors and ethnic-related genetic variances.

In general terms, these studies show that the prevalence

of VaD/VCI is higher in developing countries and Japan.

For instance, in a clinico-pathological study from Brazil,

where cardiovascular risks are poorly managed, the

prevalence of pure VaD was 21.2 %, one of the highest

detected in population-based studies [26]. On the other

hand, in a retrospective hospital-based study in 1700

consecutive autopsy cases of elderly patients with de-

mentia in Vienna, Austria (mean age 84.3 ± 5.4 years;

90 % over 70 years), pure VaD was observed in 10.7 %,

decreasing between age 60 and 90+ from 15.0 to 8.7 %

[27]. VaD and VCI are potentially preventable diseases;

therefore, studies focusing on its prevalence, incidence

and risks factors in the different populations are essen-

tial to guide public policies.

Controversies in clinico-pathological correlation
of cerebrovascular disease
At present there are two fundamental issues regarding

the assessment and diagnosis of VaD. First, there are no

currently accepted neuropathological consensus criteria

regarding the assessment of VaD, VCI, cerebrovascular

pathology or related lesions [28]. Neuropathological as-

sessment of the post-mortem brain is required to reach

a definitive diagnosis and must be carried out in a stan-

dardised manner, applying reproducible methods and

following generally accepted consensus criteria [29].

Widely used consensus criteria for the pathological diag-

nosis of common neurodegenerative disease, such as AD

and Lewy body disease, have been available for some

time [19–21, 30–33]. However, despite several attempts

being made without major success [16, 34–36], generally

accepted neuropathological criteria for diagnosing VaD

are still unavailable. Second, general assumptions regard-

ing the underlying pathology of frequently observed in

vivo magnetic resonance imaging (MRI) findings might

not always be accurate. Neuroimaging is indeed an im-

portant tool in the clinical diagnosis of CVLs and

imaging-pathological correlative studies are aiming to

bridge the gap between in vivo imaging and post-

mortem neuropathology. However, general assumptions

regarding the underlying pathogenesis of common in

vivo MRI findings are not unequivocally corroborated by

neuropathological findings and this may result in inad-

equate clinical diagnosis and treatment.

Clinico-pathological correlations and mismatch in
vascular dementia and mixed Alzheimer’s disease/
vascular dementia
Various forms of cerebrovascular disorders may lead to

cognitive impairment and dementia in the elderly [17].

While pure VaD – most frequently caused by infarctions

– is rare, it is generally assumed that cerebrovascular

pathology contributes to the development of cognitive

impairment in other neurodegenerative diseases, in par-

ticular in mixed AD/VaD. Such mixed disorders are fre-

quently observed in the brains of elderly individuals and

their prevalence and severity increase with advancing

age [37]. In aged individuals, lacunes, microbleeds,

WMLs and microinfarcts have been associated with cog-

nitive decline, including reduced mental speed and im-

paired executive functions [38]. Cerebral SVD may

interact with pathophysiological processes in AD either

independently of each other or through additive or syn-

ergistic effects on cognitive decline [39, 40]. There are

several clinical classification criteria for VaD/VCI, such

as the NINDS-AIREN criteria, the State of California

Disease Diagnostic and Treatment Centers (ADDTC)

criteria, the International Classification of Diseases,

Tenth Edition ICD-10 criteria and the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition

(DSM-V) criteria. They distinguish between the follow-

ing: possible VaD – clinical criteria of dementia with

focal clinical or imaging signs of one or more infarcts,

gait disorder, pseudobulbar palsy, personality and mood

changes; probable VaD – all signs of dementia, two or

more infarcts followed by dementia and imaging signs of

at least one extracerebellar infarct; and proven VaD – clin-

ically proven dementia and pathological demonstration of

multiple CVLs and mixed dementia. The diagnosis of

VaD/VCI is reflected by recent clinical criteria [41] that

are based on evidence of infarcts, white matter hyperin-

tensities (WMH) and microbleeds, using structural MRI.

Several autopsy studies have demonstrated that microin-

farcts are major risks for VCI; however, microinfarcts can

not be detected by 1.5 and 3.0 T MRI or naked eye exam-

ination, whereas they may be seen on novel high-

resolution 7.0 T MRI [42–45]. However, no accepted and

pathologically validated criteria for the diagnosis of VaD/

VCI are currently available [46]; therefore, the diagnostic

accuracy of possible VaD is still relatively poor, with an

average sensitivity of 0.49 (range 0.20–0.89) and an aver-

age specificity of 0.88 (range 0.64–0.98) [47, 48]. Cognitive

decline has been shown to be weighted on specific patho-

logical lesions in the following ranked order: NFT > Lewy

bodies > Aβ plaques >macroscopic infarcts [49]. In neuro-

pathologically defined mixed AD/VaD and SVD, the cog-

nitive impairment profile mirrors that seen in AD cases,

that is, all cognitive domains are equally impaired but

memory scores are lower than executive scores [50]. This

indicates that, regarding the combination of AD and SVD,

it is the AD pathology that has the greatest impact on the

severity and profile of cognitive impairment. Longitudinal,

clinical and neuropathological studies have previously il-

lustrated the impact of AD pathology in mixed AD/VaD,
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and demonstrate the usefulness of multivariate approaches

to understand clinico-pathological profiles, as well as

highlighting the current limitations to modelling and pre-

dicting cognitive decline and clinical profiles [49]. Never-

theless, the detection of the preclinical stages of cognitive

impairment and early AD changes became a reality with

the inception of amyloid PET tracers and various Aβ li-

gands, for example, Pittsburgh Imaging Compound B (PiB),

fluorbetapir and flutemetamol [51]. Several studies have

illustrated how amyloid PET imaging will improve differen-

tiation between AD and mixed AD/VaD cases of dementia.

Converging evidence suggests that cerebrovascular

and AD pathology exert an additive (and/or synergistic)

effect on cognitive impairment. Does CVD merely re-

duce the cognitive threshold needed for overt clinical

dementia in AD, or do both factors potentiate AD-

specific pathophysiological pathways? Recent neuroim-

aging studies in cognitively normal elderly people aged

70–90 years suggested that vascular and amyloid path-

ologies are at least partly independent predictors of cog-

nitive decline in the elderly, and that cognitive reserve

seems to offset the deterioration effect of both patholo-

gies on the cognitive trajectories [52].

Concomitant CVLs increase the risk and severity of

clinical dementia in elderly individuals meeting the

neuropathological criteria for AD [53–55]. However,

many studies emphasise additional pathogenesis in older

people without dementia, in particular CVLs, with, for

example, small or large cerebral infarcts, lacunar infarcts

and WMLs reported in 22 to almost 100 % of cases [48,

55–61]. Cerebral infarcts were seen in 21–48 % of se-

niors without dementia, with a higher frequency of large

infarcts [48, 55, 58, 60, 62–64] and CAA [55, 58].

Among 418 participants without dementia in the Reli-

gious Order Study (mean age 88.5 ± 5.3 years), 35 %

showed macroscopic infarcts; those without macroscopic

infarcts had microinfarcts (7.9 %), arteriosclerosis

(14.8 %) or both (5.7 %), with only 37.5 % being free of

CVLs [63]. In a study of 336 cognitively normal elderly

adults, cerebral microinfarcts were seen in 33 % and

high-level microinfarcts in 10 % [65]. In another study of

100 elderly participants without dementia (mean age

81.2 ± 5.4 years), CVLs including basal ganglia/deep

white matter lacunes were seen in 73 % and CAA in

39 %; only 9 % of these participants were free of CVLs

[66]. There were no correlations between CVLs and AD-

related pathology in this latter cohort, whereas others re-

ported an inverse relationship between Braak NFT stage

and CVLs in autopsy-proven AD [67, 68]. The profile of

AD and vascular changes becomes more complex with

increased cognitive impairment in older people without

dementia and these changes are likely to constitute a

major substrate for age-associated cognitive impairment,

suggesting a need for rigorous investigation of both

neurodegenerative and vascular risk factors in old age

[61]. However, the interactions in the pathophysiology

between vascular risk factors, CVD and AD pathology,

while plausible, are still unresolved.

In contrast to AD, less is known about the impact of

CVD in other common neurodegenerative diseases, such

as dementia with Lewy bodies (DLB) and frontotemporal

lobar degeneration (FTLD). Prevalence reports of CVD

in DLB are scarce, but autopsy studies reported a fre-

quency of 20.2–34.4 % [69, 70], which does not differ

significantly from controls [70]. In addition, an autopsy

study indicated that more advanced Lewy body path-

ology is less likely to show severe CVD, and therefore

suggested that cognitive impairment in DLB appears to

be independent of CVD [71]. With regards to the het-

erogeneous group of FTLD, data in relation to the preva-

lence and patho-mechanistic role of CVD are very

limited and contradictory. One autopsy study reported a

frequency of 5.2 % for FTLD-tau and 17.3 % for FTLD-

TDP-43 [69]. Some data support a role for SVD in

FTLD disease progression [72], while others could not

confirm this [69]. Therefore, further studies are neces-

sary to clarify the role of CVD in non-AD neurodegener-

ative diseases.

In conclusion, the co-occurrence of CVD and AD in

the elderly is very frequent [73]. There is evidence sug-

gesting that both lead, in an additive as well as an inde-

pendent fashion, to cognitive dysfunction. The

characteristic pattern of HPτ-related neurodegeneration

(i.e. Braak NFT stages) in AD corresponds to a pattern

of memory loss that spreads to other cognitive domains.

By contrast, the neuropsychological profile associated

with VaD shows considerable variation; for example, ex-

ecutive dysfunction often equals or may exceed memory

impairment in the SVD-subtype of VaD, but depending

on location and severity of CVL all possible types of

cognitive impairment may ensue. We anticipate that the

availability of comparable measures of AD and VaD

pathology from in vivo neuroimaging studies in the fu-

ture will replace dichotomous classifications of diseases

with more sophisticated modelling. However, as of today,

the best available models predict less than half of the

variance in cognitive performance [49].

White matter hyperintensities
WMLs histologically encompass structural damage of

the cerebral white matter as a result of white matter rar-

efaction [3]. They are visualised as WMHs on pre- and

post-mortem T2-weighted MRI, and they have been as-

sociated with a wide range of cognitive deficits [74].

Interestingly, WMHs are frequently seen in individuals

both with and without dementia, although WMHs seen

in AD are significantly more severe than the ones seen

in so-called normal ageing [75–77]. The pathogenesis of
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WMHs is generally thought to be associated with SVD

because vessel wall alterations may lead to chronic hypo-

perfusion of the surrounding white matter [35]. Al-

though WMHs are currently assumed to reflect SVD,

WMHs on T2-weighted MRI are a visualisation of white

matter abnormalities and cannot determine the under-

lying pathogenesis. Previous studies have suggested a

multifactorial aetiology of WMHs [78–82] inclusive of

SVD-related ischaemia, but also degenerative axonal loss

secondary to cortical AD pathology, that is, deposits of

HPτ and Aβ. The exact pathological mechanism of de-

generative axonal loss is still unclear, but it has been

suggested that axonal death occurs simultaneous to grey

matter atrophy or via calpain-mediated degradation, ac-

tivated by AD pathology-related axonal transport dys-

function [83, 84]. Evidence from neuroimaging has

shown region-specific white matter changes in patients

with AD, most frequently in the posterior deep white

matter [75, 85, 86] and corpus callosum [75], which have

been directly associated with AD-related cortical atrophy

[85, 86].

HPτ has been implicated as a principle instigator of

degenerative axonal loss in AD. An extensive quantita-

tive neuropathological study revealed that the burden of

cortical HPτ in the temporal and parietal lobes was a

predictor of WMH severity in AD [87], corroborating

previous studies reporting an association between higher

Braak NFT stage and increased WMH severity [77, 78,

88], and degenerative axonal loss in temporal [89] and

parietal [84] white matter when in proximity to high cor-

tical HPτ pathology burden. Furthermore, the combin-

ation of high cerebrospinal fluid (CSF) total-tau and

higher parietal WMH volume was shown to predict the

clinical conversion from mild cognitive impairment to

AD [89],further supporting an association between the

two pathologies. Although SVD-related ischaemic dam-

age has long been assumed to be the main factor for the

development of WMHs (for review see [90]), neuro-

pathological investigations of patients with AD with

severe WMH usually revealed only minimal SVD path-

ology [84, 89, 91]. However, in cases with minimal neo-

cortical HPτ pathology (Braak NFT stage 0–II), SVD was

found to be associated with WMH (Fig. 2) [92].

While theoretically both cortical HPτ pathology and

SVD may lead to the development of WMH, it ap-

pears that in neurodegenerative diseases such as AD,

WMHs are likely to be primarily associated with cor-

tical HPτ pathology. On the other hand, in cases

without dementia and in VaD cases, SVD seems to

play a role in the development of WMH, which may

relate to gliovascular abnormalities and BBB damage

[93]. The clarification of the underlying pathogenesis

of WMH and respective MRI characteristics is war-

ranted to allow for clear interpretation of white

matter neuroimaging and subsequent adequate man-

agement of patients.

Cerebral microbleeds
The term cerebral microbleeds describes the radiological

phenomenon of small, well-demarcated, hypointense,

round or ovoid lesions detected on T2*-weighted

gradient-recalled echo (T2*-GRE) and susceptibility-

weighted imaging (SWI) MRI sequences [10]. Micro-

bleeds create a ‘blooming’ effect on T2*-GRE/SWI, but

are generally difficult to see on T1-weighted or T2-

weighted sequences [10, 92]. Microbleeds have generated

interest as a marker of the haemorrhagic consequences

of SVD. Microbleeds are common in many different pa-

tient populations (healthy elderly, ischaemic stroke, in-

tracerebral haemorrhage [94, 95], AD [96, 97] and VCI

[98]). Of note, microbleeds are more prevalent in pa-

tients with recurrent stroke than in those with first-ever

stroke, and they tend to accumulate over time, indicating

a relationship with the progression and severity of cere-

brovascular pathology [94]. Microbleeds generate in-

creasingly common clinical dilemmas due to the

concern that they may be a marker of future intracere-

bral bleeding risk [99–104]. In a meta-analysis of 10 pro-

spective studies including 3067 patients with ischaemic

stroke or transient ischaemic attack, the presence of

microbleeds was associated with a high risk of intracere-

bral haemorrhage (pooled odds ratio 8.53), raising ques-

tions regarding the safety of antithrombotic drugs [105,

106]. Moreover, most available studies suggest that

microbleeds are associated with impairment of cognitive

function [107, 108], although whether they are directly

and independently implicated – or simply reflect more

severe SVD – remains uncertain.

Similar to other SVD markers, microbleeds appear to

represent a potential link between stroke, brain ageing,

dementia and AD [97, 109], but they have not yet re-

sulted in high-quality evidence-based recommendations

for stroke and dementia clinical practice nor emerged as

a valid surrogate marker for clinical trials in SVD, for ex-

ample, in intracerebral haemorrhage and VCI. This

might be due to the significant gap between the clearly

defined markers seen on MRI and their as-yet uncertain

pathological basis and pathophysiological mechanisms

[109–112]. It is consistently emphasised in the literature

that microbleeds are the MRI correlate of extravasation

of red blood cells from arterioles and capillaries dam-

aged by a primary haemorrhagic SVD process and,

therefore, are potentially strongly associated with haem-

orrhagic stroke risk. However, microbleeds are also asso-

ciated with increased subsequent ischaemic stroke risk

[113–116], highlighting that they are a marker of a CVD

that is simultaneously ischaemic and haemorrhagic, a

phenomenon sometimes termed mixed CVD [109, 117].
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Nonetheless, histopathological correlation studies sug-

gest that radiologically defined microbleeds generally

correlate with focal deposits of blood-breakdown prod-

ucts, predominantly haemosiderin-iron [110, 118]. MRI-

histopathological correlation has been underutilised

[119, 120], with a total of <70 microbleeds analysed in

just a small sample of patients [110–112], often detected

using relatively insensitive T2*-GRE sequences at 1.5 T

[118]. Technical challenges involved in correlating MRI

with histopathology for such small lesions with a wide-

spread distribution in the brain probably account for the

small number of brains with microbleeds that have been

analysed. Notwithstanding these limitations, when sys-

tematic neuropathological examination of SWI-visualised

microbleeds is undertaken, the underlying pathologic sub-

strates are actually rather variable, including not only focal

accumulations of blood-breakdown products, but also

(albeit much less commonly) microaneurysms, small

lacunes, vessel wall dissections or (pseudo-) microaneur-

ysms [112, 118, 121, 122].

Although most microbleed pathological correlation

studies emphasise blood leakage from nearby damaged

small vessels into the brain parenchyma as a mechanism,

it must not be assumed that a primary haemorrhagic

process fundamentally produces all microbleeds or that

the most severely affected vessels are the culprits. Alter-

native non-haemorrhagic mechanisms for microbleeds,

particularly if no tissue damage surrounds the vessel and

haemosiderin is limited to the perivascular space, in-

clude ischaemia-mediated iron store release by oli-

godendrocytes [123], phagocytosis of red blood cell

microemboli into the perivascular space (termed angio-

phagy) [121, 124], or even haemorrhagic transformation

of small microinfarcts (Fig. 3) [125].

Fig. 2 A series of images for three separate cases indicating normal-appearing white matter and the similarity of white matter changes with differing

pathogenesis in the deep white matter of the parietal lobe (Brodman area 39/40), as seen on both T2-weighted magnetic resonance imaging (MRI)

and on histology. (A–Aiv) Normal-aged control brain with no obvious white matter changes or small vessel disease (SVD), and no Alzheimer’s disease

(AD)-related pathology: (A) post-mortem T2-weighted MRI scan of normal-appearing white matter; (Ai, Aii) corresponding histological magnified image

of normal-appearing white matter and a normal white matter artery (Aii); (Aiv) overlying cortex with no hyperphosphorylated tau (HPτ) pathology.

(B–Biv) Normal-aged case that exhibited severe white matter hyperintensities (WMHs)/lesions with SVD but no AD pathology: (B) post-mortem T2-

weighted MRI scan indicating confluent WMH; (Bi) corresponding histological magnified image of white matter lesion indicated by widespread pallor

of the central white matter with typical sparing of the subcortical U-fibres (arrow); (Bii) higher magnification of white matter lesion exhibiting severe

rarefaction, that is, myelin and axonal loss; (Biii) white matter arterioles from white matter lesion area exhibiting arteriolosclerosis with hyalinisation

(arrows) of vessel walls; (Biv) overlying cortex with no HPτ pathology. In this case, one may speculate SVD-related hypoperfusion was the primary cause

of white matter changes. (C–Civ) AD brain exhibiting severe WMHs/lesions and no obvious SVD: (C) post-mortem T2-weighted MRI scan indicating

confluent white WMH; (Ci) white matter lesion with severe white matter pallor; (Cii) magnified image of severe white matter rarefaction; (Ciii) white

matter arteriole with enlarged perivascular space but no SVD-related fibrosis or hyalinisation; (Civ, overlying parietal cortex exhibiting severe HPτ

pathology. In this case, one may speculate white matter changes were the result of degenerative myelin and axonal loss as a result of grey matter

atrophy in the overlying cortex or via protease-mediated degradation, activated by AD pathology-related axonal transport dysfunction. MRI scans

captured in sagittal plane. Microphotoimages captured from serial sections. Histological stain Luxol fast blue was used for images Ai–ii, Bi–ii and Ci–ii;

hematoxylin and eosin stain was used for Aiii, Biii and Ciii. Immunohistochemistry with the AT8 antibody was performed in Aiv, Biv and Civ. Scale bars

represent 1000 μm in images A, B and C and 20 μm in images Ai–iii, Bi–iii and Ci–iii
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It is widely accepted that, by analogy with spontan-

eous intracerebral haemorrhage, the pathological pro-

cesses underlying microbleeds differ according to

their location in the brain, with CAA being the most

notable correlate of exclusively lobar microbleeds

(most often in the occipital and posterior temporo-

parietal regions), while ‘hypertensive arteriopathy’

(including a spectrum of neuropathological processes

affecting deep perforating vessels such as AS and

lipohyalinosis) is strongly associated with predomin-

antly deep microbleeds. The majority of data to date

support this hypothesis, but much of the evidence is

indirect and largely based on clinical and imaging

studies [10, 112, 126–130], rather than extensive

direct morphological-pathological analyses [131]. A

recent neuropathological study found no direct topo-

graphical association between CAA presence or sever-

ity and microbleeds (defined only pathologically as

haemosiderin-laden macrophages in any brain region)

[132]. Whether these microscopic lesions have the

same biological significance and underlying mecha-

nisms as radiologically defined microbleeds is not

clear [120]. Further exploration of the neuropatho-

logical basis of microbleeds will be a key step in

clarifying their mechanisms and nature. Along with

well-designed observational clinical studies, this

greater understanding should allow microbleeds to be-

come useful in clinical management decisions [133].

Until then, the main question of whether a radiologic-

ally defined microbleed is always a true microbleed or

whether it may also represent haemosiderin deposits,

which in turn may or may not stem from a micro-

bleeding event, remains unanswered.

Additional novel approaches to complement and
enhance current post-mortem assessment of
cerebral human tissue
With regards to CVL, novel applications of neuroimag-

ing and biochemical methods, as well as additional in-

vestigation of neuroinflammation, have been suggested

for the assessment of human post-mortem brains. Al-

though these methods are beyond the scope of basic

routine diagnostic procedures, the addition of such novel

techniques may help to further elucidate the impact of

CVD on cognitive performance.

Post-mortem neuroimaging

Post-mortem MRI provides a technique to complement

research, and routine, neuropathological investigations,

providing visualisation of cerebral lesions for radiological

assessment or a precise location for histological examin-

ation. Direct comparison studies have found that gross

MRI lesions are almost identical between human in vivo

and post-mortem MRI scans [134], with limited effects on

MRI characteristics due to the fixation process [135, 136].

A variety of post-mortem MRI approaches have been

implemented, including scanning of fixed whole

brains or hemispheres [77, 134, 135, 137–140], cor-

onal brain slices [141, 142], un-fixed whole brains

[134] and brains in situ [143].

Frequently, post-mortem MRI is used for the detection

and assessment of WMH. A recent study investigated the

reliability of post-mortem MRI to assess WMH of the

deep white matter: 4.7 T MRI scanning was carried out on

40 post-mortem fixed right brain hemispheres, and

WMHs in the deep white matter were rated according to

the Age-Related White Matter Change Scale (ARWMC)

Fig. 3 Magnetic resonance imaging (MRI) and histological sections of cerebral tissue exhibiting microhaemorrhages. (A) Radiological

characteristics of microhaemorrhages inclusive of small, well-demarcated hypointense ovoid lesions (arrow). (B–Ci) Images from an 81-year-old

man with dementia and severe cerebral amyloid angiopathy on pathology: (B) post-mortem 7 T MRI scan of hypointense ovoid lesion (arrow); (C)

magnified image of cortical microhaemorrhage; (Ci) increased magnified image of cortical microhaemorrhage – brown deposits are haemosiderin

(arrow) and yellow deposit is haematoidin (arrow head), indicating the microhaemorrhage is subacute. Histological stain hematoxylin and eosin

used on images C and Ci. Scale bars represent 1000 μm in image C, and 100 μm in image Ci. Images prepared by Dr S. van Veluw
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[144] and compared to scores from a thorough histo-

logical assessment (based on approximately 1200 sec-

tions). The study revealed no significant differences

between the post-mortem MRI WMH scores and histo-

logical assessments, regardless of the severity of the deep

white matter changes, demonstrating that post-mortem

MRI is a reliable measure of WMH that can be utilised to

complement neuropathological assessment of white mat-

ter changes. Of note, routine histological assessment based

on five histological sections per brain failed to reliably re-

flect thorough histological assessment.

Cortical microinfarcts (CMI) are another common le-

sion found in ageing and dementia, and are considered

the ‘invisible lesions’ in clinical–radiological correlation

studies [145], visible only upon microscopic examin-

ation. Developments in high-resolution 7.0 T MRI have

allowed for the detection of CMI in vivo [43]. This ap-

proach was utilised and established for the post-mortem

detection of several types of CMI by De Reuck and col-

leagues [45]; fixed coronal slices from 175 demented and

non-demented brains underwent a 7.0 T MRI, and mean

CMI and cerebral CMI loads were determined and com-

pared to the histological examination, revealing no stat-

istical differences between the two assessments.

Post-mortem MRI has also proved a valuable tool in

investigating the pathomechanisms of ischaemic stroke

in the human brain. This is of major potential import-

ance because many therapeutic interventions that have

proven successful in animal stroke models have not yet

been verified in human clinical trials (excluding thromb-

olysis and hypothermia). Developments in autoradiog-

raphy of intact human brain sections have allowed for

the visualisation of the ischaemic core by creating a ‘po-

tassium map’; a method which identifies the ischaemic

core by utilising the disruption of ion homeostasis and

subsequent efflux of water. This method allows for the

essential targeted tissue sampling of the ischaemic core

to facilitate quantitative measurements of tissue compo-

nents. The method for human brain sections, as de-

scribed by Csiba and colleagues [146], is reliant upon

post-mortem MRI (T1 and T2 weighted) to localise the

ischaemic lesions and serve as a gold standard compari-

son to the potassium map. Of note, in vivo MRI imaging

is not appropriate due to the possibility of new focal is-

chaemic lesions developing. Following post-mortem

MRI, the brain is frozen and the region of interest, that

is, the brain infarct with the perifocal brain tissue, is

cryosectioned using a heavy-duty microtome (LKB 2250

PMV Cryo-microtome; potentionally the entire hemi-

sphere can be cut and examined). The potassium map

method can be used to identify the necrotic core, pen-

umbra and perilesional brain on the cryosections [147],

with specific samples removed via a micropunch tech-

nique [148], allowing for subsequent analysis of water

content, proteomics and genetics. Although this com-

bined methodology of post-mortem MRI and potassium

mapping is beyond the scope of the routine diagnostic

work-up, it is unparalleled in providing targeted tissue

sampling for the post-mortem examination of an ischae-

mic brain in the research setting.

Biochemical assessment

While clinical, neuroimaging and pathological assess-

ment remain the main approaches for assessing vascular

lesions and their association with cognitive impairment

and other neurological disturbances, post-mortem bio-

chemistry provides additional insights into vascular

function [149] Biochemical assays enable us to measure

and investigate the mechanisms of vascular dysfunction,

including the activity and level of enzymes and proteins

that mediate changes in vascular calibre, permeability

and adhesion; cell migration; and vascular maintenance

and regeneration. They also allow the measurement of

structural protein levels, providing quantitative data on a

wide range of vascular and parenchymal cells and extra-

cellular constituents.

Advantages of including biochemical measurements

(in addition to more conventional morphological assess-

ments) include the fact that they are more sensitive for

the detection of hypoperfusion, they facilitate more rep-

resentative sampling (e.g. up to 0.5 ml of tissue in a sin-

gle homogenate compared with ~5 μl of tissue in a

paraffin section) and they yield objective continuous

data rather than subjective ordinal scores. Biochemical

approaches were recently used to gain some understand-

ing of the pathogenesis of cerebral hypoperfusion in

VaD, AD and DLB. Measurement of the levels of myelin

proteins with long half-lives but differential susceptibility

to hypoperfusion confirmed a significant reduction in

the perfusion of the cerebral cortex and white matter in

VaD [39, 150]. This was evidenced by a decline in the ra-

tio of myelin-associated glycoprotein (MAG) to proteoli-

pid protein 1 (PLP1). Whereas PLP1 is distributed

throughout the myelin sheath, MAG is located in the

adaxonal loop of myelin, the first part of the myelin

sheath to degenerate when the blood supply is inad-

equate to meet the energy requirements of the oligo-

dendrocyte (Fig. 4). Biochemical analysis confirmed the

significant decline in perfusion of the cerebral cortex in

AD as well as VaD [151]. A lower MAG to PLP1 ratio

was demonstrable in early AD (Braak NFT stages III and

IV) in the precuneus (the first region of the cortex to be

affected by a decline in blood flow in AD), indicating

that perfusion is inadequate to meet metabolic demand,

rather than that hypoperfusion is simply a reflection of

reduced metabolic activity [149]. The hypoperfusion in

AD could not be attributed to SVD or CAA, with which

there was no significant association. However, the
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severity of hypoperfusion was associated with a marked

increase in the concentration of the vasoconstrictor

endothelin-1 (EDN1) in the cerebral cortex in AD. A

correlation between the level of EDN1 and that of the

peptide Aβ42 was also demonstrated, suggesting that it

is the accumulation of Aβ42, which upregulates neur-

onal production of EDN1 by endothelin-converting

enzyme-2 [152], that drives the production of EDN1. In

contrast, the level of EDN1 did not correlate with that of

Aβ40, which upregulates endothelial production of

EDN1 by endothelin-converting enzyme-1 [153, 154]).

In the cerebral white matter, the main abnormality as-

sociated with hypoperfusion in both VaD and AD has

been demonstrated to be non-amyloid SVD [39]. The

concentration of EDN-1 in the white matter was found

to be reduced in AD, as was that of another vasocon-

strictor, angiotensin II, and the activity of angiotensin-

converting enzyme, the enzyme responsible for angio-

tensin II production [149]; these are likely to be adaptive

responses to reduced perfusion. However, perfusion of

the white matter (as measured by the MAG to PLP1 ra-

tio) has been shown to fall with increasing EDN-1 in the

overlying cortex, suggesting that vasoconstriction of per-

forating arterioles within the cortex probably contributes

to hypoperfusion of the underlying white matter in AD.

Additionally, the concentration of von Willebrand fac-

tor (VWF) in brain tissue is directly related to the dens-

ity of microvessels [151, 155]. Measurement of VWF has

several advantages over quantitative immunohistochemi-

cal methods of assessing microvessel density: the sample

size can be much larger (a 0.5 ml homogenate contains ∼

106-fold greater volume of tissue than a typical paraffin

section) and the same homogenate can be used to meas-

ure a wide range of related molecules, allowing direct

comparison between microvessel density and perfusion,

vascular function, and molecules responsible for regula-

tion of vascular growth, tone and permeability. This ap-

proach was used to assess possible causes of occipital

hypoperfusion in DLB and demonstrated significant

reduction in the level of VWF in the occipital cortex (a

region known to be hypoperfused in DLB) but not the

midfrontal cortex or thalamus [155]. Furthermore,

reduction of VWF correlated with a loss of MAG (a

marker of hypoperfusion, as noted above), as well as re-

duced levels of vascular endothelial growth factor

(VEGF), which is needed to maintain the vasculature.

Finally, reduced VEGF was revealed to be related to the

level of α-synuclein, not only in the post-mortem human

brain tissue but also in neuronal cell lines engineered to

over-express wild-type α-synuclein, suggesting that α-

synuclein may down regulate production of VEGF,

affecting maintenance of the microvasculature and of

cerebral perfusion.

These few examples illustrate the potential of post-

mortem biochemical analyses of brain tissue as a means

to measure vascular function and to investigate the

pathogenesis of vascular dysfunction.

Neuroinflammation – a contributor to vascular
dementia?
Aside from the hallmark pathological lesions, there is

evidence to suggest a role for immunological and inflam-

matory mechanisms in the pathophysiology of VaD/VCI.

Neuroinflammation encompasses local endothelial

activation, leading to the extravasation of fluid (and,

sometimes, cells) via a dysfunctional BBB, resulting in

oedema and tissue damage in the surrounding paren-

chyma and eventually leading to the activation of peri-

vascular macrophages, microglia and other glial subtypes

(Fig. 5a, b) [156–158].

Clinical studies in patients with symptomatic SVD

[159, 160] or WMH [161–163] found elevated levels of

circulating biomarkers of endothelial activation, that is,

Fig. 4 Schematic illustration of the distribution of myelin-associated

glycoprotein (MAG; pink dots) and proteolipid protein 1 (PLP1; green

dots) in the myelin sheath. When the supply of oxygen and glucose

is insufficient to meet the metabolic needs of the oligodendrocyte,

as occurs in hypoperfusion, the first part of the cell to degenerate

is the adaxonal loop of myelin – the part of the oligodendrocyte

that is furthest away from the cell body (so-called dying back

oligodendrogliopathy). Because MAG is restricted to the adaxonal

loop of myelin whereas PLP1 is widely distributed throughout the

myelin sheath, hypoperfusion leads to greater loss of MAG than

PLP1. In contrast, degeneration of nerve fibres causes loss of both

MAG and PLP1. The severity of ante mortem hypoperfusion can be

assessed by measuring the ratio of MAG to PLP1. Illustration from

[175] with permission from Prof. S. Love
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ICAM1, soluble thrombomodulin, interleukin-6 (IL-6)

and PAI-1. This suggests that endothelial activation, and

a possible inflammatory process, might contribute to

SVD and to cognitive decline. A neuropathological study

by Giwa and colleagues assessed endothelial activation

in small perforating arteries in cases with moderate-

severe SVD, and with minimal AD pathology (Braak

NFT stage 0–II, and insufficient neuritic plaque path-

ology to meet CERAD criteria for AD). They found that

endothelia were rarely immunoreactive for ICAM1 or

IL-6; however, levels of luminal thrombomodulin (deple-

tion of which is a hallmark of activated endothelium)

were more pronounced, especially in individual vessels

with severe high sclerotic index (Fig. 5c) [164]. The

study concluded that local endothelial activation is not a

feature of the arteriolosclerosis form of SVD, which is in

agreement with evidence from a previous study of brain

lysates demonstrating attenuation of inflammatory medi-

ators (MCP-1 and IL-6) in individuals with VaD and

mixed dementia, relative to aged control subjects [165].

While BBB dysfunction is often claimed to be part of

SVD pathology, neuropathology studies show no conclu-

sive association of BBB markers (fibrinogen, IgG, albu-

min; Fig. 5d) with SVD. Some neuropathology reports

found a positive association between SVD severity and

extravascular plasma proteins [166, 167] while others

did not [139, 168, 169]. In subcortical white matter, fi-

brinogen labelling was associated with clinical dementia

diagnosis in an AD-free cohort where dementia was

likely to be primarily VaD [169]. Observationally, little

evidence of leukocyte infiltration has been associated

with SVD. Microglia have been shown to be significantly

higher in number in the brains of persons with VaD and

widespread WMH [79, 170, 171]. Activated microglia

(CD68+) are strongly associated with WMLs (Fig. 5e, f )

[79, 142].

Elucidation of the role of neuroinflammation in the

pathogenesis and pathophysiology of SVD will enable

the evaluation of immunotherapies as potential thera-

peutic options for prevention or treatment of VCI/VaD.

Conclusion and outlook
It becomes increasingly clear that standardised neuropatho-

logical criteria for the assessment of CVD in human post-

mortem brains are needed [172]. In order to establish such

criteria, Brains for Dementia Research initiated a UK multi-

centre collaborative study to formulate evidenced-based

Vascular Cognitive Impairment Neuropathology Guidelines

(VCING) for post-mortem assessment of CVD of relevance

to VCI. Nine neuropathologists undertook a Delphi method

series of surveys to agree on a neuropathological sampling

protocol and scoring criteria that included assessment of 14

vessel and parenchymal pathologies in 13 brain regions. To

validate VCING, the neuropathologists performed blinded

assessment of 114 brains from people with little or no AD

(Braak NFT stage ≤ III) or Lewy body pathology. Inter-rater

reliability analyses showed VCING to be reproducible, with

almost perfect agreement among neuropathologists (AC2

coefficient >0.8 [173]) for most scoring, apart from that of

AS and microinfarcts, which was more variable (0.4 to

≤0.8). Multivariate logistic regression determined that the

best predictive model (area under ROC curve 76 %) of cog-

nitive impairment included moderate/severe occipital lepto-

meningeal cerebral amyloid angiopathy, moderate/severe

arteriolosclerosis in occipital white matter and at least one

large infarct (i.e., over 1 cm in diameter). The various com-

binations of these three pathologies can be used to report a

low (<50 %), intermediate (50–80 %) or high (>80 %) likeli-

hood that cerebrovascular disease contributed to cognitive

impairment [174].

Fig. 5 Neuroinflammatory markers in donated human brain tissue

from older people. a Immunohistochemical labelling for the pan-

selective microglial marker Iba-1. b Activated microglia in a phagocytic

state, with amoeboid morphology, immunoreactive for lysosomal

marker CD68 (clone PGM1). c Immunoreactivity for endothelial marker

thrombomodulin (TM) in a small penetrating artery of the anterior

putamen. d Immunoreactivity for the large plasma protein fibrinogen

(FGEN) in deep subcortical white matter. Perivascular cells with astro-

cytic morphology show cellular labelling (arrows). e A localised cluster

of activated microglia (CD68+ (PGM1)), indicating a focal white matter

lesion within deep subcortical white matter. f Magnified image of E

exhibiting a small arterial vessel. Haematoxylin counterstain was used

in a–f. Scale bars represent 20 μm in images a, b and c; 100 μm in

image e, and 50 μm in images d and f
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In addition to the refinement of routine neuropatho-

logical scoring criteria, complementary methods such as

post-mortem MRI and biochemical assessment are

promising tools to investigate CVD. These should be

helpful not only to better understand the pathophysi-

ology of VCI/VaD but also to clarify the pathophysio-

logical processes that ultimately lead to characteristic

findings of in vivo imaging. The latter seems a timely

need, since current assumptions regarding the ‘causes’ of

WMH and cerebral microbleeds may not be accurate in

all cases and, hence, negatively impact on the diagnostic

accuracy of respective clinical diagnoses.
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