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Abstract

Background: Psychiatric disorders are multigenic diseases with complex etiology that contribute significantly to

human morbidity and mortality. Although clinically distinct, several disorders share many symptoms, suggesting

common underlying molecular changes exist that may implicate important regulators of pathogenesis and provide

new therapeutic targets.

Methods: We performed RNA sequencing on tissue from the anterior cingulate cortex, dorsolateral prefrontal

cortex, and nucleus accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar

disorder, or major depressive disorder, and from 24 control subjects. We identified differentially expressed genes

and validated the results in an independent cohort. Anterior cingulate cortex samples were also subjected to

metabolomic analysis. ChIP-seq data were used to characterize binding of the transcription factor EGR1.

Results: We compared molecular signatures across the three brain regions and disorders in the transcriptomes of

post-mortem human brain samples. The most significant disease-related differences were in the anterior cingulate

cortex of schizophrenia samples compared to controls. Transcriptional changes were assessed in an independent

cohort, revealing the transcription factor EGR1 as significantly down-regulated in both cohorts and as a potential

regulator of broader transcription changes observed in schizophrenia patients. Additionally, broad down-regulation

of genes specific to neurons and concordant up-regulation of genes specific to astrocytes was observed in

schizophrenia and bipolar disorder patients relative to controls. Metabolomic profiling identified disruption of GABA

levels in schizophrenia patients.

Conclusions: We provide a comprehensive post-mortem transcriptome profile of three psychiatric disorders across

three brain regions. We highlight a high-confidence set of independently validated genes differentially expressed

between schizophrenia and control patients in the anterior cingulate cortex and integrate transcriptional changes

with untargeted metabolite profiling.
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Background
Schizophrenia (SZ), bipolar disorder (BPD), and major

depressive disorder (MDD) are multigenic diseases with

complex etiology and are large sources of morbidity and

mortality in the population. All three disorders are associ-

ated with high rates of suicide, with ~90% of the ~41,000

people who commit suicide each year in the US having a

diagnosable psychiatric disorder [1]. Notably, while clinic-

ally distinct, these disorders also share many symptoms,

including psychosis, suicidal ideation, sleep disturbances,

and cognitive deficits [2–4]. This phenotypic overlap

suggests potential common genetic etiology, which is

supported by recent large-scale genome-wide association

studies (GWAS) [5–8]. However, this overlap has not been

fully characterized with functional genomic approaches.

Current therapies for these psychiatric disorders are inef-

fective in many patients and often only treat a subset of

an individual patient’s symptoms [9]. Approaches target-

ing the underlying molecular pathologies within and

across these types of disorders are necessary to address

the immense burden of psychiatric disease around the

world and improve care for the millions of people

diagnosed with these conditions.

Previous studies [10–14] analyzed brain tissue with

RNA sequencing (RNA-seq) in SZ and BPD, and identi-

fied altered expression of GABA-related genes in the

superior temporal gyrus and hippocampus, as well as

differentially expressed genes related to neuroplasticity

and mammalian circadian rhythms. Our study focused on

the anterior cingulate cortex (AnCg), dorsolateral pre-

frontal cortex (DLPFC), and nucleus accumbens (nAcc)

regions, which are often associated with mood alterations,

cognition, impulse control, motivation, reward, and plea-

sure—all behaviors known to be altered in psychiatric dis-

orders [15, 16]. To assess gene expression changes

associated with psychiatric disease in these three brain

regions, we performed RNA-seq on macro-dissected post-

mortem tissues in four well-documented cohorts of 24

patients each with SZ, BPD, and MDD and 24 controls

(CTL) (96 individuals total). Additionally, we conducted

metabolomic profiling of AnCg tissue from the same

subjects. RNA-seq analysis revealed common expression

profiles in SZ and BPD patients, supporting the notion

that these disorders share a common molecular signature.

Transcriptional changes were most pronounced in the

AnCg, with SZ and BPD exhibiting strongly correlated dif-

ferences from CTL samples. Differentially expressed genes

were associated with cell-type composition, with BPD and

SZ samples showing decreased expression of neuron-

specific genes. We validated this result with RNA-seq data

from an independent cohort of 35 cases each of SZ and

BPD and CTL post-mortem cingulate cortex samples

from the Stanley Neuropathology Consortium Integrative

Database (SNCID; http://sncid.stanleyresearch.org) Array

Collection. We present a set of validated genes differen-

tially expressed between SZ and CTL patients, perform an

integrated analysis of metabolic pathway disruptions, and

highlight a role for the transcription factor EGR1, whose

down-regulation in SZ patients may drive a large portion

of observed transcription changes.

Methods

See Additional file 1: Supplemental methods for additional

detail.

Patient sample collection and preparation

Sample collection, including human subject recruitment

and characterization, tissue dissection, and RNA extrac-

tion, was described previously [17, 18] as part of the

Brain Donor Program at the University of California,

Irvine, Department of Psychiatry and Human Behavior

(Pritzker Neuropsychiatric Disorders Research Consor-

tium) under institutional review board approval. In brief,

coronal slices of the brain were rapidly frozen on

aluminum plates that were previously frozen to −120 °C

and dissected as described previously [19]. All samples

were diagnosed by psychological autopsy, which included

collection and analyses of medical and psychiatric records,

toxicology, medical examiners’ reports, and 141-item fam-

ily interviews. Agonal state scores were assigned based on

a previously published scale [20]. Controls were selected

based on absence of severe psychiatric disturbance and

mental illness within first-degree relatives.

We obtained fastq files from RNA-seq experiments for

our validation cohort from the SNCID (http://sncid.stan

leyresearch.org) Array Collection comprising 35 cases

each of SZ, BPD, and CTL of post-mortem cingulate

cortex with permission on 30 June 2015. For our analysis,

we included the 27 SZ, 26 CTL, and 25 BPD SNCID sam-

ples that were successfully downloaded and represented

unique samples. SNCID RNA-seq methodology and data

processing are described in detail in a previous publication

that makes use of the data [10].

RNA-seq and data processing

To extract nucleic acid, 20 mg of post-mortem brain tis-

sue was homogenized in Qiagen RLT buffer + 1% BME

using an MP FastPrep-24 and Lysing Matrix D beads for

three rounds of 45 s at 6.5 m/s (FastPrep homogenizer,

lysing matrix D, MP Bio). Total RNA was isolated from

350 μL of tissue homogenate using the Norgen Animal

Tissue RNA Purification Kit (Norgen Biotek Corpor-

ation). We made RNA-seq libraries from 250 ng total

RNA using poly(A) selection (Dynabeads mRNA DIRECT

kit, Life Technologies) and transposase-based non-

stranded library construction (Tn-RNA-seq) as described

previously [21]. To mitigate potentially confounding batch

affects in sample preparation we randomly assigned

Ramaker et al. Genome Medicine  (2017) 9:72 Page 2 of 12

http://sncid.stanleyresearch.org/
http://sncid.stanleyresearch.org/
http://sncid.stanleyresearch.org/


samples from all brain regions and disorders into batches

of 24 samples. We used KAPA to quantify the library con-

centrations and pooled four samples in order to achieve

equal concentration of the four libraries in each lane.

Pools were determined by random from the 291 samples.

Samples were also randomly selected for pooling in an ef-

fort to limit potentially confounding sequencing batch ef-

fects. The pooled libraries were sequenced on an Illumina

HiSeq 2000 sequencing machine using paired-end 50-bp

reads and a 6-bp index read, resulting in an average of

48.2 million reads per library. To quantify the expression

of each gene in both Pritzker and SNCID datasets, RNA-

seq reads were processed with aRNApipe v1.1 using de-

fault settings [22]. Briefly, reads were aligned and counted

with STAR v2.4.2a to all genes annotated in GRCh37_E75

[23]. All alignment quality metrics were obtained from the

picard tools module (http://broadinstitute.github.io/pic-

ard/) available in aRNApipe. Genes expressed from the X

and Y chromosomes were omitted from the study.

Quantitative PCR (qPCR) was performed on ten SZ and

ten CTL patients to validate EGR1 RNA-seq measure-

ments. RNA was extracted as described above from tissue

lysates a second time. Reverse transcription was per-

formed on 250 ng of input RNA with the Applied Biosys-

tems high capacity cDNA reverse transcription kit.

Validated Taqman assays for EGR1 (Hs00152928_m1) and

the housekeeper genes GAPDH (Hs02758991_g1) and

ACTB (Hs01060665_g1) were used for qPCR. cDNA was

diluted by a factor of 10 before use as input for the

Taqman assay. The qPCR reaction was performed on an

Applied Biosystems Quant Studio 6 Flex system using the

recommended amplification protocol for Taqman assays.

Sequencing data analysis

All data analysis in R was performed with version 3.1.2.

Differential expression analysis and normalization

To examine gene expression changes, we employed the

R package DESeq2 [24] (version 1.6.3), using default

settings, but employing likelihood ratio test (LRT)

hypothesis testing, and removing non-convergent genes

from subsequent analysis. Genes differentially expressed

between each disorder and CTL samples, by brain region,

were identified with DESeq2 (adjusted p value <0.05),

including age, brain pH, post-mortem interval (PMI), and

percentage of reads uniquely aligned (PRUA) as covari-

ates (full model, ~Age + PMI + pH + PRUA + Disorder;

reduced model, ~Age + PMI + pH + PRUA). For down-

stream heatmap visualization, principal component

analysis (PCA), and cell-type analysis, genes underwent

a log-like normalization using DESeq2’s varianceStabil-

izingTransformation function and were corrected for

PRUA by computing residuals to a linear model regres-

sing PRUA on normalized gene expression level with

the R lm function unless otherwise specified. DESeq2’s

default independent filtering method was used to

remove genes with an insufficient expression level from

further analysis.

PCA and hierarchical clustering

PCA analysis was performed in R on normalized data using

the prcomp() command. Hierarchical clustering of normal-

ized gene expression data was done in R with the hclust

command (method = “ward”, distance = “Euclidean”)

Pathway enrichment analysis

Pathway analysis was conducted using the web-based

tool LRPath [25] using all gene ontology (GO) term

annotations, adjusting to gene read count with RNA-

Enrich, including directionality and limiting maximum

GO term size to 500 genes. GO term visualization was

performed using the Cytoscape Enrichment Map plug-in

[26]. The Genesetfile (.gmt) GO annotations from 1

February 2017 were downloaded from http://download.ba

derlab.org/EM_Genesets/. The LRPath output was parsed

and used as an enrichment file with all upregulated path-

ways colored red and all downregulated pathways colored

blue, regardless of degree of upregulation. Mapping param-

eters were set as p value cutoff = 0.005, false discovery rate

(FDR) cutoff = 0.1, and Jaccard coefficient >0.3. Resulting

networks were exported as PDFs. Summary terms were

added to the plot based on the GO terms in those clusters.

In order to assess overlap between significant GO terms in

our analysis and the GWAS described by the Psychiatric

Genomics Consortium [5], we downloaded the p values

reported for SZ hits from their Supplemental Table 4,

which contained 424 significant GO terms. We used a chi-

squared test to assess significant overlap between the two

groups. We report the p values measured in SZ based on

this study along with those calculated in our analysis.

EGR1 ChIP-seq peak analysis

Narrow peak bed files filtered to optimal Irreprodu-

cible Discovery Rate (IDR) peaks were obtained from

the ENCODE data portal (https://www.encodeprojec-

t.org/) for EGR1 ChIP-seq data in GM12878, H1-hESC,

and K562 cell lines (ENCODE file IDs ENCFF002CIV,

ENCFF002CGW, ENCFF002CLV). Consensus EGR1

peaks were identified by intersecting peaks from all three

cell lines, which resulted in a final list of 4121 peaks com-

mon to all cell lines (minimum overlap of 1 bp). The dis-

tance from each annotated transcription start site (TSS) to

the nearest consensus EGR1 peak was computed based on

TSSs annotated in the ENSEMBL gene transfer format

(GTF) file from the Ensembl data release 75

(GRCh37_E75).
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Cell-specific enrichment analysis

Sets of genes uniquely expressed by several brain cell

types were obtained from Fig. 1b in Darmanis et al. [27].

An index for each cell type was created by calculating

the median normalized expression value for each set of

cell type-associated genes. Index values were compared

across patient clusters by non-parametric rank sum tests

and Spearman correlation with top principal components.

To validate our method, we calculated cell type-specific in-

dices from an independent cohort of previously published

purified brain cells [28, 29]. FPKM-normalized gene expres-

sion data were obtained from Supplemental Table S4 of

Zhang et al. (2015) [28] and cell type indices were calcu-

lated as described above. To examine index performance in

mixed cell populations, we obtained fastq files for neuron

and astrocyte-purified brain samples from Gene Expression

Omnibus (GEO) accession GSE73721 and generated raw

count files as described above. We next mixed expression

profiles in silico by performing random down-sampling of

neuron and astrocyte count levels and summing the results

such that mixed populations containing specific propor-

tions of counts from neuron- and astrocyte-purified tissue

were generated. For example, to generate an 80:20 neuron

to astrocyte mixture, neuron and astrocyte count columns

(which started at an equivalent number of 5,759,178 aligned

reads) were randomly down-sampled to 4,607,342 and

1,151,836 counts, respectively, and summed across each

gene to result in a proportionately mixed population of

aligned count data simulating heterogeneous tissue. Then

we calculated a neuron:astrocyte index ratio capable of pre-

dicting the in silico mixing weights. Briefly, we assumed

index values for mixed cell populations were directly pro-

portional to mixing weights of their respective purified

tissue; thus, the predicted cell proportion for a given cell

type was simply calculated as Predicted cell proportion =

Observed index value/Purified tissue index value.

To ensure cell type predictive power was unique to

indices derived from the genes in Darmanis et al. [27],

we generated indices from 10,000 randomly sampled

gene sets of equivalent size and examined their perform-

ance in predicting in silico mixing weights. Mean squared

prediction errors (MSE) were calculated for each of the

10,000 null indices and compared to the MSE of Darmanis

et al.-derived indices.

Cell type deconvolution analysis was confirmed using a

previously published algorithm implemented in the R

package deconRNAseq [30]. The “datasets” input to the

deconRNAseq function was a normalized count matrix of

all AnCg brain samples and the “signatures” input con-

sisted of a normalized count matrix of astrocyte, neuron,

microglia, and oligodendrocyte dissected cells from the

GEO accession GSE73721 previously described.

Enrichment analysis for extreme fold change was per-

formed by randomly sampling the fold changes of 1000

null gene sets equivalent in size and expression level

(allowing 5% error) to the neuron- and astrocyte-specific

gene sets. The median fold change of each 1000 null

gene set was compared to the observed median fold

change for neuron and astrocyte gene sets, respectively.

Metabolomics

Sample preparation

Sections of approximately 100 mg of frozen tissue were

weighed and homogenized for 45 s at 6.5 M/s with

ceramic beads in 1 mL of 50% methanol using the MP

FastPrep-24 homogenizer (MP Biomedicals). A sample

volume equivalent to 10 mg of initial tissue weight was

dried down at 55 °C for 60 minutes using a vacuum con-

centrator system (Labconco). Derivatization by methoxi-

mation and trimethylsilylation was done as previously

described [31].

We analyzed technical replicates of each tissue sample,

in randomized order.

GCxGC-TOFMS analysis

All derivatized samples were analyzed on a Leco Pegasus

4D system (GCxGC-TOFMS), controlled by the Chro-

maTof software (Leco, St. Joseph, MI, USA). Samples

were analyzed as described previously [31] with minor

modifications in temperature ramp.

Data analysis and metabolite identification

Peak calling, deconvolution, and library spectral matching

were done using ChromaTOF 4.5 software. Peaks were

identified by spectral match using the NIST, GOLM [32],

and Fiehn libraries (Leco) and confirmed by running deri-

vatized standards (Sigma). We used Guineu for multiple

sample alignment [33].

Integrated pathway analysis

Altered metabolites and genes were analyzed for enrich-

ment in KEGG pathways containing both metabolite and

gene features. A non-parametric, threshold-free pathway

analysis similar to that of a previously described method

[34] was first performed on metabolite and gene expres-

sion data separately. Our method builds on the principle

described by Subramanian that implements a one-tailed

Wilcox test to identify pathways enriched for low p

values. Instead of just accounting for enrichment at the

gene level, we use metabolite or gene p value ranks

within each pathway compared to remaining non-

pathway metabolites or genes with a one-tailed Wilcox

test to test the hypothesis that elements of a given path-

way may be enriched for lower p value ranks than back-

ground elements. Metabolite and gene p values were

subsequently combined to provide an integrated enrich-

ment significance p value using Fisher’s method. Path-

ways had to contain greater than five genes and one
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metabolite measured in our dataset to be included in the

analysis. Additional file 2: Table S10 lists p values for

enriched pathways based on genes, metabolites, or both

combined.

Results

Region-specific gene expression in control and psychiatric

brain tissue

We collected post-mortem human brain tissue, associ-

ated clinical data including age, sex, brain pH, and

post-mortem interval (PMI), and cytotoxicology re-

sults (Additional file 2: Tables S1 and S2) for matched

cohorts of 24 patients each diagnosed with SZ, BPD,

or MDD, as well as 24 control individuals with no

personal history of, or first-degree relatives diagnosed

with, psychiatric disorders. Importantly, to limit the

effect of acute patient stress at the time of death as a

potential confounder, we included only patients with

an agonal factor score of zero and a minimum brain

pH of 6.5 [18]. Using RNA-seq [21], we profiled gene

expression in three macro-dissected brain regions

(AnCg, DLPFC, nAcc). After quality control, we ana-

lyzed 57,905 ENSEMBL genes in a total of 281 brain

samples (Additional file 2: Table S3).

To examine heterogeneity across brain regions and

subjects, we performed a principal component analysis

(PCA; Additional file 3: Figure S1a) of all genes. The first

principal component (PC1, 21.8% of the variation) sepa-

rates cortical AnCg and DLPFC samples from subcor-

tical nAcc samples. Examination of the first and second

principal components for disorder associations reveals a

separation of some SZ and BPD samples from all other

samples (Additional file 3: Figures S1b and S2a–c). How-

ever, in agreement with previously reported post-

mortem brain RNA sequencing studies [14], we found

several principal components to be highly correlated

with quality metrics, including the percentage of reads

uniquely aligned and percentage of reads aligned to

mitochondrial sequence (absolute Rho >0.5, FDR <1E-

16; Additional file 2: Table S4). To reduce the potentially

confounding effects of sample quality, we repeated the

PCA on expression data normalized to the percentage of

reads uniquely aligned for each sample and found that

global disease-specific expression differences were signifi-

cantly reduced and PC1 primarily separated nAcc samples

from AnCg and DLPFC brain regions (Additional file 3:

Figures S1c and S2d–i).

Disease-specific gene expression in control and

psychiatric brains

We next applied DESeq2 [24], a method for analyzing

differential sequence read count data, to identify genes

differentially expressed across disorders within each

brain region after correcting for biological and technical

covariates. The largest number of significant expression

changes occurred in AnCg between SZ and CTL individ-

uals (87 genes, FDR <0.05; Fig. 1a). Pathway enrichment

analysis of differentially expressed genes between SZ and

CTL patients revealed 935 GO terms with a FDR <0.05

(Additional file 2: Table S5; 122 Gene Ontology Cell

Compartment (GOCC) , 159 Gene Ontology Molecular

Function (GOMF), and 654 Gene Ontology Biological

Process (GOBP) ). Significant GO terms fall into the

broad categories of synaptic function and signaling (e.g.,

neurotransmitter transport, ion transport, calcium sig-

naling; Additional file 3: Figure S3). These terms overlap

significantly with those identified by the Psychiatric Gen-

omics Consortium in their analysis of GWAS impli-

cated genes [35], with 68 GO terms meeting a p value

cutoff of <0.05 in both datasets (p value <0.0001, Chi-

square test). Additionally, nine genes were differentially

expressed between SZ and CTL individuals in DLPFC.

Three of these were also identified in AnCg: SST,

PDPK2P, and KLHL14. No genes had a FDR <0.05 when

comparing BPD or MDD samples to CTLs in any brain

region, or comparing SZ and CTL tissues in nAcc

(Additional file 2: Table S6). To examine potential com-

mon gene expression patterns between the psychiatric

disorders, we performed pair-wise correlation calcula-

tions of all gene log2 fold changes for each disorder

versus controls in each brain region. Of the nine case-

control comparisons (for three regions and three

diseases), a particularly strong correlation is observed

between BPD and SZ compared to either SZ or BPD

and MDD in each brain region (Fig. 1b). In the AnCg,

BPD and SZ share 1020 common genes differentially

expressed at an uncorrected DESeq2 p value <0.05

compared to only 248 and 143 genes shared between

MDD and SZ or BPD, respectively (Fig. 1c). This

strong overlap between BPD and SZ (Fisher’s exact p

value <1E-16) indicates that although expression

changes are weaker in BPD, they follow a trend simi-

lar to those identified in SZ.

Because previous post-mortem analyses have been

limited by, and are particularly vulnerable to, biases in-

herent to examining a single patient cohort, we sought

to generate a robust set of SZ-associated genes by valid-

ating our observed expression changes in an independ-

ent cohort. To accomplish this, we examined gene

expression differences in the AnCg between SZ and CTL

samples in the SNCID RNA-seq Array dataset [13], reveal-

ing 1003 genes altered (DESeq2 uncorrected p value <0.05)

in both datasets (Fisher’s p value <1E-16; Additional

file 2: Table S7). The magnitude and direction of

change in significant genes in the Pritzker dataset were

highly correlated with the SNCID dataset (Rho = 0.202, p

value <1E-16), particularly in 87 genes that met a cutoff

FDR of <0.05 (Rho = 0.812, p value <1E-16; Fig. 1d). We
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performed hierarchical clustering of SZ and CTL samples

in the SNCID validation cohort using the 1003 genes

differentially expressed, at the less stringent threshold, p

value <0.05, between SZ and CTL in the Pritzker dataset

(Fig. 1e), and found these genes successfully distinguished

the two disease groups with only 5 out of 27 SZ and 2 out

of 26 CTL samples misclassified.

Of particular interest are the five genes significant at a

FDR <0.05 in both cohorts, including a nearly twofold

decrease in expression of the transcription factor EGR1

(Additional file 2: Table S7a; Fig. 2a). qPCR validation

confirmed reduced EGR1 expression in SZ samples

(Fig. 2b; Wilcox p value = 4.33 × 10E-5). EGR1, a zinc fin-

ger transcription factor, has been recently implicated in SZ

by a GWAS study [5]; thus, we sought to investigate

whether loss of EGR1 expression might be associated with

transcriptional changes observed in the AnCg of SZ patients

using publicly available genome-wide occupancy data from

the ENCODE consortium (https://www.encodeproject.org).

To obtain high confidence EGR1 binding sites we inter-

sected chromatin immunoprecipitation sequencing (ChIP-

Seq) peaks derived from the H1-hESC, K562, and GM12878

cell lines. We found that genes with a transcription start site

(TSS) within 1 kb of an EGR1 binding site had significantly

lower DESeq2 p values (Wilcox p value = 9.68E-5) and

reduced expression in SZ versus CTL (Wilcox p value =

7.69E-15) compared to genes whose TSSs were greater than

1 kb from an EGR1 binding site. A monotonic decrease in

this effect was observed as the distance threshold used for

this comparison was increased from 1 to 50 kb (Fig. 2c).

a b

c d e

Fig. 1 a Histograms of case versus control differential expression (DESeq2 p values) for AnCg (red), DLPFC (blue), and nAcc (green) in each

disorder. A minimum DESeq2 base mean of 10 was required for inclusion. b Pairwise Spearman correlations of log2 fold gene expression changes

between each disorder and CTL in each brain region. Circle sizes are scaled to reflect absolute Spearman correlations. c Venn diagram showing

overlap of genes differentially expressed between SZ (red), BPD (blue), and MDD (green) versus CTL at p value <0.05 in the AnCg. d Log2 fold

expression change correlation of 87 genes with FDR <0.05 comparing SZ and CTL (AnCg) in the Pritzker dataset with the SNCID dataset

(Spearman coefficient = 0.812, p value <0.0001). Genes differentially expressed at a FDR <0.05 in both cohorts are identified with red circles. e

Hierarchical clustering of 27 SZ and 26 CTL tissues in the SNCID dataset using variance-stabilized expression of 1003 genes differentially expressed

between SZ and CTL in the AnCg (uncorrected p value <0.05) in the Pritzker dataset. CTL (black), SZ (red), lowly expressed genes (blue pixels),

highly expressed genes (yellow pixels).
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Cell type-specific changes

In addition to dysregulation of broadly acting transcrip-

tion factors, another mechanism that can drive large-

scale transcriptional changes in bulk tissue is alterations

in constituent cell type proportions. Previous studies

have observed decreases in neuron density and increased

glial scarring in psychiatric disorders [36, 37]. To test for

signs of changing cell populations in our dataset we

applied a method to deconvolute RNA expression data

and estimate cell type proportions. Darmanis et al.

[27] identified genes capable of classifying cells into the

major neuronal, glial, and vascular cell types in the

brain based on single cell RNA sequencing. We used

these gene sets to generate cell type indices using the

median of normalized counts for each cell type-specific

gene set. We tested these indices on purified brain cell

populations and in silico mixed cell populations from

Zhang et al. [28, 29] to demonstrate their accuracy and

specificity (Additional file 3: Figure S4).

Application of these cell type indices to patient AnCg

expression data revealed a significant decrease in neuron

specific gene expression (Wilcox p value <0.05) and a

significant increase in astrocyte-specific expression (Wil-

cox p value <0.05) in SZ and BPD patients compared to

controls (Fig. 3a, b). Other brain cell type indices were

not significantly different between psychiatric patients

and controls (Additional file 3: Figure S5). An alternative

algorithm for cell type deconvolution, DeconRNASeq,

showed similar results (Additional file 3: Figure S6a, b).

Additionally, we showed that neuron-specific genes iden-

tified by Darmanis et al. [27] are enriched for decreased ex-

pression in SZ compared to controls and astrocyte-specific

genes are enriched for increased expression (Additional file

3: Figure S6c). Again, these enrichments are specific to this

a b c

Fig. 3 Box plots indicating z-scored neuron-specific a and astrocyte-specific b expression indices in the AnCg for SZ (red), BPD (blue), MDD (green),

and CTL (gray) individuals. c Correlation plot comparing the log2 expression fold change between SZ and CTL patients in the AnCg (x-axis) and

the log2 fold change in gene expression from dissected neuron populations compared to all other dissected brain cell types (astrocytes,

oligodendrocytes, endothelial cells, and microglia) for each transcript measured by Zhang et al. [28].

ba c

Fig. 2 a Box plots indicating relative expression of EGR1 in the AnCg of SZ (red), BPD (blue), MDD (green), and CTL (gray). b Correlation plot

comparing RNA-seq measured expression level of EGR1 to qPCR measured expression in ten SZ (red) and ten CTL (black) patients. c Wilcox p

values resulting from comparing the degree of differential expression (based on DESeq2 p values) of genes whose TSS are within the indicated

distance to an EGR1 binding sites compared to genes whose TSSs are further than the indicated threshold
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gene set and are not reproduced by 1000 expression-

matched, randomly sampled gene sets (Additional file 3:

Figure S6d,e). Further supporting a decrease in neuronal

gene expression, we found a significant negative correlation

between gene expression changes in patient brains relative

to control brains and the degree of neuron-specific tran-

scription (fold enrichment of neuronal gene expression over

other cell types; SZ Rho = −0.50 and BPD Rho = −0.41,

p value <1E-16; SZ shown in Fig. 3c).

Transcriptomic changes reflected in altered metabolomic

profiles

To assess the biochemical consequences of expression

changes, we used 2D-GCMS to measure metabolite levels

in 86 of the AnCg samples (sufficient tissue was unavailable

for ten samples). We measured and identified 141 unique

metabolites (Additional file 2: Table S8). We found no

metabolites reached statistical significance (FDR <0.05);

however, eight metabolites had a FDR <0.1 when

comparing SZ to CTL. Similar to our gene expression

analysis, metabolite levels (Additional file 2: Table S9) suc-

cessfully differentiated SZ and BPD patients from CTLs

(Fig. 4a), while MDD metabolite profiles were very similar

to CTLs. Several of the most significant metabolites, in-

cluding GABA, are known to be relevant to BPD and SZ

(Fig. 4b) [38]. Furthermore, GABA:glutamate metabolite

ratios correlate strongly with average GAD1 and GAD2 ex-

pression levels measured by RNA-seq (Rho = 0.413, p value

= 0.007; Fig. 4c, d). This metabolite–gene relationship is

consistent with previous multi-level phenomic analyses [39]

and demonstrates realized biochemical consequences from

altered gene expression. Notably, reductions in GABA

could coincide with loss of neuron-specific gene expression

as suggested by the RNA-seq data. Integrated pathway ana-

lyses of metabolite and gene expression data revealed

disruption of synaptic and neurotransmitter signaling in SZ

compared to CTL (Additional file 2: Table S10 and

Additional file 3: Figure S7).

a b

c d

Fig. 4 a Hierarchical clustering of SZ (red), BPD (blue), MDD (green), and CTL (black) individuals using the top ten most significant metabolites for

each case–control comparison (for a total of 30 metabolites). b Box plots indicating z-scored GABA metabolite levels. c Box plots indicating

relative expression of GAD1 and GAD2 enzymes in the AnCg of SZ (red) and CTL (gray) patients. d Correlation plot comparing average GAD1

and GAD2 expression and the GABA:glutamate metabolite level ratio in the AnCg of SZ (red) and CTL (black) individuals
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Discussion
Here, we describe a large transcriptomic dataset across

three brain regions (DLPFC, AnCg, and nAcc) in SZ,

BPD, and MDD patients, as well as CTL samples

matched for agonal state and brain pH. In MDD, we did

not identify any genes that meet genome-wide signifi-

cance for differential expression between cases and

controls in any brain region. This finding agrees with

previous post-mortem RNA-seq studies [40]; however,

sample size and the choice of brain regions examined

likely contributed to our inability to replicate results

from previous non-transcriptome-wide sequencing-

based approaches comparing MDD to CTL in post-

mortem brain [41]. One limitation of our study is that

females are underrepresented at a rate of about 5:1. This

reflects the increased chance of accidental death among

males [42], but limits us in our ability to make more

general conclusions about these disorders and to address

known differences between the sexes as they relate to

these disorders. We also do not have information on the

smoking status for our cohort, which is an important

covariate as smoking rates are higher among patients

with psychiatric disorders and smoking has been demon-

strated to affect gene expression [43, 44]. Another

potential limitation inherent to post-mortem cohort ana-

lyses is accounting for patient drug use. As detailed in

Additional file 2: Table S2, patient toxicology reports

were positive for several prescribed and illicit drugs that

were not present in CTL samples. As this is a bias

inherent to psychiatric patients, it is impossible to dis-

entangle from non-treatment-related disease patterns

in a post-mortem analysis.

Another important limitation of post-mortem RNA-seq

studies is RNA quality. We found a significant proportion

of variation in our data to be associated with multiple

alignment quality metrics. Significant effort went into con-

trolling for potential sources of bias due to differences in

RNA quality. We only included tissue from patients with

an agonal score of 0 and who had a brain pH of 6.5 or

greater. We also controlled for brain pH, post-mortem

interval, and alignment quality in all differential expres-

sion analyses. Our study, as well as future post-mortem

studies, could be improved by directly measuring RNA

quality at the time of sample preparation (e.g., RNA integ-

rity number (RIN)). Even with these caveats, we believe

our data yield new insights contributing to a growing

understanding of these disorders.

The most dramatic gene expression signals we observed

were brain region-specific. The majority of disease-

associated expression differences were seen in the AnCg of

SZ compared to CTL individuals. The AnCg has been asso-

ciated with multiple disease-relevant functions, including

cognition, error detection, conflict resolution, motivation,

and modulation of emotion [45–47]. We observed a

striking overlap in SZ- and BPD-associated expression

changes consistent with previous findings [38, 48].

One of the more intriguing genes significantly down-

regulated (FDR <0.05) in both cohorts of SZ patients

was the zinc finger transcription factor EGR1. We pro-

vide evidence that this factor binds upstream of genes

with altered expression in SZ and is associated with

decreased expression in SZ patients. Down-regulation of

EGR1 has been previously described in the prefrontal

cortex of post-mortem brain samples from SZ patients

[49, 50]. EGR1 has also previously been associated with

several phenotypes relevant to psychiatric disorders,

including neural differentiation [51], emotional memory

formation [52], and response to antipsychotics [53], and

has recently been described as part of a transcription

factor–miRNA co-regulatory network capable of acting

as a biomarker in peripheral blood cells for SZ [54]. In

mice, loss of EGR1 has been linked to neuronal loss in a

model of Alzheimer’s disease [55]. EGR1 is also import-

ant for regulation of the NMDA receptor pathway,

which is critical for synaptic plasticity and memory for-

mation and has been implicated in SZ in humans [56].

We believe a more detailed examination of genome-wide

EGR1 occupancy in post-mortem brain tissue or cul-

tured neurons could yield additional information and

assessment of the functional consequences of EGR1 loss

is required to confirm this factor’s role in SZ

pathogenesis.

We also see evidence for depletion of neuron-specific

genes and increased levels of astrocyte-specific genes in

SZ and BPD patients. This observation is further sup-

ported by metabolomic analysis of the AnCg, which

found a concordant decrease in GABA levels in BPD

and SZ individuals. Neuronal depletion has been previ-

ously described in SZ [36, 37]. Insufficient tissue remains

from our patient cohort to validate computational cell

type predictions immunohistochemically; however, our

data strongly suggest that future post-mortem studies

should be cognizant of cell type heterogeneity across

patient samples. The method for cell type composition

estimation is limited in its accuracy to estimating only

the major classes of cells present. Genes represented in

cell types present at only a small minority could be over-

or under-represented using this technique. Based on

these results, future studies should consider using robust

techniques for assessing tissue composition to examine

potential cell type proportion differences between dis-

ease cohorts and to identify which transcriptional

changes occur in conjunction with, and independent of,

those differences.

We observed very few or no significant expression

differences in the DLPFC and nAcc, which contradicts

several previous studies [14, 57]. We do not intend to

claim that no transcriptional changes occur in these
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brain regions as our study was designed to broadly com-

pare transcriptional alterations across multiple brain re-

gions in multiple psychiatric disorders, thereby sacrificing

exceptional sample sizes in any single disorder in any spe-

cific brain region. However, our data do suggest that, of

the regions we tested, the strongest transcriptional

changes occur in the AnCg of SZ patients. Moreover,

these data provide a useful resource for future studies

facilitating the testing of preliminary hypotheses or valid-

ation of significant findings.

Conclusions

Our study provides several meaningful and novel contribu-

tions to the understanding of psychiatric disease. We

provide a well-annotated data set that has the potential to

act as a broadly applicable resource for investigators inter-

ested in molecular changes in multiple psychiatric disorders

across multiple brain regions. We have conducted an ex-

tensive characterization of the molecular overlap between

SZ and BPD at the gene expression and metabolite levels

across multiple brain regions. We provide a high-

confidence set of genes differentially expressed between SZ

and CTL individuals utilizing two independent cohorts and

highlight down-regulation of EGR1 as a potential driver of

broader scale transcription changes. We also establish that

a significant proportion of transcriptome variation within

SZ and BPD cohorts is correlated with expression changes

in previously identified cell type-specific genes.
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