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ABSTRACT

We present KETJU, a new extension of the widely-used smoothed particle hydrodynamics sim-
ulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regular-
ized regions around every supermassive black hole (SMBH). This allows for simultaneously following
global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs,
SMBH binaries and surrounding stellar systems at sub-parsec scales. The KETJU code includes Post-
Newtonian terms in the equations of motions of the SMBHs which enables a new SMBH merger crite-
rion based on the gravitational wave coalescence timescale pushing the merger separation of SMBHs
down to ∼ 0.005 pc. We test the performance of our code by comparison to NBODY7 and rVINE.
We set up dynamically stable multi-component merger progenitor galaxies to study the SMBH binary
evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from
the final-parsec problem, which we attribute to the non-spherical shape of the merger remnants. For
bulge-only models, the hardening rate decreases with increasing resolution, whereas for models which
in addition include massive dark matter halos the SMBH binary hardening rate becomes practically
independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr
after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccen-
tricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future
prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.
Subject headings: black hole physics -methods: numerical -stars: kinematics and dynamics -

galaxies:evolution -galaxies:nuclei

1. INTRODUCTION

There is ubiquitous evidence for the presence of super-
massive black holes (SMBHs) with masses in the range
of M = 106−1010M⊙ in the centers of all massive galax-
ies in the local Universe (e.g. Kormendy & Richstone
1995; Ferrarese & Ford 2005; Kormendy & Ho 2013). In
addition, there is a strong suggestion of a co-evolution of
SMBHs and their host galaxies as manifested in the sur-
prisingly tight relations between the SMBH masses and
the fundamental properties of the galactic bulges that
host them, e.g. the bulge mass (Magorrian & et al. 1998;
Häring & Rix 2004) and the bulge stellar velocity dis-
persion (Gebhardt et al. 2000; Ferrarese & Merritt 2000;
Tremaine et al. 2002).
In the hierarchical picture of structure formation,

galaxies grow bottom-up through mergers and gas ac-
cretion (White & Rees 1978). Massive, slowly-rotating
early-type galaxies, that are expected to host the largest
SMBHs in the Universe, are believed to have assembled
through a two-stage process. The early assembly is dom-
inated by rapid in situ star formation fueled by cold gas
flows and hierarchical merging of multiple star-bursting
progenitors, whereas the later growth below redshifts of
z . 2− 3 is dominated by a more quiescent phase of ac-
cretion of stars formed mainly in progenitors outside the
main galaxy (e.g. Naab et al. 2009; Oser et al. 2010; Feld-
mann et al. 2011; Johansson et al. 2012; Wellons et al.
2015; Rodriguez-Gomez et al. 2016; Qu et al. 2016). See
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also Naab & Ostriker (2016) for a review.
This hierarchical formation process will result in situ-

ations with multiple SMBHs in the same stellar system
(e.g. Begelman et al. 1980; Volonteri et al. 2003). These
SMBHs will subsequently sink to the center of the galaxy
due to dynamical friction from stars and gas and form
a wide gravitationally bound binary with a semi-major
axis of a ∼ 10 pc. Next, the semi-major-axis of the
binary will shrink (’harden’) due to the interaction of
the binary with the stellar background. A star cross-
ing at a distance of the order of the semi-major axis of
the binary will experience a complex three-body interac-
tion with the binary and carry away energy and angular
momentum from the SMBH binary system (eg. Hills
& Fullerton 1980). If the population of stars with cen-
trophilic orbits is not depleted, the binary will harden at
an approximately constant rate:

d

dt

(

1

a

)

∝ Gρ⋆
σ⋆

, (1)

assuming a constant stellar density (ρ⋆) and velocity dis-
persion (σ⋆) at the center of the galaxy (Quinlan 1996).
If the center-crossing (or ’SMBH loss cone’) orbital pop-
ulation is depleted, the binary hardening is halted. This
so-called final-parsec problem is persistently present in
simulations of isolated collisionless spherically symmet-
ric stellar systems (Milosavljević & Merritt 2001, 2003).
Recent numerical work suggests that the problem is

less severe or might even be nonexistent in simulations
of triaxial (Berczik et al. 2006) and axisymmetric galaxies
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(Khan et al. 2013), for which the added asymmetric per-
turbations in the gravitational potential are able to refill
the loss cone by repopulating centrophilic stellar orbits.
Similarly, the merger of two galaxies will break the sym-
metry of the galactic potentials resulting in a more effi-
cient refilling of the loss cone and thus potentially avoid-
ing the final-parsec problem (Preto et al. 2011; Khan
et al. 2011, 2012). However, even in simulations that
avoid the final-parsec problem the loss-cone filling rate is
affected by the enhanced two-body relaxation timescale,
especially in simulations with N . 106 particles (Vasiliev
et al. 2015). Recently, Gualandris et al. (2016) also
studied the collisionless loss-cone repopulation in triaxial
galaxies without SMBHs using an accurate fast multipole
method and found that for particle numbers N < 107,
the loss-cone filling rate is mildly N -dependent, whereas
the rate becomes practically independent of N for parti-
cle numbers above N ∼ 107.
Recent observations show that even early-type galaxies

have non-negligible gas reservoirs of cold gas in their cen-
tral regions (Young et al. 2011; Davis et al. 2013). The
inclusion of gas in the simulations tends to result in non-
axisymmetric gas torques and a remnant that is denser
in the central regions due to the dissipative nature of the
gaseous component. Both of these effects facilitate rapid
hardening of a SMBH binary and might help in solving
the final-parsec problem (Armitage & Natarajan 2005;
Mayer et al. 2007). This is especially true at high red-
shifts where very gas-rich mergers are expected to occur
frequently (Khan et al. 2016). Indeed, there is observa-
tional evidence for the presence of massive black holes
from strong nuclear outflows at z ∼ 1− 2 (Genzel et al.
2014). However, the results from hydrodynamical simu-
lations depend sensitively on the adopted feedback and
star formation model, and thus we caution that it is not
yet clear, whether the inclusion of gaseous component on
its own is sufficient for solving the final-parsec problem
(see e.g. Chapon et al. 2013).
If the final-parsec problem is avoided, the loss of orbital

energy eventually becomes dominated by the emission
of gravitational waves at very small centiparsec binary
separations with a strong dependence on the binary ec-
centricity. Recently, this process was spectacularly con-
firmed by the direct detection of gravitational waves from
a stellar mass BH binary system by Abbott et al. (2016).
Future space-borne low-frequency laser interferometers
are expected to detect a similar signal from supermas-
sive black hole binary systems (e.g. Amaro-Seoane et al.
2012).
To model the dynamics of SMBHs in galaxy mergers,

one would ideally run a simulation that simultaneously
resolves the global kpc-scale dynamics of the merger and
the subparsec evolution of the SMBH binary. This is a
very ambitious goal and typically only one of these scales
has been properly resolved and modeled in any given
simulation. In the past decade there has been significant
progress in simulating both galaxy mergers and the full
cosmological evolution of galaxies including the effects of
SMBHs initially using smoothed particle hydrodynamics
(SPH) (e.g.Di Matteo et al. 2005; Springel et al. 2005;
Sijacki et al. 2007; Johansson et al. 2009a,b; Booth &
Schaye 2009; Choi et al. 2012) and later also using both
adaptive-mesh refinement (AMR) (e.g. Kim et al. 2011;
Martizzi et al. 2012; Dubois et al. 2012) and moving

mesh techniques (e.g. Vogelsberger et al. 2013; Costa
et al. 2014; Sijacki et al. 2015; Kelley et al. 2017a,b).
These simulations allow for a large number of particles
and are very successful in capturing the global structure
of gas and stars in the galaxies. In addition, they are
able to approximatively follow additional astrophysical
processes by including sophisticated subresolution mod-
els for gas cooling, star formation, metal enrichment and
the feedback from SMBHs and evolving stellar popula-
tions.
However, the fundamental limitation of this approach

is that only a limited number of particles or grid cells
sample the underlying smooth gravitational potential
and by necessity the gravitational force must be softened
to reduce the graininess of the potential. The soften-
ing length or equivalently the size of the minimum grid
cell sets a natural resolution limit, below which the dy-
namics, such as the close two-body encounters with a
massive SMBH cannot be modeled accurately. This also
leads to uncertainties in dynamical friction timescales of
SMBHs. A possibility that circumvents this problem is
the addition of a subresolution drag force term into the
equations of motion of the sinking SMBH that accounts
for the unresolved encounters of the SMBH and the field
stars. This method is particularly well suited for cos-
mological simulations, which typically have low spatial
resolution (Tremmel et al. 2015).
Gravitational softening will also affect the density and

velocity profiles of stars in the centers of galaxies, which
strongly interact with the SMBHs. Finally the harden-
ing and merging timescales of binary SMBHs are also
plagued by large uncertainties and the common ’a pri-
ori’ assumption often taken in these models is that both
the hardening and merging of SMBHs happens rapidly,
with the actual implementation then proceeding through
a subresolution model with limited predictive power.
An alternative approach is to calculate the gravita-

tional force directly by summing exactly the force from
every particle on every particle. This method is com-
putationally expensive, but allows in combination with
high-order integrators for a very accurate calculation of
the gravitational forces. It is widely used to simulate
collisional N-body systems (e.g. Aarseth 1999). This
method does not require gravitational softening but the
computational time scales steeply with the particle num-
ber O(N2) as opposed to tree and mesh codes, which
typically scale as O(N logN). In addition it is not
straightforward to model the gaseous component present
in galaxies in a pure N-body code and combined with
the limited number of particles (N ∼ 106, Wang et al.
2016) this limits the applicability of these codes for a
self-consistent treatment of SMBH dynamics in a full
galactic environment. Thus, owing to these inherent
limitations current numerical simulations with N-body
codes have typically only explored separate aspects of the
full problem by limiting themselves to studies of SMBH
binary dynamics in the centers of isolated galaxies or
merger remnants, with the surrounding galaxy often rep-
resented by idealized initial conditions (e.g. Milosavljević
& Merritt 2001, 2003; Berczik et al. 2006; Preto et al.
2011; Khan et al. 2011, 2013; Gualandris & Merritt 2012;
Vasiliev et al. 2014; Holley-Bockelmann & Khan 2015).
An important distinction to also keep in mind is the dif-
ference between the force accuracy of a simulation and
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the actual simulation accuracy that also depends on how
accurately the orbits of the particles can be integrated.
A recent paper by Dehnen (2014) demonstrated that a
suitably tuned fast multipole method is capable of deliv-
ering a force accuracy comparable to that of a direct-
summation code, while still retaining a very efficient
O(N) scaling. However, for our purposes in addition
to an accurate force calculation, it is also of paramount
importance that we are able to accurately integrate the
equations of motion without softening and to resolve ar-
bitrarily close encounters in the vicinity of the SMBHs.
The main goal of this article is to present and test

our new code that attempts to combine the best as-
pects of the two numerical approaches. Our code KETJU
(the word for ’chain’ in Finnish) combines an algorithmic
chain regularization (AR-CHAIN) method to efficiently
and accurately compute the dynamics close to SMBHs
with the fast and widely used tree code GADGET-3
(Springel 2005) for the calculation of the global galac-
tic dynamics. The performance of normal GADGET-3
can be substandard in situations that require high dy-
namical precision due to the insufficient precision of the
tree force calculation (see e.g. Gualandris et al. 2016).
Some of these problems can be mitigated by setting the
internal accuracy parameters of GADGET-3 to very high
values, significantly beyond their usual nominal values.
In addition in our KETJU code the strongest interactions
between particles will be resolved within the regularized
algorithmic chain region, and not treated by standard
GADGET-3. The main advantage of building KETJU
on the GADGET-3 platform is that it enables the use
of a rich set of astrophysical cooling and feedback mod-
els for future KETJU runs that also include a gaseous
component.
A similar hybrid approach of combining a tree code

with a regularization algorithm was originally imple-
mented by Jernigan & Porter (1989) and McMillan &
Aarseth (1993). Oshino et al. (2011) and Iwasawa et al.
(2015) also both combined the tree algorithm with a di-
rect summation code, however without the inclusion of
regularization, whereas the BRIDGE framework devel-
oped by Fujii et al. (2007) allows for the combination of
different types of N-body codes. For our purposes the
most relevant precursor code is the rVINE code (Karl
et al. 2015), which is very similar in spirit and func-
tionality to our code. In rVINE an algorithmically reg-
ularized region is inserted around a single SMBH with
this structure embedded in the VINE code, which is an
OpenMP-parallelized tree/SPH code employing a binary
tree algorithm (Wetzstein et al. 2009; Nelson et al. 2009).
Although similar to rVINE, there are significant differ-
ences and improvements in the KETJU code detailed in
§2 and §3. As opposed to rVINE, the KETJU code allows
for multiple regularized chains with an individual chain
system for each SMBH particle. In addition, the KETJU
code includes Post-Newtonian (PN) correction terms up
to order PN3.5, which in principle allows for accurate
dynamics valid down to ∼ 10 Schwarzschild radii.
We begin this article by covering the structure of the

chain subsystems in §2 and describe how they are inte-
grated into the GADGET-3 code. Next, we present the
properties of the algorithmic chain regularization method
in §3. The intricate details of the algorithms used in the
code are discussed in Appendices A and B. In §4 we test

and calibrate our code against rVINE and the direct sum-
mation code NBODY7. The performance and scalability
of the code are discussed in §5. In §6 we use the KETJU
code to study the resolution dependence of the SMBH
hardening rates in merger simulations of both two- and
three-component galaxy models. We discuss our results
and plans for the future in §7 and finally present our
conclusions in §8.

2. REGULARIZED SUBSYSTEMS IN GADGET-3

2.1. The chain subsystem

In the standard GADGET-3 code (Springel 2005) the
gravitational accelerations of N-body particles are com-
puted using either a pure tree algorithm or a hybrid
tree-mesh TreePM algorithm. In the TreePM method,
the gravitational tree is used to compute the short-range
forces while an efficient particle mesh method is used for
the long-range component. Hereafter, these two force
calculation procedures are referred to simply as the tree
method.
GADGET-3 propagates simulation particles using a

symplectic kick-drift-kick (KDK) leapfrog scheme with
individual adaptive timesteps (Springel 2005). To in-
tegrate the regularized AR-CHAIN algorithm in the
GADGET-3 code, we must first select a subset of par-
ticles from the complete set of simulation particles.
This regularized subset of particles is excluded from
the GADGET-3 tree force calculation and the standard
leapfrog propagation. These particles are instead propa-
gated using the AR-CHAIN integrator of KETJU (here-
after, chain integration). The chain integration proce-
dure is presented thoroughly in the next section.
We divide the simulation particles into three categories

according to their type and distance to SMBH particles:

1. Chain particles: all the SMBH particles and the
stellar particles which lie in the immediate vicinity
of a SMBH particle. The SMBH and the surround-
ing stellar particles form a chain subsystem. Note
that in the current implementation gas and dark
matter particles cannot enter the chain subsystems.

2. Perturber particles: all the simulation particles
which induce a strong tidal perturbation on a chain
subsystem. These particles feel the tree force and
are propagated using the GADGET-3 leapfrog, but
in addition they receive a correction to their accel-
erations from a nearby chain subsystem.

3. Tree particles: simulation particles that are far
away from any of the SMBH particles and are thus
treated as ordinary GADGET-3 particles with re-
spect to the force calculation.

We have implemented a distance-based selection cri-
terion for chain subsystem members, in which the chain
radius of a SMBH (•) depends on the mass of the SMBH:

rchain
1 kpc

= λ× M•

1010M⊙
, (2)

where λ is a user specified dimensionless input parame-
ter. Note that using this definition the chain radius of
a SMBH remains constant in simulations with no black
hole mass accretion or mergers.
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After the radius of a SMBH has been set, we select
the members of a chain subsystem. A stellar particle (⋆)
belongs to a chain subsystem of a SMBH if

‖r⋆ − r•‖ < rchain. (3)

For a schematic illustration of a chain subsystem among
tree particles, see Fig. 1.

rchain,1
rchain,2

rchain,3

Fig. 1.— An illustration of the chain subsystem with three
SMBHs (black filled circles) and ten stellar chain members (red
stars). The blue stars outside the SMBHs’ chain radii act as per-
turbing particles.

The individual chain particles are removed from the
tree force calculation. However, the center-of-mass
(CoM) of the chain subsystem is placed into the tree
structure as a ’macro’ particle, with the combined mass
of all its chain particles. This macro particle acts as an
ordinary collisionless tree particle in the simulation.
The macro particle is an ordinary GADGET-3 tree

particle and must have a non-zero gravitational soften-
ing length. GADGET-3 uses as a gravitational softening
kernel the Monaghan-Lattanzio spline kernel (Monaghan
& Lattanzio 1985), which is exactly Newtonian outside
the softening length hML. The usually quoted Plummer-
equivalent softening length ǫ, which is used to set the
softening lengths of simulation particles, is related to this
quantity through hML = 2.8 × ǫ (Springel et al. 2001).
Thus, we enforce the condition

rchain > 2.8× ǫ (4)

for the chain radius and the Plummer-equivalent gravita-
tional softening length in order to ensure that the mutual
gravitational interactions of stars and SMBHs are never
softened in KETJU.
The chain subsystems are initialized at the beginning

of the simulation, after which the status of chain par-
ticles is updated after every chain integration interval.
If, at the next timestep, a chain particle has propagated
outside of the chain radius of a SMBH, an escape event
occurs and the chain particle is restored to the tree. If
there are multiple SMBHs in a single chain, we check the
escape condition for all chain particle - SMBH pairs sep-
arately. The absorption of new particles into a chain sub-
system is performed similarly. An absorption event oc-
curs if a tree particle enters the chain radius of a SMBH.

TABLE 1
User-defined KETJU parameters with typical values in

the simulations from §6.

Parameter Description Numerical value

λ Sets the chain radius 1.8
γ Sets the perturber radius 25

ηGBS AR-CHAIN integrator accuracy 10−6

The center-of-mass properties and the total mass of the
macro particles are updated after both absorption and
escape events. We terminate a chain subsystem if the
SMBH is the only remaining chain member particle, i.e.
Nc < 2. A new active chain subsystem is initialized if
stellar particles are found inside the chain radius of a
SMBH.

2.2. Tidal perturbations and force corrections

In addition to internal forces, the dynamics of the par-
ticles in a chain subsystem is affected by external grav-
itational forces f i. These external forces are dominated
by the closest neighboring tree particles which are not
chain subsystem members. We define and select these
perturber particles of a subsystem with a tidal criterion
before every chain integration. A tree particle, labeled
with index j, is selected as a perturber of a chain sub-
system if the condition

‖rj − r•‖ < γ × rchain

(

mj

M•

)1/3

= rpert,j (5)

is satisfied with any of the SMBHs in the particular chain
subsystem. Here γ is a user-defined tidal parameter and
rchain is the SMBH chain radius defined in Eq. (2). In
the case of equal-mass perturber particles, the perturber
radius is identical for all the particle species. The tidal
parameter γ is chosen as such that the perturber radius
is a few times the chain radius of the SMBH. For an illus-
tration of a perturbed subsystem see Fig. 2. In the case
of unequal-mass particles, more massive particles can be-
come perturbers even if they lie further away from the
SMBH than lighter simulation particles and thus there
are several perturber radii. The user-defined parameters
in KETJU are listed in Table 1 with their typical values
from simulations appearing in §6.
During the chain integration, the external force per-

turbations f i are computed using perturber positions,
as described in Algorithm 2 in Appendix B. As the AR-
CHAIN integrator leapfrogs several regularized substeps
during a single tree timestep and the perturber positions
are obtained at the beginning of the timestep, we predict
both the positions of the macroparticle and the perturber
particles using a simple quadratic extrapolation. In ad-
dition, we also include the force contribution of distant
tree particles as a far-field perturbation which is kept
constant during the chain integration. In general, the
tree force calculation does not resolve the subresolution
dynamics in the chain subsystems. However, in order
to satisfy Newton’s third law, perturber particles receive
an extra force correction from the resolved chain after
the completion of the Gadget-3 tree force calculation.
The procedure is as follows. First, we subtract the con-
tribution of the macro particle from the acceleration of
the perturber particle. Then, we resolve the positions of



Post-Newtonian SMBH dynamics in GADGET-3 5

SMBH

Chain member

Perturber

Tree particle

rchain

rpert

Fig. 2.— An illustration of a chain subsystem with a single SMBH
(the black filled circle), chain particles (red stars), perturbing tree
particles (green stars) and ordinary tree particles (yellow stars).
The chain radius of the SMBH is marked with rchain and the radius
containing the perturbers with rpert. Note that here we assume
equal-mass tree particles so there is a single perturber radius.

the chain particles and compute the correction for the
acceleration of the perturber using the softened direct
summation method employing the Monaghan–Lattanzio
cubic spline kernel (Monaghan & Lattanzio 1985) used in
standard Gadget-3. If a tree particle perturbs multiple
chain subsystems, it receives a force correction from all
of them. In addition, all macro particles in the tree re-
ceive a force correction due to the perturber forces on the
resolved individual particles in the chain subsystem. To
sum up, the internal structure of the chain subsystems
in visible to the nearby perturbing tree particles. For
faraway tree particles the chain subsystems appear as a
single macro particles. However, this is not a problem
since treating distant simulation particles using a low-
order multipole expansion is in fact the essence of the
tree force calculation itself (e.g. Barnes & Hut 1986).
As the force correction computation scales proportionally
to the number of chain particles and perturber particles,
O(Nc ×Np), the perturber tidal parameter γ should be
selected carefully in order to optimize both code accuracy
and the resulting computational cost. In this paper, we
follow the general rule of thumb that

rpert ≥ 2× rchain, (6)

i.e. the perturber radius is at least twice the chain radius
of the SMBH for every particle type in the simulation.

2.3. Timestepping with chain

In GADGET-3, the timestep of a collisionless particle
is set to

∆tgrav =

(

2ηǫ

|a|

)1/2

, (7)

in which η is the user-defined error tolerance parame-

ter, ǫ is the gravitational softening length and a is the
acceleration of the particle. In addition, all timesteps in
GADGET-3 are discretized as power of two subdivisions
of the global tree timestep (Springel 2005).
In KETJU, the timestep criterion is modified slightly.

All SMBH particles are placed on the smallest active level
in the global timestep hierarchy. In addition, all the par-
ticles escaping from the chain are set to the smallest tree
timestep level. The chain time integration is performed
within GADGET-3’s KDK integration cycle in the fol-
lowing way. The subsystem/tree memberships of the
simulation particles are updated at the beginning of ev-
ery integration cycle. The macroparticles are propagated
as ordinary tree particles while the chain subsystems are
propagated after the drift operation, before updating ac-
celerations of the active tree particles. The force cor-
rections from the resolved macroparticles are computed
after the acceleration calculation.

2.4. Multiple chain subsystems

As KETJU allows for multiple chain systems in a single
simulation, it is possible for two chain subsystems to first
perturb each other and then eventually merge. The tidal
perturbations from one chain subsystem on another are
treated in the following way. We resolve the macro par-
ticle into its constituent chain particles and treat them
as described in §2.2. Finally, we merge the chain sub-
systems labeled i and j into a single subsystem if the
volumes occupied by the chain systems overlap:

‖r•,i − r•,j‖ < rchain,i + rchain,j (8)

while the center-of-mass separation of the subsystems is
decreasing, i.e.

(r•,i − r•,j) · (v•,i − v•,j) < 0. (9)

We test for these conditions for all the chain subsystems
at every GADGET-3 timestep. Likewise, we split a chain
subsystem into two new subsystems if

‖r•,i − r•,j‖ > rchain,i + rchain,j (10)

and the splitting SMBH j is receding from all the SMBHs
in the original subsystem, i.e. the condition

(r•,i − r•,j) · (v•,i − v•,j) > 0 (11)

must be fulfilled for every pair of SMBHs i 6= j.

2.5. Particle mergers

In the standard GADGET-3 implementation (Springel
et al. 2005), the SPH kernel of the code is also used to
compute the gas density around the SMBHs. In addition,
the size h of the kernel also defines the SMBH merg-
ing criterion. Two SMBHs merge if they come within
a distance of h of each other and the relative speed of
the SMBHs is below the local sound speed. This typ-
ically occurs at SMBH separations of the order of tens
or hundreds of parsecs (e.g. Mayer et al. 2007; Johans-
son et al. 2009a). Because the gravitational forces in the
chain subsystems are not softened, we are able to follow
the orbital evolution of a SMBH binary to separations
well below the gravitational softening length ǫ of the tree
calculation, whereas in a softened simulation the binary
would stall at the softening length. Since we can also
resolve arbitrarily close encounters between two SMBHs
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and between SMBHs and stellar particles, a more refined
criterion for mergers between SMBHs and SMBHs and
stellar particles is now required.
If Post-Newtonian corrections of the order PN2.5 or

higher are included, the semi-major axis of a point mass
binary will shrink due to the loss of orbital energy caused
by gravitational wave emission. The time evolution of the
orbital semi-major axis, a, can be approximated by the
analytical formula of Peters & Mathews (1963) valid at
PN2.5:

ȧ = −64

5

G3M•,1M•,2(M•,1 +M•,2)

c5a3
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
,

(12)
where M•,1 and M•,2 are the masses of the two SMBHs
and e is the eccentricity of the SMBH binary. Since ȧ ∝
−a−3, the coalescence timescale can be approximated by

tc ∼ − a

4ȧ
, (13)

if constant eccentricity is assumed.
For each bound SMBH binary, we compute the or-

bital elements and the coalescence timescale using Eq.
(13) before each global GADGET-3 timestep. We com-
pare the coalescence timescale tc with the current tree
timestep ∆ttree multiplied by a temporal safety factor
s1 > 1. If tc < s1∆ttree, we merge the SMBHs instantly
during this timestep. The same coalescence criterion is
applied to the stellar particles bound to a SMBH as well.
The safety factor is necessary, since Eq. (13) only gives
an approximation to the coalescence timescale, and the
exact dynamics might bring the particles to a collision
within ∆ttree even though fiducially tc > ∆ttree. We set
s1 = 2 in the code to ensure that this unphysical behav-
ior does not take place. For the simulations presented
in this study, the expected absolute error in the SMBH
merger timescale is conservatively a few times the length
of a typical timestep ∼ 0.001 Myr. The typical SMBH
merger separation in KETJU is of the order of a few
hundred AU, which is three to four orders of magnitude
below the typical merger separations in GADGET-3 sim-
ulations.
We further enforce a minimum distance between two

particles. For a SMBH-SMBH pair, we use a multiple of
the sum of the Schwarzschild radii of the particles and
set

rmin,S = 6

(

2GM•,1

c2
+

2GM•,2

c2

)

. (14)

This criterion is based on standalone tests with the
AR-CHAIN integrator, which indicate that the Post-
Newtonian dynamics is still numerically well-behaved at
these distances. For a pair consisting of a SMBH and a
stellar particle, we use

rmin,T = max

{

rmin,S, s2R⊙

(

M•

M⊙

)1/3
}

, (15)

where s2 > 1 is a spatial safety factor and M⊙ and R⊙

are the solar mass and radius, respectively. This crite-
rion is motivated by the usual definition for the stellar
tidal disruption radius, rTDE ∼ (M•/m⋆)

1/3R⋆, assum-
ing R⋆ = (m⋆/M⊙)

1/3R⊙ for the stellar particles. For

s2 ∼ 1, the criterion reduces exactly to the tidal dis-
ruption distance (e.g. Kesden 2012). To enforce larger
separations well above the tidal disruption distance, we
set s2 = 10 in the code. This was motivated by the fact
that the PN-corrections were found to be occasionally
numerically unstable in the case of two-body collisions,
combined with the fact that collisions are checked for
before each tree timestep using a linear prediction of the
particle orbits. This linear prediction gives the condition

2t r12 · v12 + r12 · r12 − r2min = 0, (16)

where r12 = r2 − r1 and v12 = v2 − v1 are the relative
positions and velocities of the particle pair. If Eq. (16)
has a solution with t ∈ [0,∆ttree], we merge the particles
instantly.
The actual merger of the particles is performed using

the equations

M = M1 +M2 (17)

r = (M1r1 +M2r2)/M (18)

v = (M1v1 +M2v2)/M (19)

L =
M1M2

M
r12 × v12 (20)

S = L+ S1 + S2. (21)

This ensures the conservation of Newtonian linear mo-
mentum and angular momentum |L|. We note here that
KETJU can follow the spin (S) evolution of all stellar
and black hole particles. The spin state of the parti-
cles is only affected by the PN corrections, through Eq.
(26), and for black holes also by the merger Eq. (21).
However, in the simulations run in this study, all parti-
cle spins are initialized to zero. While the stellar spins
remain zero at all times, the black hole spins also never
attain a significant magnitude in the simulation.

3. THE REGULARIZED INTEGRATOR

3.1. Algorithmic chain regularization

The regularized dynamics in KETJU is based on a
novel reimplementation of the AR-CHAIN algorithm
(Mikkola & Merritt 2008) written in the C programming
language. Below we will briefly outline the algorithm.
For a more involved description, see Mikkola & Aarseth
(1993) and Mikkola & Merritt (2006, 2008). The algo-
rithm has three main aspects: algorithmic regularization,
the use of relative distances to reduce round-off errors,
and extrapolation to obtain high numerical accuracy in
orbit integrations.
Algorithmic regularization works by transforming the

equations of motion into a form where integration by the
common leapfrog method yields exact orbits to within
numerical precision for a Newtonian two-body problem,
including two-body collisions. This is achieved by in-
troducing a new fictitious time as an independent vari-
able in order to circumvent the collision singularity that
plagues the Newtonian equations of motion. For mathe-
matical details of the time transformation procedure, see
Appendix A.
The second aspect of the regularization scheme is the

use of relative positions in the numerical calculations to
reduce the often significant effect of round-off error. The
relative positions, or chain vectors, form a contiguous
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‘chain’ of vectors,

Xk = rjk − rik , (22)

where jk and ik reindex the particles into endpoints and
starting points of the chain vectors, respectively. Here
k = 1, . . . , Nc − 1, since there is one fewer chain vector
than there are particles. In the following, we assume that
the particles have been reordered so thatXk = rk+1−rk.
The formal Newtonian equations of motion for the chain
variables are then

Ẋi = V i

V̇ i = Ai({Xi}) + f i,
(23)

where V i are the relative velocities, Ai gives the gravita-
tional N-body acceleration from the chain particles and
f i incorporates all perturbing accelerations. These typ-
ically include accelerations induced by simulation parti-
cles not contained within the chain, since only a small
subset (∼ 10− 100) of all simulation particles are found
in the chain at any given time.
Up to this point, the result is just a reformulation of

the original problem. The defining aspect is how the
chain vectors are chosen. The selection criteria can be
based on either the relative distances or the magnitudes
of the forces between the particles, so that the shortest
distances or the strongest forces are included in the chain,
respectively. If relative distances are used as the selection
criterion, the algorithm proceeds as follows:

1. Find the shortest relative distance between two
particles in a subsystem. This forms the first seg-
ment of the chain, where the two particles are now
called the ‘head’ and the ‘tail’ of the chain.

2. From the subsystem particles not yet in the chain,
find the particle with the shortest relative distance
to the head (tail) particle, and add it to the chain.
This particle is now the new head (tail).

3. Repeat step 2 until no more particles remain.

If instead forces between the particles are used, the algo-
rithm is exactly the same, except “shortest distance” is
replaced by “strongest force”. The new variables Xi are
then propagated using Eqs. (23). They are also used in
place of the rij in all calculations where relative distances
are required, as long as at most Nd chained distances Xi

need to be added to yield rij . The actual summation can
be done using the following prescription:

rij =















rj − ri if |i− j| > Nd

max{i,j}−1
∑

k=min{i,j}

sign(i− j)Xk if |i− j| ≤ Nd.
(24)

Following Mikkola & Merritt (2008), we set Nd = 2. The
regularized leapfrog algorithm using the chained vari-
ables is described in detail in Appendix B.
The final ingredient in the algorithmic chain regular-

ization is the use of an extrapolation method. In broad
terms, this entails taking a longer timestep H and subdi-
viding it into n smaller steps, each of which is performed
using some suitable numerical method, such as the mod-
ified midpoint method. When the subdivision count n is

successively increased, the result will generally converge
towards the exact solution of the equations of motion
over the longer timestep H. The results of this process
can then be extrapolated to n → ∞ using either ratio-
nal or polynomial extrapolation. This method is called
the Gragg–Bulirsch–Stoer (GBS) algorithm (Gragg 1965;
Bulirsch & Stoer 1966). Practical implementations in-
clude sophisticated timestep control as well as some con-
trol of the maximum subdivision count, which turns out
to be proportional to the order of the method (see e.g.
Hairer et al. 2008). For a thorough exposition of the GBS
extrapolation method, as well as a complete implementa-
tion see Press et al. (2007). We use this implementation
in our code with the added modification of using the
chain leapfrog (see Appendix B) instead of the modified
midpoint method to propagate the system through the
substeps.
When combined, the three aspects of the chain regu-

larization method guarantee that two-body collisions are
treated exactly up to numerical precision, round-off er-
rors are greatly reduced and the desired tolerance for
energy errors during the propagation can be set to a
very low level without excessive degradation of the per-
formance of the algorithm.

3.2. Post–Newtonian corrections

In KETJU, we implement relativistic corrections to
motions near black hole particles via the so-called Post–
Newtonian corrections. These are represented by addi-
tional terms in the relative acceleration of two bodies,
approximating the effects of general relativity, so that

a2-body = aNewtonian +

7
∑

k=2

c−ka(k/2)PN + aS , (25)

where aNewtonian is the usual Newtonian two-body accel-
eration, c is the speed of light, axPN is the PN correction
of order x and aS indicates PN terms depending on the
spins of the particles. We include both spin-independent
and spin-dependent PN corrections up to order PN3.5
corresponding to inverse seventh power of the speed of
light, i.e. c−7 (see e.g. Will 2006 for further details).
In addition, for spinning bodies, there is a correspond-

ing PN contribution to the equations of motion for the
spins, given by

Ṡi = SPN,i × Si, (26)

where Si is the spin angular momentum of the parti-
cle i and SPN,i gives the effect of the spin–orbit, spin–
spin and quadrupole–monopole interactions. The ex-
plicit forms for the included PN terms can be found in
Mora & Will (2004) for the spin-independent terms and
Barker & O’Connell (1975) and Kidder (1995) for the
spin-dependent terms. The two-body PN corrections in
Eq. (25) are only used for interactions where at least one
of the bodies is a black hole particle. For interactions
between stellar, gas or dark matter particles, the PN
corrections are not expected to be of any significance, at
least in the physical scenarios for which the KETJU code
is intended.
The code also provides the option of using the PN

cross-term formulation (Will 2014) instead of the two-
body formulation given above. The cross terms are an
approximation of the full Einstein–Infeld–Hoffman (EIH)
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equations of motion (Einstein et al. 1938) and are valid
at PN2.0 order. In addition, the approximation is only
valid for a system consisting of one or a few very mas-
sive bodies and numerous lighter bodies. As such, it is
in particular suitable for systems consisting of SMBHs
surrounded by lighter stellar particles. In practice, the
cross terms modify the Newtonian two-body accelera-
tion between two particles by the first order PN terms,
as well as an additional contribution depending on the
accelerations of all the other particles in the subsystem.
Similarly to the EIH equations, the cross terms involve
sums with O(N3

c ) terms for a system of Nc particles, al-
beit with a smaller proportionality constant. The cross
term contributions can be used only for a modest num-
ber of particles, of the order of hundreds at most, without
prohibitive loss of numerical performance.

4. TEST PROBLEMS AND CODE CALIBRATION

We calibrate our user-specified KETJU parameters
which control the chain radius, the perturber radius
and the AR-CHAIN integrator accuracy for our regular-
ized tree code by comparing our code against the stan-
dard gravitational collisional N-body simulation code
NBODY7 (Aarseth 2012). This is a gravitational direct
summation code utilizing an accurate fourth-order Her-
mite integrator with force polynomials and few-body reg-
ularization for close encounters of simulation particles.
The employed few-body regularization method is option-
ally either the algorithmic chain or the Kustaanheimo-
Stiefel (KS) regularization method (Kustaanheimo &
Stiefel 1965). The current publicly available version of
NBODY7 is accelerated with the Ahmad-Cohen neigh-
bor scheme and GPUs (Aarseth 2012). In addition, for
comparison, we also run tests with the standard ver-
sion of GADGET-3 (Springel 2005) without including
the chain regularization. The test and calibration setups
used in this section closely follow the performance tests
presented by Karl et al. (2015), which were used to verify
the performance of the regularized tree code rVINE.

4.1. The inspiral of a single SMBH in a Hernquist
sphere

We consider first a SMBH on a circular orbit in a Hern-
quist sphere (Hernquist 1990). A SMBH propagating in
a field of stars is subject to dynamical friction (Chan-
drasekhar 1943, Binney & Tremaine 2008) and will sink
to the center of the Hernquist bulge on the dynamical
friction timescale. Throughout this section we use the
following Hernquist model for our calibration tests: to-
tal mass ofM = 1010 M⊙ and a scale radius of a = 1 kpc.
A multi-component extension of the single-component
Hernquist profile is discussed in §6. In this Hernquist
sphere we place a single SMBH with a mass of M• = 107

M⊙ initially on a circular orbit (vcirc ≈ 95.4 km/s) at

the half-mass radius (rH =
(

1 +
√
2
)

a ≈ 2.41 kpc) of
the Hernquist sphere.
The number of particles in the dynamical friction test

setup is restricted to N = 105 because of the steep scal-
ing of the required computational time in NBODY7 as
a function of the particle number. We run the dynami-
cal friction calibration simulations using NBODY7, stan-
dard GADGET-3 and KETJU until the SMBH reaches
the center of the Hernquist sphere where the dynamical

friction becomes ineffective. The results of the dynam-
ical friction runs are presented in Fig. 3. Throughout
these tests the NBODY7 run acts as the standard against
which other codes are compared.
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Fig. 3.— The separation from the center of the galaxy as a func-
tion of simulation time demonstrating the sinking of a SMBH to-
wards the center of a Hernquist sphere using three different nu-
merical codes: NBODY7, GADGET-3 and the KETJU. All three
displayed KETJU simulation runs with different GBS integrator
accuracies match the SMBH sinking time scale in NBODY7 within
a few percent, whereas the GADGET-3 run overpredicts the decay
time by a factor of 1.25 to 1.7, depending on the chosen gravita-
tional softening length.

For the GADGET-3 runs, we test two different gravita-
tional softening lengths: ǫ = 6 pc and ǫ = 20 pc. We set
the GADGET-3 integrator error tolerance to η = 0.02
and the force accuracy to α = 0.005, using the standard
GADGET-3 cell opening criterion (Springel 2005), in all
dynamical friction runs. We also run several simulations
with higher values for the accuracy parameters obtaining
consistently similar results as with the standard param-
eter values. In the GADGET-3 run with ǫ = 20 pc the
SMBH reaches the center of the Hernquist sphere on a
sinking timescale of tsink ∼ 4000 Myr, whereas for the run
with ǫ = 6 pc the sinking time is tsink ∼ 3000 Myr. For
both runs the sinking timescales are considerably longer
than the sinking timescale in the NBODY7 simulation
(tsink ∼ 2400 Myr). This is due to the fact that the
dynamical friction force is weaker for softened gravita-
tional interactions than for the non-softened forces (Just
et al. 2011), as in NBODY7. In simulation codes using
gravitational softening, the dynamical friction force con-
tribution of the stars with an impact parameter smaller
than the gravitational softening length is grossly under-
estimated. This results in reduced dynamical friction
and affects the sinking timescale of the SMBH although
the friction force depends only logarithmically through
the Coulomb factor on the impact parameter of the en-
counters of the SMBH and stellar particles (Binney &
Tremaine 2008).
Including a regularized region around the SMBH over-

comes the limitations of the softened tree codes in the
computation of the dynamical friction force. In KETJU,
the far-field gravitational dynamics of GADGET-3 re-
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mains unaltered while the regularized AR-CHAIN inte-
grator handles the close encounters between the SMBH
and the incoming stars. We set the gravitational soft-
ening length to ǫ = 6 pc and the chain radius of the
SMBH to be constant at rchain = 30 pc (λ = 30, see
Eq. (2)). The two important numerical parameters that
need to be calibrated are the tidal parameter γ and the
Gragg-Bulirsch-Stoer (GBS) extrapolation accuracy pa-
rameter ηGBS(see §3.1). The tidal parameter γ defines
the size of the perturber volume around the regularized
subsystem according to Eq. (5). The GBS accuracy
parameter ηGBS sets the maximum allowed error during
a single AR-CHAIN step for any physical variable (see
Press et al. 2007, for an in-depth description of the GBS
accuracy parameter).
We run the dynamical friction test using KETJU

with three different GBS accuracy parameters ηGBS ∈
[10−5, 10−6, 10−7]. We set the tidal parameter γ so that
the perturber radius equals twice the radius of the chain
subsystem, i.e. 60 pc, which yields good results for all the
dynamical friction test runs. During the first ∼ 1.5 Gyr,
the SMBH propagates through the low-density outer
parts of the Hernquist sphere and the chain regular-
ization is needed only occasionally when a stellar par-
ticle passes very close to the sinking SMBH. After t > 2
Gyr the regularized subsystem contains particles at ev-
ery global GADGET-3 timestep. We obtain final SMBH
sinking times that are within 4% of the NBODY7 result
of tsink = 2.4 Gyr using GBS parameter values of ηGBS

≤ 10−5.

4.2. A SMBH binary hardening in a Hernquist sphere

Another crucial feature for a regularized tree code is
the ability to properly model the formation and the hard-
ening of systems of binary (or multiple) SMBHs. We
build the initial conditions for a SMBH binary hardening
test using the same Hernquist spheres as in the previous
section. We note that the simulation particle number
N = 105, limited by the scalability of NBODY7, might
be too low to properly study the SMBH binary evolu-
tion. Recent state-of-the-art direct summation studies
(e.g. Khan et al. 2013; Vasiliev et al. 2014) utilizing
φGRAPE-based codes (Harfst et al. 2007, 2008) have em-
ployed particle numbers up to N ∼ 106, but as demon-
strated by Vasiliev et al. (2015) and Gualandris et al.
(2016) even simulations with these high particle num-
bers are affected by spurious relaxation effects. Instead,
our main goal here is to demonstrate that KETJU can re-
produce NBODY7 results in simulation setups which are
possible to run using NBODY7 in a reasonable wallclock
time.
One SMBH with mass of M• = 5×107 M⊙ is placed at

rest at the center of the Hernquist sphere while another
SMBH of the same mass is placed on a circular orbit
with an initial separation of r = 0.1 kpc from the center
of the sphere. We run the simulation for t = 250 Myr
after which the separation of the two SMBHs is ∼ 1
pc. In the simulation runs using GADGET-3 we set the
gravitational softening length of the SMBHs and stellar
particles to ǫ = 10 pc. The parameter study of KETJU is
twofold. First, we set the GBS tolerance to ηGBS= 10−6

and test the effect of the gravitational softening length
and the chain radius on the SMBH binary evolution. We
try four different softening lengths: ǫ = 0.1 pc, ǫ = 1.0

pc, ǫ = 3.5 pc and ǫ = 6.0 pc. The chain radius is fixed
at rchain = 10 pc in the former three runs and set to
rchain = 18 pc in the last run with the largest softening
length. The perturber radius is twice the chain radius
in all the simulation runs. The results of this test are
presented in Fig. 4.
In the GADGET-3 run the SMBH binary stalls at a

separation of ∼ ǫ, as expected. In addition, the binary
eccentricity is higher in the GADGET-3 run when com-
pared to the rVINE, NBODY7 and KETJU simulations.
In rVINE the evolution of the inverse semi-major axis
depends on the initial chain radius (Karl et al. 2015).
With N = 105 stellar particles, the final SMBH binary
inverse semi-major axis is somewhat larger in the rVINE
run than in the NBODY7 simulation run. As expected,
the KETJU runs with the smallest softening lengths
match best the evolution of the inverse semi-major axis in
NBODY7. With the two larger softening lengths (ǫ = 3.5
pc and ǫ = 6 pc) the hardening rate appears to converge
to a slightly lower value than in the NBODY7 run.
As the host galaxy is a low-resolution Hernquist sphere,

the dominating loss-cone filling effect is two-body relax-
ation. Increasing the gravitational softening length re-
duces the loss-cone filling rate by increasing the two-body
relaxation timescale. Thus it is natural that the harden-
ing rate decreases when the softening length is increased.
In a typical real spherical galaxy the two-body relax-
ation timescale is very long because the number of stars
is N ≫ 105 and thus the resulting loss-cone filling would
be very inefficient, with the hardening rate going towards
zero as N increases. However, typically real SMBH bi-
naries form in the aftermaths of galaxy mergers, where
the non-spherical shape of the host galaxy is the pri-
mary driver for the loss-cone filling instead of two-body
relaxation (e.g. Khan et al. 2011). Thus, we here argue
that the small differences between the KETJU harden-
ing rates and the NBODY7 results are not a problem
when simulating more physical SMBH binary formation
scenarios, such as the major mergers of galaxies.
The second part of the KETJU SMBH binary pa-

rameter study consists of varying the GBS error toler-
ance parameter. The gravitational softening was set to
ǫ = 6 pc and the chain radius to rchain = 18 pc for
these runs. We tested three different tolerance parame-
ter values: ηGBS= 10−5, ηGBS= 10−6 and ηGBS= 10−7.
The results presented in Fig. 5 show that the evolution
of both the binary eccentricities and the inverse of the
semi-major axis are quite similar for the three runs. In
general the orbital eccentricities of the SMBH binaries
are quite low (e < 0.4) in all the test runs. We do not
see any apparent convergence of the results. However,
this is not unexpected, as the eccentricity evolution of
the SMBH binary is strongly dependent on the velocity
distribution of the stellar component (Mikkola & Valto-
nen 1992), with the large scatter in the eccentricity just
highlighting the low mass resolution of this set of simu-
lations.
In conclusion, all the tested KETJU parameter combi-

nations provide a significantly better description of the
SMBH binary dynamics than standard GADGET-3, for
which the SMBH binary separation is constrained by the
gravitational softening length. KETJU also accurately
reproduces the results of NBODY7. Based on these test
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Fig. 4.— The evolution of a SMBH binary simulated using NBODY7, standard GADGET-3, rVINE and four KETJU runs. In all
KETJU simulations the GBS error tolerance is set to ηGBS= 10−6. Left panel: the binary eccentricities are in general small, except for the
GADGET-3 run. Right panel: the evolution of the inverse semi-major axis. When the gravitational softening is very small (ǫ . 1 pc), the
KETJU result is close to the NBODY7 result. When ǫ is increased to 3− 5 pc, the KETJU results appear to converge to a slightly gentler
hardening slope than seen in the NBODY7 run. Runs with KETJU and NBODY7 for a low resolution Hernquist sphere with N = 105

particles results in unphysically strong two-body relaxationand steep hardening slopes, when ǫ → 0. In the GADGET-3 run, the SMBH
binary stalls around 1/a ∼ 1/ǫ, as expected.

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

Time [Myr]

1
/a

 [
1

/k
p

c
]

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time [Myr]

E
c
c
e

n
tr

ic
it
y

KETJU ηGBS = 10
−5

KETJU ηGBS = 10
−6

KETJU ηGBS = 10
−7

Fig. 5.— The effect of the KETJU GBS error tolerance parameter on the SMBH binary evolution. The gravitational softening length
is fixed to ǫ = 6 pc and the chain radius is set to rchain = 18 pc. The run with ηGBS= 10−6 is the same as in Fig. 4. All KETJU runs
with different ηGBS values, ηGBS= 10−5, ηGBS= 10−6 and ηGBS= 10−7, yield consistently similar results both in the evolution of binary
eccentricity and the semi-major axis.

simulations, we choose the GBS accuracy parameter of
ηGBS= 10−6 for the rest of the KETJU simulations in
this study.

5. PERFORMANCE AND SCALABILITY

5.1. Conservation of energy

The earlier FORTRAN-based implementation of the
standalone AR-CHAIN algorithm has been demon-
strated to conserve energy extremely accurately in few-
body (Nc < 10) simulations (Mikkola & Merritt 2008).

Here we adopt the same test scenario for our C-based
AR-CHAIN reimplementation. We set a single SMBH
with M• = 1010M⊙ at rest at the origin. Next, seven
stellar particles logarithmically evenly spaced in their
mass ratio are drawn from the mass ratio range of
10−9 ≤ m⋆/M• ≤ 10−3 and are placed around the SMBH
with a zero initial velocity, resulting in almost rectilinear
stellar orbits. We follow the dynamical evolution of the
system for 25 000 years. The energy conservation of the
system is presented in Fig. 6. The relative energy error
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remains |∆E/E| = |(H + B)/B| . 10−13 for most of
the simulation time, where H is the Hamiltonian, which
corresponds to the negative of the gravitational binding
energy −B in the AR-CHAIN implementation within nu-
merical precision (see Appendix A.).
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Fig. 6.— The relative error of our AR-CHAIN implementation
in the extreme accuracy test of Mikkola & Merritt (2008). Here
B is the binding energy of the system and H is the Hamiltonian.
The relative energy error remains below 10−13 for most of the
simulation time, excluding the most close-by encounters, which
are clearly seen as visible jumps in the energy error.

Conservation of energy has to be carefully ensured
in KETJU as the gravitational potential in the simu-
lation volume contains both softened and non-softened
regions. The energy conservation in the standard soft-
ened TreePM algorithm of GADGET-3 was validated
by Springel (2005). A simulation particle crossing the
boundary from a softened potential to a non-softened
regularized region (or vice versa) experiences a sudden
discontinuity in the gravitational potential. We next
demonstrate that the flux of simulation particles through
a chain subsystem does not introduce additional error to
the global energy conservation of the simulation.
We set up an energy conservation test by constructing

a Hernquist sphere as described in §6 with M = 1011M⊙

and N = 106 particles centered at the origin. A SMBH
with M• = 108M⊙ is placed at rest at the center of the
sphere. The gravitational softening length of stellar par-
ticles is set to ǫ = 6 pc, the chain radius to 18 pc and
the perturber radius to twice the chain radius, i.e. 36
pc. We run the initial conditions for 100 Myr and study
the energy conservation as a function of the GBS accu-
racy parameter. The relative error of the total energy
|∆E/E0| as a function of time is presented in Fig. 7.
We find that energy is conserved in standard

GADGET-3 at the level of |∆E/E0| . 1 × 10−3 dur-
ing the simulation. KETJU performs sligthly better:
|∆E/E0| . 7× 10−4 with both ηGBS= 10−6 and ηGBS=
10−7. The difference between GADGET-3 and KETJU
clearly originates from the central tens of parsecs of the
galaxy where the accelerations of the simulation particles
are the strongest. As KETJU uses the GBS extrapola-
tion method in AR-CHAIN, the energy conservation up
to a user-given tolerance is guaranteed in the regularized
region during every timestep. In contrast, this is not the
case with GADGET-3’s leapfrog integrator: even though

the timestepping is adaptive, there is no set maximum
allowed energy error per timestep.
Our results can also be compared to the energy conser-

vation of the rVINE code, for which Karl et al. (2015) ob-
tained an energy conservation of 5× 10−4 . |∆E/E0| .
5 × 10−3 with an initial chain radius of 10 pc in short
test runs with a duration of 4.7 Myr and N = 105 parti-
cles. The exact result depends on the chosen rVINE tree
accuracy parameter, but the energy conservation values
given above are representative. In both the KETJU test
runs shown in Fig. 7, the energy is conserved at a level
below |∆E/E0| . 8× 10−5 during the first 5 Myr of the
simulation. Based on our energy conservation tests, we
conclude that KETJU conserves energy on a slightly bet-
ter level than both standard GADGET-3 and the rVINE
code.
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Fig. 7.— The relative energy error in GADGET-3 and KETJU
in a 100 Myr simulation of an isolated stellar bulge with a single
SMBH. The energy conservation is slightly better in all the KETJU
runs, when compared to standard GADGET-3.

5.2. Timing tests and code scalability

In this section we demonstrate the scalability of
the KETJU code for realistic simulation setups. The
performance and scalability of collisionless standard
GADGET-3 simulations is presented in Springel et al.
(2005). The most time-consuming operations of the
GADGET-3 code in simulations without gas are the com-
putation of the gravitational force using the tree algo-
rithm as well as the domain decomposition required for
efficient simulation parallelization.
KETJU introduces new computational tasks that need

to be performed in addition to the standard GADGET-3
procedures. The most important tasks from the per-
spective of CPU time consumption are the following:
first, the gravitational oct-tree has to be built during
every smallest timestep. This is necessary as the chain
structure needs to be updated every timestep due to the
possibilities of absorption of particles into the chain and
the escape of particles from the chain. In addition, the
required neighbor searches for chain particles and per-
turber particles and the resulting extra MPI (Message
Passing Interface) communication typically consumes of
the order of a few percent of the total CPU time.
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Our implementation of the AR-CHAIN algorithm is
MPI-parallelized for increased performance and compa-
bility with GADGET-3. The KETJU functions are im-
plemented in GADGET-3 in the same manner as all the
other subresolution procedures: all MPI tasks partici-
pate in a single subresolution routine at a time. The or-
der of the most important AR-CHAIN function calls in
the integration cycle of GADGET-3 is briefly discussed
at the end of §2.3. Every task contains a copy of the
chain structure enabling fast chain-tree particle exhange
calculations. Each computational node performs the par-
allelized chain integration. This computation strategy is
found to be faster than the parallelized chain integration
using all the available tasks, or serial chain integration
and communication of the results to all the tasks. Early
development versions of KETJU used all the available
MPI tasks for the chain integration, but this proved to
be an extremely poor computational strategy when the
number of chain particles was far below the number of
MPI tasks.
The AR-CHAIN integration of chain particles is the

computationally most demanding new operation intro-
duced in KETJU compared to GADGET-3. Estimating
the scaling of the computational demand with increas-
ing chain and perturber particle numbers Nc and Np

is not straightforward, since the AR-CHAIN integrator
controls both the timestep and the order of the method
as necessary to stay within the set accuracy parameters.
However, an estimate can be formulated as follows. The
amount of required computational work per one force cal-
culation is of the order O(N2

c +NcNp) = O(Ñ2), where

Ñ =
√

N2
c +NcNp is now an effective number of chain

particles. As one force calculation is needed per timestep
for a second order leapfrog, the first estimate for the
asymptotic computational scaling is just O(Ñ2).
Setting a tolerance limit on the error does not change

this in the first approximation. The error ∆x over one
step in some dynamical variable x for a method of order
p is ∆x ∝ hp+1, where h is the timestep. As such, the
global error over a run of time T is Ex ∝ Th−1∆x ∝ hp.
If we set an error tolerance ǫ and demand Ex . ǫ, we
find that Ex ∝ T 1−1/pǫ1/p which is independent of the
particle number and gives a scaling O(Ñ2) again, if p is
constant.
However, the force computation for each particle also

suffers from errors accumulated for all the other particles,
leading to a force error ∆F ∝ Ñ2, which then gives a
total error for x of Ex ∝ Ñ2hp. If we then demand
Ex . ǫ, we find that h ∝ ǫ1/pÑ−2/p, resulting in a total

computational effort of ∝ Tǫ−1/pÑ2+2/p. Thus, the AR-
CHAIN algorithm scales as O(Ñ2+2/p), where p is now
some mean order used by the GBS extrapolation scheme
during the run and which will depend on the smoothness
of the problem. In general we have p ≥ 2, and in the
worst case scenario of a simple leapfrog, p = 2, we have
O(Ñ3) scaling. Typically the GBS method works at p =

10 to p = 16 which give approximately O(Ñ2.20) and

O(Ñ2.13), respectively. As such, we can estimate that
the AR-CHAIN integration should scale approximately
slightly worse than the square of the particle number.
We perform two scaling tests to study the performance

of KETJU. The first scaling test T1 is run using a con-
stant number of MPI tasks while modifying the num-
ber of particles in the initial conditions. In the second
scaling test T2 the test problem remains fixed but the
number of MPI tasks is varied. For both of these test
setups we use galaxy merger initial conditions contain-
ing two multi-component galaxy models with a stellar
bulge, a dark matter halo and a central SMBH. For a
detailed description of the initial setup, see §6.1 and Ta-
bles 2 and 3. We set the chain radius to 18 pc (λ = 1.8,
γ = 25) in all the scaling test runs. The DM softening
length is set to ǫDM = 100 pc, and the stellar soften-
ing length is ǫ⋆ = 6 pc. The number of dark matter
particles remains fixed at NDM = 106 in all the scaling
test runs. For the scaling tests T1, we select the fol-
lowing accuracy parameters: the GADGET-3 error tol-
erance η = 0.002 and the AR-CHAIN GBS tolerance of
ηGBS = 10−6. We use 96 MPI tasks in all the runs for
test sample T1. The number of stellar particles is varied
between 2 × 105 ≤ N ≤ 2 × 106.25. The results of the
scaling test T1 are presented in Fig. 8.
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Fig. 8.— The scaling test T1. At low particle numbers, the
GADGET-3 part dominates the time consumption of KETJU and
the scaling is close to the characteristic O(N logN) scaling of
GADGET-3. At N ≫ 106 the AR-CHAIN part dominates and
the scaling is steeper. The maximum stellar particle number which
can be run using the current version of KETJU within reasonable
wallclock time is N ∼ 5× 106.

When the total number of particles is N < 5 × 105,
the time consumption of AR-CHAIN is negligible. As
ordinary GADGET-3 scales as O(N logN) and the scal-

ing of AR-CHAIN is steeper (∼ O(Ñ2)), the wallclock
time consumed by the chain computation will eventu-
ally exceed the time consumed by the GADGET-3 part.
This fact sets the limit on how large particle numbers
KETJU can handle: it is not meaningful to run simula-
tions in which the subsystem computations take most of
the wallclock time. With the initial condition used here,
the AR-CHAIN part takes approximatively half of the
computation time for N ∼ 2.5×106 simulation particles.
In the second scaling test T2, we test the scaling of

KETJU as a function of the number of MPI tasks. The
number of stellar particles is fixed to N = 2× 106. The
results are shown in Fig. 9. We conclude that KETJU
scales in a similar manner to standard GADGET-3: the
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Fig. 9.— The scaling test T2: the performance of KETJU and
GADGET-3 with different numbers of MPI tasks and different ac-
curacy parameters. Top panel: the scaling for standard GADGET-
3. In this particular test the code scales well up to ∼ 50 − 75
tasks after which the scaling is poor. Middle panel: the scaling of
KETJU is very similar to standard GADGET-3, but KETJU con-
sumes approximatively 50 % more computational time. Bottom
panel: the scaling of the AR-CHAIN part is approximately flat, as
expected. For more information about the node-based computa-
tion strategy, see the text.

scaling is good up to ∼ 50 − 75 MPI tasks after which
it is considerably worse. The value of the GBS accuracy
parameter ηGBS has a large effect on the AR-CHAIN
computational time. With ηGBS = 10−6 the chain inte-
gration is performed ∼ 2.2 times faster than when us-
ing ηGBS= 10−7 with negligible differences in the results
as can be seen in §4. With the accuracy parameters in
use in §6 (η = 0.002, ηGBS= 10−6) KETJU consumes
roughly 50 % more computational time than the stan-
dard GADGET-3.
From the scalability and timing tests we conclude that

the KETJU code is a fast energy-conserving regularized
tree code suitable for simulations with up to N ∼ 5×106

stellar particles in its current configuration. This is suf-
ficient for our current purposes of simulating regularized
isolated galaxies and galaxy mergers with SMBHs. We
leave further code optimization, required for simulations
with particle numbers in excess of N > 5 × 106, for fu-
ture work. We also stress that our code improves on the
maximum particle numbers used in the field of studying
regularized SMBH dynamics in a galactic environment
as current state-of-the-art NBODY simulations typically
reach up to 5 × 105 - 106 simulation particles (see e.g.
Wang et al. 2015 and Khan et al. 2011), roughly a factor

of 5− 10 below our highest resolution runs presented in
§6.

6. RESULTS

Numerical simulations of merging galaxies using direct
summation codes with particle numbers of N ≤ 106 have
recently begun to establish a consensus that the final-
parsec problem is in fact nonexistent in galaxy merg-
ers (Khan et al. 2011; Preto et al. 2011). The main
conclusion of these studies, that the SMBH hardening
rate is in fact resolution-independent in galaxy mergers,
was based on the fact that two-body relaxation is not
driving the SMBH loss cone refilling. Instead, the non-
spherical shape of the galaxy potential provides an addi-
tional torque on the stellar orbits, which fill the loss cone
on a timescale much shorter than the two-body relax-
ation timescale. The hardening rate is also large enough
to drive the binary to the gravitational wave dominated
regime on a timescale that is short compared to the Hub-
ble time.
In this section we use KETJU to study the resolution-

dependence of the SMBH binary hardening rates and the
timescales of the supermassive black hole mergers using
two different types of initial conditions. The first type
consists of a stellar bulge and a SMBH without a dark
matter halo, a setup which has been extensively used in
previous SMBH hardening rate studies (e.g. Khan et al.
2011; Preto et al. 2011). In the second type of initial
conditions we include a dark matter halo in addition to
the stellar bulge and the SMBH components. The SMBH
hardening rates in these more realistic multi-component
models have not thus far been rigorously studied in the
literature.

6.1. Multi-component equilibrium initial conditions

The initial conditions are generated here using the dis-
tribution function method (see e.g. Merritt 1985 and
Ciotti & Pellegrini 1992). We model a typical massive
elliptical galaxy as an isotropic, spherically symmetric
multi-component Hernquist sphere consisting of three
components: a stellar component, a dark matter halo
and a central SMBH. For a single mass component i the
Hernquist density profile with mass Mi and scale radius
ai is defined as

ρi(r) =
Mi

2π

ai

r (r + ai)
3 , (27)

which corresponds to the simple softened gravitational
potential

Φi(r) = − GMi

r + ai
(28)

and the cumulative mass profile

Mi(r) = Mi
r2

(r + ai)
2 . (29)

The total multi-component potential ΦT is the sum of
the stellar, dark matter and central SMBH potentials,
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and is parametrized in our implementation as

ΦT = Φ⋆ +ΦDM +Φ•

= − GM⋆

r + a⋆
− GMDM

r + aDM
− GM•

r + ξ•

= −GM⋆

[

1

r + a⋆
+

µ

r + βa⋆
+

η

r + ξ•

]

,

(30)

where the multi-component model parameters are de-
fined as µ = MDM/M⋆, η = M•/M⋆ and β =
aDM/a⋆. This formulation extends the two-component
parametrization of Hilz et al. (2012) with the addition
of the central SMBH parameters. For numerical rea-
sons, the SMBH potential is softened with a small grav-
itational softening length of ξ• in order to ensure that
the total potential remains finite at r = 0. We set
ξ• = 1× 10−5 kpc. Note that ξ• should not be confused
with the gravitational softening length of the SMBH in
the tree code.
The velocity profiles for the stellar and DM compo-

nents are obtained using their respective phase-space dis-
tribution functions fi. This approach has the advantage
that it results in more stable initial conditions than using
Jeans equations (Binney & Tremaine 2008; Kazantzidis
et al. 2004). In general, the distribution function fi of a
density component ρi in the total gravitational potential
ΦT is computed using Eddington’s formula (Binney &
Tremaine 2008):

fi (E) =
1√
8π2

∫ ΦT=E

ΦT=0

d2ρi
dΦ2

T

dΦT√
E − ΦT

, (31)

in which E = − 1
2v

2 − ΦT + Φ0 is the (positive) energy
relative to the chosen zero point of the potential Φ0. In
general, the zero point is chosen so that fi > 0 for E > 0
and fi = 0 for E ≤ 0. For an isolated system extending
to infinity, such as the Hernquist sphere, we set Φ0 = 0.
Unfortunately, the term ρi(ΦT) does not have an analyt-
ical expression in the general case. Therefore we rewrite
the derivative term of Eq. (31) using the chain rule, fol-
lowing Hilz et al. (2012):

d2ρi
dΦ2

T

=

(

dΦT

dr

)−2
[

d2ρi
dr2

−
(

dΦT

dr

)−1
d2ΦT

dr2
dρi
dr

]

.

(32)
The second term of the integral in Eq. (31) is simply

dΦT√
E − ΦT

=
dΦT

dr

dr√
E − ΦT

. (33)

The resulting expressions contain only first and second
derivatives of the density ρi and the total potential ΦT

with respect to r, which are easily obtained by taking
the derivatives of their analytical formulas. Using r as
the integration variable naturally changes the limits of
the integration. ΦT(r) = E has to be inverted numeri-
cally for r, whereas the lower integration limit ΦT(r) = 0
corresponds to r = ∞.
We compute a random realization of a multi-

component Hernquist sphere using the following proce-
dure. First, we draw the random particle positions for
the stellar and dark matter components using the in-
verse cumulative mass profile from Eq. (29). Next, we

compute the values of the distribution functions f⋆(E)
and fDM(E) into a lookup table using Eqs. (31) and
(32). After this we sample the random particle velocities
in a computationally efficient way by interpolating the
tabulated values of the distribution functions. Finally,
we place a SMBH at rest at the center of the multi-
component sphere.
We also note here that our initial conditions assume

no gravitational softening. Taking the non-zero gravita-
tional softening length into account would result in even
more stable initial conditions. Initial conditions that
compensate for the gravitational softening have been in-
troduced by e.g. Muzzio (2005) and Barnes (2012). How-
ever, in KETJU, the innermost region of the galaxy po-
tential around the central SMBH within the chain radius
rchain is not softened while the rest of the potential is.
Consequently, implementing the softening correction in
the IC generation may not be completely straightforward
and is left as a topic for future code development.

6.2. Galaxy models

We use two principal types of galaxy models in this
study: two-component models that in addition to the
SMBH only include a stellar bulge (B sample) and three-
component models that include a DM halo in addition
to the stellar bulge and the central SMBH (H sample).
For the stellar bulge component, we set M⋆ = 1011M⊙

and a⋆ = 1.5 kpc, motivated by the observations of van
der Wel et al. (2014) of the mass-size relation of z ∼ 1
massive early-type galaxies. For the multi-component
models including a DM halo, we set, following Hilz et al.
(2012), β = 11 and µ = 100 motivated by the halo abun-
dance matching results of Moster et al. (2013) yielding
MDM = 1013M⊙ and aDM = 16.5 kpc for the dark mat-
ter component. The mass of the central SMBH is set
to M• = 108M⊙ resulting in η = M•/M⋆ = 0.001, see
Table 2. The motivation for setting up these two simu-
lations samples was to study the hardening rate of the
black hole binary in a purely baroynic setting (B sam-
ple) and in a setting with a high dark matter fraction (H
sample). In this way our two simulation samples bracket
the environments found in the centers of typical elliptical
galaxies.
The stability of a three-component model with par-

ticle numbers (NDM = 106, N⋆ = 107, a single central
SMBH) is studied according to the stability test of
Hilz et al. (2012) using the standard GADGET-3 code
with a gravitational softening length of ǫ = 20 pc. The
results of the stability test are presented in Fig. 10. The
radii containing 10%, 30%, 50% and 80% of the total
dark matter mass remain within 1% of their original
values during the entire simulation timespan of t = 250
Myr which corresponds roughly to ∼ 80 dynamical
time scales at the radius enclosing 10 % of the total
stellar mass. The 10% stellar mass radii increases by
∼ 3 % during the simulation, whereas the other stellar
mass radii show even less variation, thus validating the
stability of our three-component initial conditions.

The two-body relaxation time scale trelax is defined as

trelax ≈ 0.1N

lnN
× tcross, (34)
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Fig. 10.— The stability of the mass radii of an isolated three-
component galaxy. The smallest stellar mass radius, r10, enclosing
the innermost 10% of the stellar mass increases by ∼ 3% during
the run. Other stellar and DM radii remain even more stable.

TABLE 2
Properties of merger progenitor galaxies

Simulation sample M⋆[1010M⊙] µ η a⋆ [kpc] β

B 1011 - 0.001 1.5 -
H 1011 100 0.001 1.5 11

where N is the number of particles and tcross is the
crossing time (Binney & Tremaine 2008). As the number
of stars (N ∼ 1011) in a massive elliptical galaxy still
exceeds the particle number in modern galactic-scale
numerical simulations by several orders of magnitude,
the simulated galaxies are subject to spurious two-body
relaxation effects in their very dense central regions (e.g.
Diemand et al. 2004), if no or very small gravitational
softening is used. This usually results in a core-like
structure in the central region, even without a SMBH,
as stars are scattered to lower binding energies (Hilz
et al. 2012).

6.3. Galaxy mergers with SMBHs

We set up a sample of 57 major galaxy mergers using
the progenitors described in the previous section and in
Table 2. The simulation sample is run using KETJU
in order to study the dependence of the SMBH binary
hardening and the eccentricity evolution on the adopted
stellar mass resolution. First, we focus on the binary
hardening phase dominated by three-body interactions
with the surrounding stars, where the semi-major axis
of the binary a lies within 0.1 pc . a . 5 pc and the
Post-Newtonian corrections can be safely neglected.
In §6.6 we run a sample of high-resolution simulations
including Post-Newtonian corrections until the SMBHs
coalesce. A total number of 26 major mergers are
run with initial conditions resembling the ones used
in the earlier studies of Khan et al. (2011) and Preto
et al. (2011): colliding massive stellar bulges without
a dark matter halo (sample B in Table 3). The rest of
the simulations have a multi-component initial setup:
the stellar bulges reside in massive dark matter halos
(sample H in Table 3). The particle numbers in different
simulations are also presented in Table 3 and range
from 2 × 105 stellar particles (simulations B1 & H1)

TABLE 3
Particle numbers in the merger remnants

Sample label N⋆ NDM Number of runs with
different random seeds

B1 2× 105 - 5
B2 2× 105.25 - 5
B3 2× 105.5 - 5
B4 2× 105.75 - 5
B5 2× 106 - 5
B6 2× 106.25 - 1
H1 2× 105 2× 106 5
H2 2× 105.25 2× 106 5
H3 2× 105.5 2× 106 5
H4 2× 105.75 2× 106 5
H5 2× 106 2× 106 5
H6 2× 106.25 2× 106 1

H5 PN 2× 106 2× 106 5

to the maximum particle number used in this study:
2 × 106 DM particles and 2 × 106.25 ≈ 3.6 × 106 stellar
particles in the merger remnant (simulations B6 & H6).
The different simulations within each set for a given
resolution only differ in the random seed used in setting
up the initial conditions. All simulation samples except
for the sample H5 PN are fully Newtonian.

The bulge-only galaxies in runs B1-B6 are set on the
merger orbit in the following way. The initial separation
is chosen to be d = 20 × a⋆ = 30 kpc. The encounter
orbits are nearly parabolic as motivated by cosmologi-
cal simulations (Khochfar & Burkert 2006) with the ini-
tial velocities chosen as such that the separation of the
galactic nuclei is approximately the scale radius a⋆ dur-
ing the first pericenter passage. The initial velocities of
the galaxies in the H sample (H1-H6) are defined in a
slightly different manner. For these mergers, we only
consider the mass inside d = 30 kpc when computing the
initial velocities of the galaxies on the parabolic orbit.
This results in a slightly faster coalescence of the galac-
tic nuclei in the H sample runs compared to B sample
runs. The chain radius is set to 18 pc in all the simu-
lation runs by choosing chain parameters λ = 1.8 and
γ = 25. For all runs the gravitational softening lengths
are set to ǫ⋆ = 6 pc and ǫDM = 100 pc for the stellar and
dark matter components, respectively. In order to ensure
the accuracy of the code with small gravitational soften-
ing lengths, we also set the GADGET-3 integrator error
tolerance parameter to η = 0.002, which is smaller than
the canonical GADGET-3 parameter value by a factor of
∼ 10. We also tested the chosen set of code parameters
for potential pathological simulation behavior. Several
runs with slightly different softening lengths, chain radii
and error tolerance parameters were performed with sim-
ilar results compared to the runs with our chosen stan-
dard code parameters.

6.4. SMBH binary evolution in merging galaxies

We run all the merger simulations for t = 500 Myr.
The SMBHs lie within the central cusps of their host
galaxies for several close passages of the galactic nuclei
during the merger until the cusps merge and are quickly
disrupted by the formation of the SMBH binary. This oc-
curs at t ∼ 134 Myr in sample H and at t ∼ 184 Myr in
simulation sample B due to the different encounter orbits
of the galaxies with and without the DM halo. After the
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Fig. 11.— The smoothed SMBH separation in the simulation
runs H1 and H5. The SMBHs form a bound binary at t ∼ 134
Myr. At this stage the respective stellar cusps of the SMBHs are
disrupted and the subsequent hardening of the binary orbit pro-
ceeds through three-body interactions. The dashed line marks the
radial separation after which the SMBHs belong to the same chain
subsystem. The dotted line depicts the the semi-major axis of a
hard SMBH binary, as decribed in the main text.

disruption of the stellar cusps, the dynamical friction be-
comes inefficient and the binary subsequently hardens via
three-body interactions with the surrounding stars. The
binary becomes hard when its semi-major axis satisfies
the criterion a < ahard. We adopt the definition used by
Merritt & Wang (2005) and Merritt et al. (2007): for an
equal-mass SMBH binary ahard = rinfl/16, in which the
influence radius rinfl is the radius enclosing stellar mass
M⋆(rinfl) = 2M•. With this definition, ahard ∼ 5 pc all
the runs. The other commonly used definition for a hard
binary is ahard = Gµ/4σ2

⋆, where µ is the reduced mass
of the SMBH binary and σ⋆ is the nuclear stellar veloc-
ity dispersion (Merritt 2006). With this definition ahard
gets slightly lower values. The slingshot-hardening phase
continues until the simulation end time at t = 500 Myr,
after which the semi-major axis of the SMBH binary is
0.1 pc . a . 0.4 pc < ahard pc in all the simulation runs.
The separation of the two SMBHs as a function of time
during the galaxy merger for simulations H1 and H5 is
presented in Fig. 11.
We show the evolution of the orbital eccentricity and

the inverse semi-major axis of the SMBH binaries of sam-
ple B1 and B5 in Fig. 12 and H1 and H5 in Fig. 13. The
binary eccentricities in the high-resolution simulations
B5 and H5 are in general high, 0.6 < e < 1.0 with most
of the binaries having eccentricities in excess of e > 0.8.
At lower resolutions, the stellar field surrounding the bi-
nary is resolved less accurately resulting in lower binary
eccentricities and a significantly larger scatter between
different runs with different initial random seeds. This
is expected since the eccentricity evolution of the binary,
especially at the moment of the binary formation, de-
pends sensitively on the velocity field of the surrounding
stars (Mikkola & Valtonen 1992). The eccentricity of
the SMBH binary also increases due to the exchange of
angular momentum with the surrounding stars. Typi-
cally, the SMBH binary eccentricity increases during the
slingshot-hardening phase if it is high enough to begin

with. However, the eccentricity growth rate decreases
for binaries with initially low eccentricities (e < 0.5) and
is ∼ 0 for circular binaries (Sesana et al. 2006). This situ-
ation may be different in stellar systems that are strongly
corotating with the SMBH binary (Sesana et al. 2011) as
the binary circularizes instead of becoming more eccen-
tric.
The evolution of the inverse semi-major axis is very

close to linear (1/a ∝ t) during the hardening phase in
all the runs of simulation samples B and H until t = 500
Myr. The binary hardening rates are presented in Fig.
14 as a function of the stellar particle number of the
merger remnant. The mean hardening rates with er-
rors of one standard deviation from the selected sam-
ples are as follows: B1: 21.8 ± 3.3 kpc−1Myr−1, B5:
14.1± 0.8 kpc−1Myr−1, H1: 9.3± 1.9 kpc−1 Myr−1 and
H5: 8.0± 0.7 kpc−1Myr−1. We further quantify the res-
olution dependence of the hardening rates by fitting a
power-law d(1/a)/dt ∝ N−α to the results and studying
the distribution of the power-law exponent α. This is
done by using a simple bootstrap method. Considering
first sample B, we pick a random run from each subsam-
ple B1-B6 each and fit the power-law. We repeat this
procedure 104 times and obtain the mean α and its stan-
dard deviation. The process is then repeated for sample
H. In sample B, the hardening rate clearly depends on
the stellar mass resolution:

d

dt

(

1

a

)

B

∝ N−0.18±0.04, (35)

whereas, sample H is consistent with no resolution de-
pendence of the hardening rate:

d

dt

(

1

a

)

H

∝ N−0.03±0.06. (36)

The resolution-dependence of the hardening rate orig-
inates from the resolution-dependence of the process
which fills the loss cone of the SMBH binary. If the
shape of the merger remnant is sufficiently asymmetric,
the stellar orbits are torqued into the loss cone of the
SMBH binary at a rate higher than the loss cone filling
produced by the resolution-dependent two-body relax-
ation. Consequently, the resolution-dependence of the
SMBH binary hardening rate decreases (Merritt & Poon
2004; Berczik et al. 2006; Khan et al. 2011). We next
study the shapes of the merger remnants in samples B
and H. In calculating the shapes of the merger remnants
we closely follow the S1 method of Zemp et al. (2011).
The axis ratios b/a and c/a are computed in thin ellip-
soidal shells from the eigenvalues of the shape tensor of
the stellar matter distribution. We note that the axis
ratios of the merger remnants remain roughly constant
after the nuclei of the progenitor galaxies have merged.
The axis ratios for the simulation samples B1, B5, H1
and H5 are presented in Fig. 15 as a function of the
distance from the center of the galaxy.
All the merger remnants are roughly axisymmetric:

b/a ∼ 0.9 for all the simulation samples between 10−2

kpc ≤ r ≤ 10 kpc. The c/a ratio is roughly 0.8 near
the SMBH binary and ∼ 0.95 at r = 0.1 kpc for all the
simulation samples. However, at larger radii the differ-
ences between the samples become evident. For samples
H1 and H5 the c/a ratio decreases outwards and is ∼ 0.7
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Fig. 12.— Binary evolution in the bulge-only simulation sample B. The lines with the same color have the same mass resolution but
different random seeds in their initial conditions.
Left panel: the eccentricity evolution after the binary formation. The binary eccentricity is clearly higher and more converged in the
high-resolution runs. Right panel: the inverse semi-major axis. The hardening rate d(1/a)/dt decreases when going from low to high
resolutions, as expected.
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Fig. 13.— The evolution of the binary in the halo-included simulation sample H. The lines with the same color have the same mass
resolution but different random seeds in their initial conditions. The binary eccentricities are quantitatively similar in simulation samples
B and H. However, in contrast to simulation sample B the evolution of the hardening rate d(1/a)/dt of the inverse semi-major axis for
sample H shows no apparent resolution-dependence.

at r = 10 kpc. For the sample B1 0.8 < c/a < 0.9 in
the outer parts of the galaxy, whereas simulation sample
B5 contains a flatter region with c/a ∼ 0.7 between 0.5
kpc . r . 5 kpc. We attribute this phenomenon to the
fact that relaxation effects are stronger in low-resolution
simulations (e.g. Power et al. 2003), and the flatter fea-
ture has relaxed away in the B1 lower resolution runs.
The stellar orbits are defined by the total potential ΦT.
If the massive DM halo is present, the potential of the
galaxy ΦT is dominated by the collisionless halo com-
ponent ΦDM and the relaxation-induced evolution of the
stellar component Φ⋆ has only a small effect on the total

potential ΦT. Thus, it is natural that the axis ratios of
samples H1 and H5 are more similar than for the bulge
only B1 and B5 samples.

6.5. Quantifying the differences in the hardening rates

After studying the ellipsoidal axis ratios of the merger
remnants, we further quantify the differences of the stel-
lar populations in simulation samples B1, B5 and H5.
Both the SMBH binary hardening hardening rates and
merger remnant axis ratios in sample H1 are very close
to the corresponding quantities of sample H5, thus we
left sample H1 out of the analysis. In addition to the
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loss-cone filling rate, the hardening rate of the SMBH
binary also depends on the distribution of the pericenter
distances and the velocties of the incoming stars. Three-
body scattering experiments have shown that, on aver-
age, stars with smaller pericenter distance and smaller
initial velocity gain more energy from the binary in the
star-binary interaction (see e.g. Valtonen & Karttunen
2006 for a review on this topic.)
We present the distribution of pericenter distances rp

of stellar particles in Fig. 16 during 200 Myr < t < 400
Myr. During this period, the semi-major axis a of the
binary is between 5 pc and 0.5 pc in all the simulation
runs. The pericenter distance distribution f(rp) is nor-
malized by the total stellar mass Ms entering a sphere
with a radius of r = 30 pc centered on the binary. The
radius of 30 pc is chosen based on the numerical criterion
that stars with pericentric distances of rp . 6× a inter-
act strongly with the binary (Mikkola & Valtonen 1992).
Stars passing the binary with a larger pericenter distance
just perturb the binary’s center-of-mass and have a neg-
ligible effect on the orbital elements of the binary itself
(e.g. Quinlan 1996). In sample H5, more stellar mass
enters the vicinity of the SMBH binary compared to the
samples B1 and B5. This is due to the fact that the ve-
locity dispersion for the H5 sample is higher than in the
B simulation samples because of the presence of the mas-
sive DM halo. The additional incoming stars in H5 are
distributed towards larger values of rp compared to B1
and B5. However, a larger number of incoming stars does
not make the hardening rates of SMBH binaries in the
sample H5 greater, as also the velocities of the stars are
higher. Comparing the bulge-only samples B1 and B5 we
see that there is more stellar mass at the pericenter dis-
tances of rp < 10 pc in the low-resolution run. Again, we
attribute this phenomenon to spurious relaxation effects
due to the low stellar mass resolution in the B1 sample.
More stellar mass at low pericenter distances in sample

B1 contributes to the higher SMBH binary hardening
rate compared to higher resolution sample B5.
Next, we study the distribution of the stellar particles

which pass closer than r = 30 pc from the center-of-
mass of the binary in merger samples B1, B5 and H5.
Here the concept of the so-called watershed velocity w is
extremely useful:

w ≈ 0.85×
√

M•,1

M•,1 +M•,2
Vbin = 0.85×

√

GM•,2

a
, (37)

in which Vbin is the orbital velocity of the SMBH binary
components (Quinlan 1996). For an equal-mass SMBH
binary, the watershed velocity is w ≈ 0.6× Vbin. On av-
erage, incoming stars with a velocity v < w gain energy
from the binary which then hardens. Likewise, stars with
v > w are likely to lose energy to the binary which then
becomes wider. This is because for v < w, the velocity
in the binary orbit is higher than the approach velocity
of the incoming star and the star is more easily captured
onto a bound orbit. On a bound orbit the star will even-
tually pass close to either one or both of the SMBHs and
is then ejected from the vicinity of the SMBH binary.
Faster stars with v > w are less likely to become bound
to the binary (Valtonen & Karttunen 2006). Note that w
is obviously time-dependent: if the SMBH binary hard-
ens, w increases. Thus, there are more particles with
v < w to efficiently harden the binary. However, this
effect is somewhat balanced by the fact that the region
of strong three-body interactions (r < 6 × a) becomes
smaller as the SMBH binary hardens.
The velocity distributions f(v) and f(v/w) of the stel-

lar particles crossing a shell at a distance of 30 pc from
the SMBH binary during 200 Myr < t < 400 Myr are
shown in Fig. 17. The bulge in the H5 sample is situ-
ated in a massive DM halo resulting in higher velocities
of the incoming stellar particles than in the bulge-only
samples. Consequently, the sample H5 has the highest
fraction of particles with velocities above the watershed
velocity w. This is why the hardening rates of the SMBH
binaries in the H5 sample are smaller than in samples B1
and B5, even though there is more stellar mass in sample
H5 interacting with the binary, as can be seen in Fig. 16.
The velocity distributions f(v) for the bulge-only sam-

ples B1 and B5 differ at low velocities: the low-velocity
tail for B1 extends to lower velocities than for sample
B5. The reason for the differences of the hardening
rates between samples B1 and B5 becomes more clear
when studying the incoming stellar velocity distribution
f(v/w) with respect to the time-dependent watershed
velocity w. There is a larger fraction of stellar parti-
cles with velocities v < w in sample B1 resulting in a
higher hardening rate than in sample B5. In addition,
there are more particles with small pericenter distances
as seen in Fig. 16. We note that the the distribution
f(v/w) acts as an exaggerated version of f(v): as there
are more low-velocity stellar particles in B1, the SMBH
binary hardens faster. Thus, the watershed velocity w in-
creases, and more stellar particles now have v < w even
if f(v) remains constant.
To sum up the results: we studied the distributions of

pericenter distances and the approach velocities of the
stellar particles interacting with the SMBH binary in or-
der to explain why the hardening rates decrease when
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Fig. 16.— The distribution of the stellar pericenter distances
with respect to the center-of-mass of the SMBH binary during 200
Myr < t < 400 Myr. During this period, the semi-major axis of
the binary is between 5 pc and 0.5 pc in all the simulation runs.
The distribution function f(rp) is normalized to the total stellar
mass Ms entering a sphere within a radius of r = 30 pc centered
on the center-of-mass of the SMBH binary. In sample B1, a larger
fraction of stars have pericenter distances of rp < 10 pc compared
to sample B5.

adding a massive DM halo or when increasing the stel-
lar mass resolution. We find that sample B1 has both
the smallest stellar approach velocities with respect to
the SMBH binary watershed velocity w and more par-
ticles at small pericenter distances from the binary. In
the sample B5 there are slightly less particles with small
pericenter distances and, more importantly, less particles
with low velocities. The halo-including sample H5 has far
fewer stellar particles at velocities v < w, which explains
the lowest hardening rate, even though more stellar mass
interacts with the SMBH binary for this simulation sam-
ple. We find that this picture is consistent with the study
of Gualandris et al. (2016): mergers without a DM halo
result in a merger remnant in which the SMBH binary
evolution depends on the particle number used when
N < 107. However, we note that while Khan et al. (2011)
and Preto et al. (2011) reported resolution-independent
SMBH binary hardening in mergers without a DM halo,
we find resolution-independent hardening rates only in

the merger simulations, which use multi-component ICs
including a DM halo. However, some of the differences
might be attributed to the fact that the parameters of
the progenitor galaxies and the merger orbits are not ex-
actly the same in the different studies. Probing the full
galaxy and merger orbit parameter space would require
a far larger simulation sample than the 57 merger runs
used in this work and is beyond the scope of the present
study.
The hardening rates are also large enough to drive

the binaries into the gravitational wave (GW) dominated
regime (a ∼ 0.1 pc for a circular SMBH binary) less than
∼ 1 Gyr after the formation of the binary. As the binary
eccentricities are high, 0.8 < e < 0.95 in our highest-
resolution simulations with a DM halo, the expected
SMBH merger timescale for these simulations is less than
a gigayear. We conclude that the final-parsec problem
does not exist in our simulation sample of mergers of mas-
sive elliptical galaxies. In addition, the incorporation of
the massive dark matter halo in the multi-component ini-
tial conditions reduces the resolution-dependence of the
SMBH binary hardening rates and in practice makes the
hardening rate resolution-independent within the range
of particle numbers used in this study.

6.6. SMBH merging timescales

We run five additional simulations at the resolution of
sample H5 presented in Fig. 13, but this time including
also Post-Newtonian corrections in order to obtain the
actual merging timescales of the SMBH binaries. This
sample is labelled H5 PN. Only the SMBH-SMBH terms
in the PN equations of motion are included since the star-
SMBH terms would be unphysically large as the stellar
particle masses are m⋆ ≫ M⊙ in our simulations. We
include Post-Newtonian terms up to order PN2.5, the
highest of which is the radiation-reaction term. We chose
not to include the higher-order terms as there is still
some ambiguity in the literature over the derivation of
these terms and as the contribution of the next radiation-
reaction term at PN3.5 is proportional to ∝ c−7, its effect
would be anyhow negligible (see e.g. Will 2006 for further
details).
We run the five simulations until the coalescence of

the binaries. The orbital evolution of the binaries is pre-
sented in Fig. 18. The binary evolution is qualitatively
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similar compared to the purely Newtonian case when
a > 0.75 pc - 1 pc: the binary hardens at a constant rate
and becomes slowly more eccentric due to interactions
with the surrounding stars. After this point, the GW
emission determines the orbital evolution of the SMBH
binary up to the final coalescence.
The radiative losses of binary orbital energy and angu-

lar momentum are both extremely sensitive to the eccen-
tricity of the binary. During a single orbital period, the
average PN2.5 order loss effects are, according to Peters
& Mathews (1963),

−〈Ė〉 =
32G4M2

•,1M
2
•,2(M•,1 +M•,2)

5c5a5
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
,

(38)

−〈L̇〉 =
32G7/2M2

•,1M
2
•,2

√

M•,1 +M•,2

5c5a7/2
1 + 7

8e
2

(1− e2)2
,

(39)

which both diverge as e → 1. For example, a binary with
e = 0.95 radiates ∼ 127 times more GW energy during a
single orbital period than a binary with e = 0.8 assuming
equal semi-major axes. For this reason, the initially more
eccentric binaries coalesce on much shorter timescales.
At t = 150 Myr, or 16 Myr after the binary formation,
the eccentricities of the binaries are 0.80 . e . 0.96. The
peak eccentricities reach e > 0.95 for all the five binaries
before the gravitational wave driven circularization phase
begins. During the final tens of millions of years before
the coalescence, the binary circularizes and hardens very
rapidly. Both the orbital decay and circularization of the
binary are consistent with Peters’ analytic formulas (Pe-
ters & Mathews 1963). The SMBH coalescences occur
at 120 Myr, 199 Myr, 201 Myr, 211 Myr and 264 Mr

after the binary formation. The difference in the final
BH coalescence time can vary up to ∼ 50% between the
mergers, although the simulations were set up with iden-
tical initial conditions, with the only difference being in
the initial random seed.
The final SMBH separation before the coalescence is

∼ 1000 AU in all three simulations. This is a significant
improvement over the merging criterion typically used
in softened GADGET-3-based codes in which the typ-
ical SMBH merger separation is of the order of 10-100
pc at the time of the merger (e.g. Springel et al. 2005;
Johansson et al. 2009b; Salcido et al. 2016). Obtaining
the distribution of the SMBH merger timescales for a
representative simulation sample would require substan-
tial further work and is beyond the scope of this study.
However, we emphasize that the only difference in the
five initial conditions of the presented Post-Newtonian
simulations is the random number seed used in our multi-
component initial conditions generator. The realized ec-
centricity scatter of ∆e ∼ 0.15 resulted in a difference of
∆t ∼ 144 Myr in the SMBH merger timescale.
Based on our three-body experiments we expect that

the eccentricity scatter will decrease with an increasing
stellar mass resolution. Thus, future work aiming at
obtaining accurate SMBH merger timescales should
focus on simulating the galaxy merger and the merger
remnant in the most accurate manner and with the
highest resolution possible, as the binary eccentricity
evolution depends sensitively on the stellar velocity field
around the binary. This ambitious goal requires going
to particle numbers significantly beyond the value of
N⋆ > 3.6× 106 used in the present study.

As the hardening rate of an equal-mass SMBH binary
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Fig. 18.— The Post-Newtonian binary evolution in five runs from the simulation sample H5 PN. As the SMBH binary eccentricities
are high, the SMBH mergers occur rapidly, 120 Myr - 264 Myr after the formation of the binaries. It is important to note that a scatter
of ∆e ∼ 0.15 in binary eccentricity results in a large difference ∆t ∼ 144 Myr in the coalescence times. The large scatter in the SMBH
coalescence timescale is due to the very steep dependence of the GW emission on the binary eccentricity.

in relatively unsensitive to the eccentricity (Mikkola &
Valtonen 1992; Quinlan 1996), we can estimate the max-
imum SMBH coalescence timescale for our galaxy mod-
els and SMBH masses used without running additional
simulations. The maximum coalescence timescale is ob-
tained in the situation in which the SMBH binary eccen-
tricity remains zero during the entire slingshot-hardening
phase and the GW inspiral. The merging timescale can
be estimated as follows. Assuming that the hardening
rate s = d(1/a)/dt from the three-body interactions is
constant and e = 0, the time tf from the initial semi-
major axis a0 to the final value af is given by

tf =

∫ a0

af

da

sa2 +CPMa−3
, (40)

which is most conveniently solved numerically. Here
CPM is the absolute value of the constant appearing in
the Peters’ formula (Eq. 12). Setting af = 1000 AU
mimicking the SMBH coalescence distance in KETJU
and a0 = 0.01 kpc, we get the maximum possible SMBH
merging timescales of ∼ 2 Gyr for the B5 sample and
∼ 3.1 Gyr for the H5 sample using the hardening rates
obtained in §6.4. As mentioned in §6.2, the DM content
of galaxy models used in this study brackets the realistic
population of elliptical galaxies so the maximum possible
SMBH merger timescale is 2-3 Gyr for the used SMBH
mass and the initial stellar distribution. The maximum
merging timescales are well below the Hubble time,
but are long enough that subsequent galaxy mergers
may have time to bring in additional SMBHs near the
original binary. This usually results in the rapid merging
of two of the SMBHs while the third one is dynamically
ejected from the center of the galaxy. Finally, we note
that the maximum SMBH merging timescales obtained
here are very likely to be dependent on the central
stellar density profiles of the progenitor galaxies and
may thus not be generalized in a straightforward manner.

7. DISCUSSION

The new code developed in this study allows us to si-
multaneously model accurately both the dynamics close
to SMBHs and the global galactic dynamics of their host
galaxies. The primary motivation for developing this new
code was two-fold. Firstly, we want to push the numeri-
cal resolution of the galactic scale simulations ultimately
to unprecedented particle numbers (N & 107 − 108) and
secondly, the new code allows for galactic-scale dynam-
ical studies that include also a gaseous component and
their associated feedback processes. Both of these goals
are difficult to reach with traditional N -body codes even
allowing for GPU acceleration, as for these codes the
particle numbers are typically limited to N ∼ 106 and
the inclusion of the gaseous component is in general
not straightforward to implement (see e.g. Nitadori &
Aarseth 2012; Wang et al. 2015, 2016).
As in the hierarchical model galaxies grow through

mergers, situations with multiple SMBHs in the merger
remnant will be frequently encountered. Recently an in-
creasing number of systems with multiple SMBHs have
been detected (e.g. Valtonen et al. 2008; Boroson &
Lauer 2009; Deane et al. 2014). However, the abso-
lute number of such systems still remains relatively low,
which may indicate that the dynamical friction driven
decay of the SMBH orbits and their eventual mergers
are relatively rapid processes.
The key prediction to come out of an accurate dynam-

ical simulation is the actual merging timescale of the
SMBHs. Often the orbital decay of SMBHs has been
studied using either global isolated merger simulations or
full cosmological simulations (e.g. Springel et al. 2005;
Sijacki et al. 2015), which both have typically employed
softened gravity, such as is used in standard GADGET-3.
We showed in Fig. 3 the well-known result that softened
calculations underestimate the dynamical friction effect
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of stars with impact parameters smaller than the gravita-
tional softening length, which depending on the situation
can result in dynamical friction timescales that are off by
a factor of a few. This problem is largely circumvented
in direct N -body simulations with no or very low grav-
itational softening, albeit at the cost of the simulation
typically starting from rather idealized initial conditions
in which the SMBHs are already relatively close, thus
often missing the preceding dynamical friction phase al-
together (e.g. Berczik et al. 2006; Khan et al. 2011). The
KETJU code is an optimal tool in circumventing both of
these problems and we have demonstrated in this article
that the code can be used to study the orbital decay of
SMBHs in a realistic galactic setting.
The dynamical friction phase is followed by first the

phase in which the binary hardens through three-body
interactions with the stellar background leading ulti-
mately to the gravitational wave driven phase, which is
responsible for the final merging of the SMBHs. Typi-
cally the softening length is set to ∼ 1 − 20 pc in iso-
lated merger simulations (e.g. Hopkins et al. 2013; Choi
et al. 2014) and to ∼ 100− 500 pc (e.g. Feldmann et al.
2016; Choi et al. 2016) in high-resolution cosmological
simulations, both of which provide insufficient resolution
for studying the binary hardening at 1 − 10 pc spatial
scales and the eventual GW driven coalescense at cen-
tiparsec scales. The typical solution for this predicament
is the adoption of subresolution models for the unre-
solved dynamics of the system, with the most famous
prescription being the original recipe used in Springel
et al. (2005), which postulated instantaneous merging of
nearby SMBHs, with the resulting merger taking place
typically at ∼ 10−100 pc distances depending somewhat
on the exact numerical resolution.
As these subresolution descriptions lead often to very

rapid SMBH merging (e.g. Sijacki et al. 2015) the burn-
ing question now remains whether this is realistic. The
simulations presented in this study show that the final
GW phase of the SMBH merger sensitively depends on
the eccentricity of the SMBH binary, with eccentricity
differences (e ∼ 0.80−0.96) resulting in coalescense time
differences of up to ∆t ∼ 144 Myr (see Fig. 18). This is
readily expected as the energy emitted in gravitational
waves very strongly depends on the eccentricity of the
SMBH binary (see Eq. (38)). The eccentricities being of
paramount importance it is critical that the global evo-
lution of the galaxy merger leading up to the formation
of the SMBH binary is modeled accurately, which the
KETJU code is able to do as demonstrated in §6.
The SMBH binaries formed during galaxy mergers are

also expected to contribute a cosmological background
of nanohertz-frequency gravitational waves. However,
contrary to this expectation, pulsar timing array mea-
surements during the last few years have to date yielded
no sign of the expected gravitational wave background
(Shannon et al. 2015; Arzoumanian et al. 2016). The
measurements have placed an upper limit of∼ 1.0×10−15

for the characteristic strain amplitude of the gravita-
tional wave background, measured at the frequency of
f = 1 yr−1. Currently these upper limits are inconsistent
on the ∼ 1− 2 sigma level with recent models of gravita-
tional wave background formation from SMBH binaries
in galaxy mergers (e.g. Sesana 2013; McWilliams et al.

2014; Kulier et al. 2015), indicating that current mod-
els of SMBH dynamics might overestimate the SMBH
merger rates, or that the SMBH masses themselves may
be systematically overestimated (e.g. Rasskazov & Mer-
ritt 2016; Sesana et al. 2017). Thus it is important to pro-
vide more accurate theoretical predictions of the SMBH
merger timescales that might help in reconciling the de-
rived upper limits of the pulsar timing array measure-
ments with theory and ultimately pave the way for more
accurate predictions required by future space-borne GW
detection experiments (e.g. Amaro-Seoane et al. 2012).
We have here demonstrated the functionality of

KETJU in collisionless simulations that include SMBHs
and both stellar and dark matter particles. However the
real future strength of the code lies in realistic galactic-
scale simulations that also include a gaseous component.
In the KETJU code the AR-CHAIN algorithm solves the
stellar dynamics close to the SMBH, whereas all of the
astrophysical processes, such as hydrodynamics, cooling,
star formation and stellar feedback is performed in the
GADGET-3 code using already existing routines (Hu
et al. 2014, 2016). Unlike the collisionless stellar com-
ponent collisional, gas can cool and collapse towards the
center of the galaxy, thus shaping the central gravita-
tional potential with potentially interesting consequences
for the final-parsec problem (e.g. Lodato et al. 2009).
However, special care will be required for the treatment
of feedback from the SMBHs, as we can now dynamically
probe centiparsec scales for which the standard approach
of taking the Bondi-Hoyle accretion rate is destined to
fail (e.g. Curtis & Sijacki 2015).
In addition, simulations that accurately obtain the co-

alescence timescale of binary SMBHs in gas-rich galaxy
mergers are also essential for providing accurate esti-
mates for the expected recoil velocities of merged SMBHs
and the likelihood that the recoiling SMBHs escape the
deepening central gravitational potential (e.g. Blecha
et al. 2011, 2016). The recoil probability will be par-
ticularly relevant for large-scale cosmological simulations
such as Illustris and EAGLE (Vogelsberger et al. 2014;
Schaye et al. 2015) that typically assume rapid coa-
lescense below the spatial resolution limit and which
also often fix the SMBHs to the center of the poten-
tial using an artificial repositioning scheme (Johansson
et al. 2009b). The more accurately predicted coalescense
times of SMBHs in cosmological simulations will also di-
rectly impact the estimate of the strength of the gravita-
tional wave background. Finally, the accurate dynamical
modeling of the SMBHs could shed light on the possi-
ble offsets between the central SMBH and the hosting
dark matter halo, which will be important for experi-
ments that attempt a direct detection of the possible
central dark matter annihilation signal (e.g. Batcheldor
et al. 2010; Lacroix et al. 2014). SMBH binaries can also
change the stellar dynamics of the nuclear regions of the
host galaxy, which can be now probed with integral field
unit (IFU) observations (Thomas et al. 2016).

8. CONCLUSIONS

In this article we present and test the performance of
KETJU, a new regularized tree code based on algorith-
mic chain regularization (AR-CHAIN integrator) imple-
mented into GADGET-3 (Springel 2005). The key fea-
ture of the KETJU code is the inclusion of regularized
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regions around every SMBH, which allows for the accu-
rate simultaneous modeling of the global dynamics on
galactic scales together with the sub-parsec-scale SMBH
evolution. The code also includes Post-Newtonian cor-
rections up to order PN3.5, which also includes the PN2.5
term responsible for gravitational wave emission. This al-
lows us in principle to follow the evolution of the SMBH
binary down to spatial scales of ∼ 10 Schwarzschild radii,
which is an improvement of several orders of magni-
tude over the merger separations traditionally employed
in softened GADGET-3-based codes (∼ 10 − 100 pc,
e.g. Springel et al. 2005; Johansson et al. 2009b; Salcido
et al. 2016). The more accurate treatment of all three
phases (dynamical friction, three-body interactions and
GW emission) relevant for SMBH merging in one global
simulation provides improved constraints on the SMBH
coalescense timescales in galaxy mergers with potentially
important implications for future gravitational wave ex-
periments, such as LISA (e.g. Amaro-Seoane et al. 2007).
The KETJU code was calibrated against NBODY7

(Aarseth 2012) by running test simulations. In the first
simulation we followed the inspiral of a single SMBH in
a Hernquist sphere, whereas in the second simulation we
studied the hardening of a SMBH binary system inside
another Hernquist sphere. In both tests we were able
to reproduce the results of NBODY7 at high accuracy
thus validating the performance of the AR-CHAIN inte-
grator and the KETJU code. In addition the energy
conservation was demonstrated to be on a good level
both for the stand-alone AR-CHAIN integrator and the
KETJU code, which performed slightly better than the
standard GADGET-3 code. The scaling of the KETJU
code was adequate up to ∼ 75 processors. We conclude
that this is an area which will require substantial future
improvement, if the ultimate goal of simulating up to
N ∼ 107 − 108 particles is to be reached.
We used the KETJU code to study the resolution de-

pendence of the SMBH binary hardening rates and the
SMBH coalescense timescales in a set of galaxy merg-
ers. We extend the initial conditions of the progenitor
galaxies to include in addition to the stellar bulge and
SMBH, also a dark matter halo component motivated
by the studies of Hilz et al. (2012). We run a total
of 57 merger simulations with particle numbers reach-
ing up to 2×106 DM particles and 2×106.25 ≈ 3.6×106

stellar particles for the highest resolution simulations.
Half of the simulations included only a bulge compo-
nent in addition to the SMBH, whereas the other half
also included a dark matter component. We found a
mild dependence of the SMBH binary hardening rate
on the mass resolution of the simulation in the simu-
lations without a DM halo. The time evolution of the
inverse semi-major axis of the binary orbit was propor-
tional to particle number N as d(1/a)/dt ∝ N−0.18±0.04

for the mergers without a DM halo. In the halo-including
sample we found d(1/a)/dt ∝ N−0.03±0.06, which is con-
sistent with no resolution-dependence. We thus see a
weaker dependence on numerical resolution for the sim-
ulation sample that includes a massive DM halo. We
did not encounter the final-parsec problem in any of our
merger simulations. This result is attributed to the non-
spherical structure of the merger remnants. The non-
spherical shape of the merger remnant torques the stellar
orbits to fill the SMBH binary loss cone faster than the

two-body relaxation, which is artificially boosted by the
low mass resolution (e.g. Berczik et al. 2006). We find
that this result is in good agreement with the previous
work of Gualandris et al. (2016).
The shapes of the stellar components of the merger

remnants are very similar in all simulations including
the DM component. We attribute this to the fact that
the massive halo dominates the galactic potential and
thus relaxation effects in the stellar component are less
important. This results in similar distributions of peri-
center distances and approach velocities for the stars in-
teracting with the SMBH binary, and consequently to
nearly similar SMBH binary hardening rates at all res-
olutions. In the bulge-only mergers the differences in
the merger remnant shapes are larger (see Fig. 14) as
the relaxation effects are more important in the absence
of the massive DM halo. In low-resolution bulge-only
simulations, there are more stellar particles with low ve-
locities and small pericenter distances compared to the
high-resolution bulge-only simulations. This explains the
resolution-dependence of hardening rates for the bulge-
only simulation sample. In addition, the SMBH binary
hardening rates are higher in bulge-only simulations com-
pared to the hardening rates of simulations that include
a massive DM halo, due to the higher stellar velocities in
these galaxies. The eccentricities of the SMBH binaries
formed in the merger remnants are in general very high
(e ∼ 0.9), which is a direct consequence of the initial
orbits of the progenitor galaxies. However, we see a scat-
ter in the eccentricity of ∆e ∼ 0.15 for simulation setups
that only differ in the random seed used to generate the
multi-component initial conditions. The scatter in ec-
centricity produced essentially by stochastic encounters
between the SMBH and stellar particles (Mikkola & Val-
tonen 1992) can result in considerable differences in the
SMBH coalescence timescales of the order of ∼ 140 Myr
due to the steep scaling of gravitational wave emission
with the binary eccentricity (see Eq. (38)).
Development of hybrid regularized tree codes that al-

low the simultaneous modeling of the global dynamics on
galactic scales together with the sub-parsec-scale SMBH
evolution will hopefully help to bridge the gap between
the galaxy formation and N -body communities. We find
the KETJU code is an important step in this direction,
but we end by stressing that the particle and the stellar
mass resolutions significantly beyond the ones employed
in this study are still required for obtaining truly highly
accurate predictions for the timescales of SMBH mergers.
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APPENDIX

APPENDIX A: ALGORITHMIC REGULARIZATION

We start with the usual Newtonian N-body Hamiltonian

H =
∑

i

1

2
mi‖vi‖2 −

∑

i

∑

j>i

Gmimj

‖rij‖
= T − U, (A1)

where mi are the masses, vi velocities and rij = rj − ri relative separations of the N bodies, T is the total kinetic
energy and U is the force function, or equivalently the negative of the Newtonian potential energy. The binding energy
of the system is B = −H = U − T . This Hamiltonian generates the usual N-body equations of motion

ṙi = vi (A2)

v̇i =
∑

j 6=i

Gmjrij

‖rij‖3
. (A3)

This system is transformed by introducing a new fictitious time, or independent variable, s with the definitions

ds = [α(T +B) + βω + γ] dt = [αU + βΩ+ γ] dt, (A4)

where α, β and γ are real constants, Ω({ri}) is in principle an arbitrary real-valued function of the coordinates, and
ω is a new velocity-like variable, for which we define

ω̇ =
∑

i

∇ri
Ω · vi (A5)

and ω(0) = Ω({ri(0)}). Following Mikkola & Merritt (2006, 2008) we set

Ω =
∑

i<j

Ωij

‖rij‖
, (A6)

where Ωij = m̃2 if mimj < ǫΩm̃
2 and Ωij = 0 otherwise. Here

m̃2 =
2

N(N − 1)

∑

i<j

mimj , (A7)

is the mean product of particle masses, with N equal to the number of particles. Following Mikkola & Merritt (2008),
we set the parameter ǫΩ = 10−3. This choice of Ω is made to guarantee that low-mass particles have a non-negligible
effect on the regularization, even though they make only a negligible contribution to the value of U .
With these definitions, the two definitions in Eq. (A4) are equivalent on the exact integral curve, since T +B = U

and Ω({ri(t)}) = ω(t). With prime signifying a derivative with respect to s, we get the following equations of motion
for the coordinates,

t′ = [α(T +B) + βω + γ]
−1

(A8)

r′i = t′vi (A9)

and for the velocities

t′ = (αU + βΩ+ γ)
−1

(A10)

ω′ = t′
∑

i

∇ri
Ω · vi (A11)

v′
i = t′

∑

j 6=i

Gmjrij

‖rij‖3
. (A12)

In the presence of perturbing accelerations f i, the binding energy of the system will not be constant, but instead

Ḃ = −Ṫ + U̇ = −
∑

i

mivi · f i, (A13)
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since the Keplerian accelerations cancel. With this addition the time transformed velocity equations read

t′ = (αU + βΩ+ γ)
−1

(A14)

B′ = −t′
∑

i

mivi · f i (A15)

ω′ = t′
∑

i

∇ri
Ω · vi (A16)

v′
i = t′





∑

j 6=i

Gmjrij

‖rij‖3
+ f i



 . (A17)

Different choices of the parameter triplet (α, β, γ) correspond to different algorithmic regularization schemes, with
(1, 0, 0) yielding the logarithmic Hamiltonian method (Mikkola & Tanikawa 1999; Preto & Tremaine 1999) and (0, 1, 0)
being equivalent to the Time-Transformed Leapfrog scheme (Mikkola & Aarseth 2002). Both give exact orbits for
two-body orbits including collisions. We choose (α, β, γ) = (1, 0, 0), based on the suggestion in Mikkola & Merritt
(2008). For a more extended discussion of possible parameter choices, see Mikkola & Merritt (2006) and Mikkola &
Merritt (2008).

APPENDIX B: CHAINED LEAPFROG

When the Eqs. (23) are time transformed as described in Appendix A, we end up with the following equations of
motion for the chain coordinates

t′ = [α(T +B) + βω + γ]
−1

(B1)

X ′
i = t′V i, (B2)

and the velocities

t′ = (αU + βΩ+ γ)
−1

(B3)

B′ = −t′
∑

i

mivi · f i (B4)

ω′ = t′
∑

i

∇Xi
Ω · V i (B5)

V ′
i = t′ (Ai({Xi}) + f i + gi(vi)) (B6)

S′
i = t′SPN,i × Si, (B7)

(B8)

where gi(vi) are the perturbing accelerations which depend on the particle velocities. If the perturbing accelerations
do not depend on the particle velocities, that is gi = 0, the Eqs. (B3)-(B7) can immediately be integrated with a
standard leapfrog. In this case, while the equations of motion for B and ω depend on velocities, the dependence is
linear, and as such can be analytically integrated over one timestep. It should be noted that in practice it is easier to
evaluate the derivatives of B and ω using the non-chained velocities vi and coordinates ri, but using Eq. (24) for the
relative distances rij .
However, it should be noted that the Post–Newtonian corrections (§ 3.2) do depend on the particle velocities, and

possibly spins, in addition to the particle coordinates. In this case, the equations of motion (B3)-(B7) are no longer
integrable, and normally an implicit method would have to be used to compute the solution over one timestep. This
is undesirable, since an implicit method generally requires iterating to convergence, which would force re-evaluating
the computationally heavy PN corrections several times. This can be avoided by extending the phase space, which
allows an explicit leapfrog to be constructed, as in Hellström & Mikkola (2010) or using the generalization derived in
Pihajoki (2015). Combined with the extrapolation method, this allows the PN corrections to be implemented with a
much smaller computational overhead.
The phase space extension is done by introducing auxiliary velocities wi and the corresponding auxiliary chained

velocities W i as well as auxiliary spins Zi for each particle. An auxiliary time transformation variable σ is required
as well. Before the leapfrog step, these are set to the values of the original variables. Then, when the velocity kicks
are calculated, the value of wi is used to compute v̇i, and similarly the value of vi is used to compute ẇi. Evolution
of the spin and the time transformation variable is done in a similar alternating way.
The end result is a leapfrog, which can be written with mappings X(∆s) (drift) and V(∆s) (kick), which propagate

the system in the phase space. We list the algorithmic form of these mappings below. The maps can then be combined
to form the two second order leapfrogs commonly called drift-kick-drift (DKD) leapfrog X(h/2)V(h)X(h/2) and the
kick-drift-kick (KDK) leapfrog V(h/2)X(h)V(h/2), where h is the timestep. In the code, the DKD leapfrog is used.
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Algorithm 1 X(∆s)

procedure X(∆s)

T ←
∑N

i=1
1
2
mi‖vi‖

2

∆t← ∆s/ [α(T +B) + βω + γ]
t← t+∆t
for i← 1, . . . , N − 1 do

Xi ←Xi +∆tV i

end for
end procedure

Algorithm 2 V(∆s)

procedure PhysicalStep(∆t)
Evaluate wi using W i, gi using wi and SPN,i using Zi

ω ← ω +∆t
∑N

i=1 ∇ri
Ω ·wi

B ← B −∆t
∑N

i=1 miwi · (f i + gi)
for i← 1, . . . , N − 1 do

V i ← V i +∆t
(

F i+1 − F i + f i+1 − f i + gi+1 − gi

)

end for
for i← 1, . . . , N do

Si ← Si +∆tSPN,i ×Zi

end for
end procedure

procedure AuxiliaryStep(∆t)
Evaluate vi using V i, gi using vi and SPN,i using Si

σ ← σ +∆t
∑N

i=1 ∇ri
Ω · vi

for i← 1, . . . , N − 1 do
W i ←W i +∆t

(

F i+1 − F i + f i+1 − f i + gi+1 − gi

)

end for
for i← 1, . . . , N do

Zi ← Zi +∆tSPN,i × Si

end for
end procedure

procedure V(∆s)

U ←
∑N

i=1

∑N
j>i

Gmimj

rij

Ω← Ω(r1, . . . , rN )
∆t← ∆s/ (αU + βΩ+ γ)
for i← 1, . . . , N do

Fi =
∑

j 6=i

Gmjrij

‖rij‖3

end for
Compute velocity independent perturbations f i
AuxiliaryStep(∆t/2)
PhysicalStep(∆t)
AuxiliaryStep(∆t/2)

end procedure


