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Using the (3+1) formalism, we derive the post-Newtonian (PN) equations of motion in a flat 

universe. To derive the equations of motion, we must carefully consider two points, one being the 

choice of the density in the Newtonian order (pN) and the other the choice of the gauge condition. In 

choosing PN, we require that the density fluctuation PN- Po agrees with a gauge invariant quantity in 

the linear approximation theory. As a gauge condition, we propose the cosmological post

Newtonian (CPN) slice condition with the pseudo transverse-traceless gauge condition, by which the 

evolution of the geometric variables derived in the PN approximation in the early stage of universe 

agrees with that of the gauge invariant quantities in the linear approximation. In the derived 

equations of motion, the force is calculated from six potentials which satisfy the Poisson equations. 

Hence, our formalism can be easily applied to numerical simulations in which the standard technique 

(e.g., particle-mesh method) is used. We apply the PN formula to the one-dimensional (lD) 

Zel'dovich solution to demonstrate that our strategy works well, and also to determine the effect of 

the PN forces on the evolution of the large-scale structure. It is found that the behavior of the 

density fluctuation and metric quantities in the early stage obtained by the present formalism agrees 

with that of the gauge invariant quantities in the linear approximation, although they do not always 

agree within the previous formalism due to the appearance of spurious gauge modes. We also discuss 

the evolution of the non-linear density fluctuation with very large scale, which may be affected by the 

PN correction in the last stage of the evolution. 

§ 1. Introduction 

11 

The big-bang cosmological model is now considered to be successful. In this 

scenario, the large-scale structure of the universe has grown from the small density 

fluctuations at an early time in a homogeneous and isotropic background.!) Its 

evolution depends not only on cosmological parameters such as the Hubble parameter 

H, the density parameter Q, the fraction of the baryon Qb, and the cosmological 

constant A, but also on the initial spectrum of the density fluctuation. This means 

that we have the possibility to understand our universe well if we clarify the evolution 

of the large-scale structure of the universe theoretically and compare the theoretical 

prediction with the observation of the large-scale structure.2>'3> Therefore, theoreti

cal investigations of the evolution of the large-scale structure are among the most 

important subjects in cosmology. 

When we investigate the evolution of the large-scale structure of the universe, we 

usually assume that the Newtonian theory in cosmology is correct, and use it.!) In 

this theory, equations of motion are derived assuming that the scale of the non-linear 

density fluctuation is much smaller than the horizon scale H- 1 of the universe. In 

most cases, this assumption is correct because the size of our Galaxy and the cluster 

of galaxies are, respectively, about 10-5H
1

-

1 and 10- 3 H- 1 ~H-
1

• However, we may 

ask about the very large-scale structure. ' Because of limited observations of very 

large scales,3
> we have only a few observational results which suggest the existence of 
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12 M. Shibata and H. Asada 

non-linear density fluctuations of very large scale, beyond 100h-1Mpc scale,4>.s> but in 
this decade, we will know whether such fluctuations really exist or not by means of 
galaxy survey projects such as the SDSS (Sloan Digital Sky Survey) project.6> For a 
non-linear density fluctuation with very large scale, it is not clear at all whether the 
application of the Newtonian theory is appropriate. To understand the evolution of 
the large-scale structure of the universe, it is important to clarify up to what scale we 
may use the Newtonian theory as a sufficiently accurate theory. For this purpose, in 
this paper, we consider the post-Newtonian (PN) equations of motion in the fiat 
universe and analyze them. 

As for the PN equations of motion in cosmology, there have been several 
works.1l.s> Futamase7> derived the PN equation for the scale factor to analyze the 
correction of the expansion rate due to the inhomogeneity in the universe. In his 
formalism, he did not derive the PN equations of motion consistently, so his formalism 
cannot be used to calculate the evolution of the density fluctuations in the PN order. 
On the other hand, Tomita8> has derived the PN equations of motion for theN-body 
system consistently. However, his equations of motion are very complicated, and it 
seems difficult to study physical effects of the PN correction analytically. Even for 
numerical simulations, they do not seem practical because we need to perform many 
direct summations in calculating the force term of his equations of motion. This is 
very time consuming.9> To see qualitative effects of the PN correction, it is desirable 
that the equations of motion can be treated analytically, and to perform the numerical 
simulation, we should write the equations to which we can apply a standard numerical 
method. In this way, we need appropriate PN equations of motion, which are easily 
analyzed by both analytical and numerical calculations. 

This paper is organized as follows. In § 2, we derive the PN equations of motion 
by using the (3+ 1) formalism in general relativity. In deriving the equations in the 
PN approximation, we must specify 1) the density in the Newtonian order (pN) and 2) 
gauge conditions. Their choice is very important in eliminating unphysical gauge 
modes, an shown below. In choosing PN, we require that the density fluctuation PN 

-Po becomes gauge invariant when the linear approximation theory holds (a<{1). 1> 
As for gauge conditions, we suggest guiding principles, and propose the pseudo TT 
gauge and cosmological post-Newtonian slice for an aprropriate set of the gauge 
conditions. In § 3, we apply the derived PN formula to the 1D Zel'dovich solution in 
order to test the gauge conditions as well as to determine the PN effects on the 
evolution of the large-scale structure. We illustrate that the gauge conditions we 
propose in this paper work well. We also discuss the PN effects on the evolution of 
the large-scale structure. We show that the PN effect is not important at all for 
ordinary large-scale structure < 100h-1Mpc, although it may become important for 
the very large-scale structure in the late stage of the evolution. Section 4 is devoted 
to a summary. Throughout this paper, we use the units c=G=l. Greek and Latin 
indices take 0, 1, 2, 3 and 1, 2, 3, respectively, and h denotes the Hubble parameter in 
units of 100 km/sec/Mpc. 
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Post-Newtonian Equations of Motion in the Flat Universe 13 

§ 2. The (3+1) formalism and post-Newtonian approximation 

2.1. The (3 + 1) formalism for Einstein equation 

For the sake of convenience, we use the (3+ 1) formalism to perform the post

Newtonian (PN) approximation. 10
> In the (3 + 1) formalism, the metric is split as 

n~'=(l _L) 
a' a ' 

(2·1) 

where a, /3; and rij are the lapse function, shift vector and metric on a 3D hypersurface 

respectively. Then the line element is written as 

(2·2) 

Using the (3+ 1) formalism, the Einstein equation, Gpv=87CT,.~.~- Ag,.~.~, is split into the 

constraint equations and the evolution equations. The former set of equations 

constitutes the so-called Hamiltonian and momentum constraints. These become 

(2·3) 

(2·4) 

where Kij, K, R and D; are the extrinsic curvature, the trace part of Kij, the scalar 

curvature of a 3D hypersurface and the covariant derivative with respect to rij, 

respectively. E and ]J are defined as 

(2·5) 

Evolution equations for the metric and extrinsic curvature become 

(2·6) 

+(Dj/3m)Km;+(D;(3m)Kmj+ /3mD,.Kij-81ra( Sij+ ~ rij(E-S1l)), (2·7) 

Jt r=2r(- aK + D;/3;), (2·8) 

(2·9) 

where Rij, rand Sij are, respectively, the Ricci tensor with respect to rij, determinant 

of rij and 
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14 M. Shibata and H. Asada 

(2 ·10) 

To distinguish among the expansion part, wave part and non-wave part in the 3 
D metric, we use ru=a(t)-2¢-4ru instead of ru, where a(t) is assumed to denote the 
scale factor of the flat universe which depends only on t. In the following, we only 
consider the flat universe and use Cartesian coordinates for simplicity. Then we can 
define det( r u) = 1 and r = a6 ¢ 12

• we also define Au as 

A- -2,1,-4A -2,1,-4(K 1 K) u=a "' u=a "' u-3ru . (2·11) 

We should note that in our notation, indices of Au are raised and lowered by r u, so 
that the relations A;j=A;i and Au=a2¢4Au hold. Using these variables, the evolu
tion equations (2·6)~(2·9) can be rewritten as 

_A_r-··--2aA- .. + r-· aa 1

+ r-· aa~ _l_r--~ 
dt u- IJ ·~ J'ifit 3 IJ ax 1 ' 

(2·12) 

~Au= ),p4 [ a(Ru- ~ ruR)-(n;Dja- ~ ruD ... D.~~a)]+a(KAu-2AaA 1 j) 

+ ~~: Awv+ ~~:A .. ;-~ ~~= Au-87r a:¢4 ( Su- ~ ruS
11), (2·13) 

(2·14) 

(2·15) 

where 

and . aa) 
a=Tt x•' (2·16) 

The constraint equations are also written as 

(2·17) 

(2·18) 

where .J, D; and R are the Laplacian, the covariant derivative and the scalar 
curvature with respect to r ;,;, respectively. 

We split Ruin Eq. (2·13) into two parts as 

Ru=Ru+ Rt, (2·19) 

where Ru is the Ricci tensor with respect to ru. and 

2 - - 2 - - ... - 6 ( - )( - ) 2 - ( - )( -... ) Rt=-¢D;Dj¢-¢ruD D ... ¢+7 D;¢ Dj¢ - ,p2 ru D..,¢ D ¢ . (2·20) 

Making use of the property det( 7u)=1, Ru is written as 
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Post-Newtonian Equations of Motion -in the Flat Universe 15 

(2·21) 

where,; denotes a/ax; and f'/j is the Christoffel symbol with respect to ru. We split 

r u and :yu as 8u + hu and 8u + /u, where 8u denotes the flat geometry, and rewrite Ru 

as 

Ru= ~ [- hu.~c~c + hj1,u+ h;l,IJ+ / 111 ,~c(hu,; + hu,j- hu,l) 

+ / 111(hu,ik+ hu,jJc- hu,l~c)]- fl.;fl~. (2·22) 

Now, let us consider the gauge conditions. As for the spatial gauge, we adopt the 

transverse gauge as 

huJ=O. (2·23) 

This condition is guaranteed if hu.i=O at t =0 and /3; always satisfies 

/3 1« - -( 2 :A- + - /31 + - f3l 2 - /31 ) - ,jru,Jc- - a ij ra ,j rjl ,;-3ru ,l ,j. (2·24) 

By means of the transverse gauge, we can erase the vector part in hu and guarantee 

that hu only contains the tensor mode in the PN order.10
> Thus, we need only take 

into account the linear term in hu because we will perfom the PN approximation. In 

this case, Eq. (2·22) becomes 

(2·25) 

where L1nat is the Laplacian with respect to 8u. In the linear order in hu, the traceless 

property h;;=O is also guaranteed, so that we may call this gauge condition the pseudo 

TT (transverse-traceless) gauge. Note that R=O is guaranteed in the pseudo TT 

gauge condition. 

As for the slice condition for a, we first set 

where 

K=-3H(t)+Q, 

H(t)2=( a(t))2 
a(t) 

8JZ"po(t) +A 
3 3 

(2·26) 

(2·27) 

H(t) and eo(t) are the Hubble parameter and the homogeneous density of the flat 

universe, respectively. For simplicity, we define Po as an averaged value of Da-3
, 

where D denotes the conserved mass density (see below Eq. (2 ·56)). Q is an arbitrary 

function which is determined in fixing the slice condition. Here, in determining Q, we 

should note that the coordinate time in Eq. (2·27) is not the proper time, but rather a 

coordinate time in the PN approximation. This means that Eq. (2·27) has different 

meanings in different slice conditions, and we should carefully consider a natural 

extension of the homogeneous expansion law to that for the PN approximation. If 

we choose an inappropriate slice condition in the PN approximation, the undesirable 
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16 M. Shibata and H. Asada 

gauge mode will appear in geometric variables (see§ 2.2). Fortunately, we know that 

we may choose Q=O in the Newtonian approximation, so that for the present case, Q 

should be determined in the PN order. We will specify this in the next section. 

If we fix Q, Eq. (2 ·15) becomes an equation to determine a as: 

(2·28) 

Using the gauge conditions, Eq. (2 ·13) is rewritten as 

+Pm.JimJ+Pm.i.Am;- ~ pm,m.A;,;-8Jr r/1~2 ( S;,;- ~ roS11), 
(2·29) 

where we use the pseudo TT gauge condition as well as the linear approximation for 

h;,; in the above equation. Combining Eqs. (2·12) and (2·29), we obtain the equation 

of gravitational waves for h;,; in the flat universe. In the wave equation for h;,;, 

however, the source term for h;,; appears first in the second PN order.10
> Since we 

only consider the first PN correction in the following, we neglect h;,; in this paper. 

We note that the above equations do not contain the A term explicitly, except for 

the equation to determine the expansion law, (2·27). Therefore, the above formula 

can be used for the cases A=O and A=FO only if we control Eq. (2·27). 

Finally, we give the equations for matter. Since in this paper we consider the 

evolution of the density fluctuation after decoupling of matter and radiation, we adopt 

pressure-free dust as matter. (We also consider N-body systems in Appendix B.) 

The energy momentum tensor for the dust is written as 

T,..v=pu"uv, (2·30) 

where u,.. and p are the four velocity and the density, respectively. p obeys the 

continuity equation 

where 17,.. is the covariant derivative with respect to g,..v. The explicit form becomes 

(2·32) 

where D=par/J6a3u 0 is the so-called conserved density. The equations of motion are 

derived from 

l7,..T/'=0. (2·33) 

The explicit form becomes 
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Post-Newtonian Equations of Motion in the Flat Universe 17 

(2·34) 

where 

(2·35) 

2.2. Cosmological post-Newtonian approximation 

In this section, we consider the first PN approximation of the above equations. 

First of all, we review the PN expansion of the variables in the expanding universe. 

In the expanding universe, we can introduce three non-dimensional parameters which 

are independent of each other in general:7> 

-( p-po )"2 x= --p;;- , (2·36) 

where v, Land l denote the peculiar velocity, the horizon scale and the characteristic 

length scale of the density fluctuation in the comoving frame, respectively. In the 

cosmological PN formalism, we usually consider the velocity field v; to be generated 

by the density fluctuation p- Po. In this case, the following relation holds: 

€ 
x~-. 

K 
(2·37) 

Also, we must impose the condition al < L in the PN approximation, so that K< 1. 

Hence, we have two independent small parameters, € and K~ €/x. Note that there is 

no limitation on x, so there is no imposed relation between € and K. For the galactic 

scale, x becomes ~ 103 at the present time, so we should impose the condition € ~ K. In 

this paper, we mainly consider the large-scale structure ;;;::100h-1Mpc. In this case, it 

is expected that x increases from. ~1 to ~ 1 and may exceed unity throughout the 

evolution of the density fluctuation. In such systems, the relation between € and K is 

not simple, so that, in the following, we derive the first PN equations of motion by 

means of c-1 expansion. Note that since €, K= O(c-1
), any contributions from both E 

and K are included in the derived equation, and it can be used for any system formally 

if E and K are less than unity. This is because in any case, the leading term among 

1PN terms is greater than the higher PN terms, i.e., the equations derived here provide 

the PN correction always valid up to 1PN order. 

For later convenience, we also mention the linear approximation.'> In the linear 

approximation, we assume E~K and x, €~1. and any limitations on K are not imposed 
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18 M. Shibata and H. Asada 

only if the relation €~ K is satisfied. In 

the case a~l, the linear approximation 

becomes very good because K~e~O, and 

x~1 in the early stage. Hence, we usu-

ally adopt the linear approximation in 

the early stage and after x becomes 

large (i.e., e::S K), the Newtonian approxi

mation is used. In the PN approxima-

tion, the relation x~ e/K holds, so that if 

€~ K is satisfied, x~1 is naturally guar

anteed. When we consider the linear 

limit in the system where the PN approx

imation holds, we only need to take the 

limit x~1 or €~1, keeping K< 1. In Fig. 

1, we describe the conceptual figure 

about the cosmological PN approxima-

tion and linear approximation. 

Extending Chandrasekhar's descrip

tion of the PN expansion in the 

asymptotic flat space-time13
> to the cos

mological PN approximation, the four 

velocity is expanded as 

u
0
=1 +{ ~ a2v2+ u}+ O(c-4

), 

0 1 X 
K = constant 

Fig. 1. Conceptual figure of the post-Newtonian 

(PN) approximation. The horizontal and ver

tical lines denote x and E, respectively. In the 

PN approximation, the relation x~E/K holds, 

and the constraints E, K< 1 is needed. How

ever any limitations for x are not imposed. 

On the other hand, x, E<::1 and K-:?E must be 

satisfied in the linear approximation. If we 

try to take the linear limit in the system where 

the PN approximation holds, i.e., x~ E/K and E, 

K< 1, we only need to take the limit x<::1 or E 

<::1 keeping K< 1. 

uo= -[ 1 +{ ~ a2v2
- u}+ O(c-4

)], 

ui=vi[1+{ ~ a2v2 + u}+O(c-4
)], 

ui=a2[vi+{.aP>+vi( a;v
2 

+3u)}+o(c-5
)], (2·38) 

where terms in the bracket {} denote each first PN term, and U and pi<a> are the 

Newtonian potential and the first PN term of pi, respectively (see below). vi is equal 

to that defined in Eq. (2·35), and v2=vivi. Note that in the above, the expansion is 

in c-I, so that O(c-4
) denotes 0(€4-nKn), where n=O, 1, 2. All geometric variables 

relevant to the present paper are expanded. We have: 

a=1- U+a<4>+···, 

hu=hW+···, 
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Post-Newtonian Equations of Motion in the Flat Universe 19 

(2·39) 

where subscripts (n) denote the PN order (e-n). The PN expansion of the relation 

u"u~<= -1 becomes 

(au0
)

2=1 + ruu;uj 

=1 +a2v2 + O(c-4
). (2·40) 

Before writing the equation for the metric variables, we need to point out that we 

have a freedom in choosing the density in the Newtonian order, PN.
14

> This is because 

we have no reason to consider pas the density in the Newtonian order. To choose 

PN, we only require that in the Newtonian limit, it reduces to p. For example in the 

linear approximation theory, a gauge invariant quantity is more important than p 

- po.
11

,'
12

> As we will discuss in Appendix A, if we choose other quantities instead of 

the gauge invariant quantity, it is not guaranteed to be a physical density fluctuation 

in the linear approximation theory. Thus, we adopt PN in order that PN- Po becomes 

a gauge invariant quantity for a~l. Although in the linear approximation theory, 

there exists an arbitrary combination of the gauge invariant quantities, 12
> we here 

choose PN=p(1-2U)*> as the density in the Newtonian order. (The reason for this 

choice is described in Appendix A.) According to this choice, we can naturally extract 

a growing density fluctuation in the case a~l. Then, by using Eq. (2·28), we find that 

U should satisfy 

(2·41) 

Here, 8PNL(t) is a non-linear and PN term which is added in order to guarantee that 

the average of the right-hand side of Eq. (2·41) becomes zero, i.e., (pN- po- 8PNL>=O 

(as for the averaging, see Eq. (2·56) below). From the Hamiltonian constraint, we 

also find 

,f,(2)=Jj__ 
'I' 2 . 

As for a<4>, we write it as 

u2 
a<•>=-

2
-+X. 

(2·42) 

(2·43) 

Then, from Eq. (2·28), equation for X becomes 

L1natX=47ra2(2pNa2 v2 -poU+4(pN-po)U)-a2
( Q<3>+2 ~ Q<3>)+47ra28PNL. 

(2·44) 

From this equation, we find that X is a gauge-dependent term, because Q<3
> determines 

the slice condition for the first PN order. Since an inappropriate choice of the slice 

condition may lead to the appearance of an unphysical mode,11>'12
> in determining the 

slice, we must specify some guiding principles by which we can choose an appropriate 

slice naturally. Here we impose two principles; 1) the Newtonian limit can be 

*>We may choose pN=p-2Upo. 
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20 M. Shibata and H. Asada 

naturally taken (i.e., €, K{:::1), and 2) in the linear stage (i.e., E{:::K and x{:::1), the 

behavior of the geometric quantities should agree with that of the gauge invariant 

quantities in the linear approximation. Condition 1) is trivially satisfied in any Q<3>. 

As for condition 2), we attempt to take the linear approximation of Eq. (2·44). We 

should consider X as appearing only in the non-linear order, so that Eq. (2·44) 

becomes 

(2·45) 

where Qftl is the non-linear part of Q(3). This is the equation for Q<3>. In this case, 

the equation for X becomes*> 

L1natX=8Jra2(pNa 2 v2 +2(pN- Po)U)+4Jra2 opNL -a2
( Qftl+2 ~ Qftl). (2·46) 

In the case A =0, if U happens to be a non-linear term, we may also use another simple 

slice as 

(2·47) 

and 

(2·48) 

From this point, we refer to these slices as cosmological post-Newtonian (CPN) slices, 

because they are natural extensions of the PN slice for the case po=0,13) and in the 

case of the linear limit, these slices reduce to Newtonian slices (zero-shear hypersur

face slice).12
> In the next section, we will apply the latter CPN slice condition as well 

as the constant mean curvature slice Q= Q<3>=o to the PN version of the 1D 

Zel'dovich solution16
> as simple examples. The importance of the choice of Q<3> is 

shown. 

From Eq. (2·24), the relation between AW and {3/3
> becomes 

_ 2 A-(~>+ o(3l+ o(3)_l__s- __ o<3)=0 
lJ Pt,.J I.JJ,t 

3 
UuJJl, . (2 ·49) 

AW must also satisfy the momentum constraint. Since A:}]> does not contain the TT 

part and contains only the longitudinal part, it can be written as 

(2·50) 

where W/3> is a vector on the 3D hypersurface and satisfies the momentum constraint 

in the first PN order as 

A W,(3)+ 1 W,(3) 2 Q(3)_8 2 i 
.:.~nat ; 3 j,j,;-3 ,; - 7rpNa V . (2·51) 

From Eqs. (2·49) and (2·50), the relation 

*> Here, Ql!'i should be used to guarantee that the average of the right-hand side of Eq. (2·46) becomes 

zero. 
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Post-Newtonian Equations of Motion in the Flat Universe 

holds, and in the lowest PN order, Eq. (2 ·14) becomes 

3( (J + HU) + Q<3
> = Pl~l , 

where 

. au) 
U=Tt x•" 

Hence, Eq. (2·51) is rewritten as 

L1nat/3/3>=167CpNa2 v;+Q.<t>-(HU,;+ (f.;). 

This is the equation for the vector potential in the first PN formalism. 

21 

(2·52) 

(2·53) 

(2·54) 

In actual numerical simulations, the term U in Eq. (2·54) may make it difficult to 

maintain numerical accuracy/5
> if we simply perform the time differentiation of U. 

To avoid this, we need to solve the following equation to estimate HU + U, 

.dnat(HU + U)=47Ca 2(pNVi),;, (2·55) 

which is derived from Eqs. (2·53) and (2·54). 

Now, we consider the equations of motion. In the first PN approximation, the 

continuity equation becomes 

an+ a(Dvi) 
0 at ax· , (2·56) 

where D=pNa
3
(1+5U+a

2
v

2 /2). If we average Eq. (2·56) in a large volume, V, we 

obtain <D>=poa3 =constant, where <D> is the averaged value of D over V.*> The 

equations of motion become 

Da2 [_l_ ( U ·- UU ·-X·)+ vj/3(3! +.l_v2 U ·] =D'z:-. a2 ,, ,z ,z J,l 2 ·' - T, , (2·57) 

where F; denotes the total force term. For the later convenience, we split this term 

into Newtonian and PN parts as Fl + FtN, which are, respectively, 

Fl = U,;, 

F .PN __ UU ·-X·+ 2 i/3(3!+.1_ 2 2U. , - ,, .• a v ;,• 
2 

a v ,, . (2·58) 

Equation (2·57) shows that we need to solve six Poisson equations for U, X, HU + U, 
and /3/3

> (Eqs. (2·41), (2·46), (2·54) and (2·55)) and one ordinary differential equation 

(2·45) to determine the force term in the equations of motion. 

Using the relation, S;=Du;, Eq. (2·57) can be rewritten as 

(2·59) 

*> In the case of a periodic system, we use the scale of the periodicity as V for averaging, and in the case 

of the non-periodic system, we use the horizon scale. In the former case, <D> is exactly constant. In the 

latter case, it is not exactly constant, but can be regarded as a constant within a sufficient accuracy. 
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22 M. Shibata and H. Asada 

where vi is calculated from 

v;=-p;<3>+( 1- a;v
2 

-3u)a-2u;. (2·60) 

Therefore, we can apply the formalism not only to the simulation of dust fluid (solving 

Eqs. (2·56), (2·57), and Poisson equations by the Eulerian method), but also to the 

simulation of N-body systems (solving Eq. (2·59) by the Lagrangian method and 

Poisson equations by the Eulerian one). We note that in the case of the simulation 

of theN-body system, we adopt an energy momentum tensor which is different from 

that in Eq. (2·30). (See Appendix B.) 

Finally, we point out the following important point: Although the geometric 

quantities depend on a gauge variable Q<3>, the evolution of the density perturbation 

and the velocity field do not. Let us demonstrate this point. Substituting the rela

tion 

(2·61) 

into Eq. (2·59), the equations of motion become 

( a + j a ){ 2 i(1+ a
2

v
2 
+3u)}-F ( a + J a ) 2o <3>-F-Tt v axj a v -2- - ;- Tt v axj a /Ji = i. (2·62) 

F; is rewritten as 

(2·63) 

Here, X and P/3
> depend on Q(3). However, parts of the solution (which we denote as 

X 0 and p;0) for X and p;<3
> which depend on Q<3

> become 

X
Q= _ A-1 ( a(a2 Q(3

))) 

~flat at ' 

0 0-LJ-1 (Q (3)) 
IJi - flat i . (2·64) 

Hence, 

(2·65) 

Thus, F; does not depend on Q(3), and neither do the density fluctuation and the 

velocity field. The reason is that the gauge fixing for the density fluctuation is 

achieved by the choice of PN, not by Q<3>. Q<3
> only affects the evolution of geometric 

quantities. 

§ 3. Post-Newtonian correction to the lD Zel'dovich solution 

In this section, to see the effect of the PN correction, we make use of the 

Zel'dovich solution in the Einstein-de Sitter universe/6
>·

17
> which describes the evolu

tion of the 10 density fluctuation in a Newtonian cosmology. The Zel'dovich solution 
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Post-Newtonian Equations of Motion in the Flat Universe 

is described as 

x=q+ B(t)S1(q),q, 

vx=B(t)S1(q),q, 

PN= Po(1 + B(t)S1(q ),qq)-1
, 

23 

(3·1) 

where S1(q) and B(t) are the functions depending only on q and t, respectively. We 

assume that S1(q),q is a non-dimensional and monochromatic function of order unity, 

e.g., sinkq, where k is a wave number of the Fourier spectrum of the density fluctua

tion in the comoving frame. (We also define S1 to be monochromatic, e.g., as - k-1 

coskq.) By means of the Euler equation, U is calculated as 

(3·2) 

where C1 and C2 are constants which are concerned with the transformation of the 

time coordinate. Hereafter, we set C1 = C2=0 for simplicity. Substituting Eq. (3·2) 

into the cosmological Poisson equation (2 ·41), the equation for B becomes 

.. a . 
B+2-B=4JCpoB. 

a 
(3·3) 

Using the relation a=(t/to)213, where to is the present time, solutions for B become 

B(t)cx.a(t) and/or B(t)cx.a(t}-312 . (3·4) 

In the following, we only consider the growing mode and rewrite B(t) as B(t)=Boa(t) 

= bok-1 a( t ), where bo is a non-dimensional constant which approximately determines 

the epoch when the first caustic (p-+=) is formed. Note that due to the choice a(to) 

=1, we may regard 2JCk-1 as the present scale of the density fluctuation. We also 

mention that the applicability of the Zel'dovich solution is restricted; it is applicable 

only before a caustic is formed, where 1 + BS1,qq=0.16
>·

17
> 

Before proceeding further, we review features of the Zel'dovich solution. Since 

the time scale of the growth of the density fluctuation is about H- 1 in the Zel'dovich 

solution, the peculiar velocity avx has an order of a2 k-1 H ~ a112(kto)-1 ~ aK. Thus, the 

Zel'dovich solution describes a system with €~ aK. 

Next, let us constrain the parameter of the Zel'dovich solution. Since we assume 

that the length scale of the density fluctuation is less than the horizon scale, the 

relation 

a(t) 
2
: <H-1

, (3·5) 

must hold throughout the whole time. Using a(t)=(t/to)213 and H=2/(3t), Eq. (3·5) 

becomes 

kt >k (A)1
'
3 
=k -112 

0 3 t 3a · 
(3·6) 

The most strict constraint is imposed at an initial time. If, for example, we set the 
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24 M. Shibata and H. Asada 

initial condition at a redshift 1 + z ~ 100, Eq. (3 · 5) becomes 

kto> 4~Jr ( \~oz r2~1. (3·7) 

Then, the Zel'dovich solution can be applied to the density fluctuation such that 

2Jr 
€o~ Ko~ kto ::S0.1, (3·8) 

where €o and Ko denote the present values. 

Now, let us calculate the PN correction. We first consider the constant mean 

curvature slice Q=O. Using the Zel'dovich solution, Eq. (2·54) for /3;=(/3x, 0, 0) 

becomes*> 

A(.) - 9 B 3H3 S!,q 
£.J}Jx--2 oa 1+B S ' oa J.qq 

(3·9) 

where we make use of 

au)_ 3 B 3H2S ax t ---z oa !,q ' 

(3·10) 

and 

1 a ) 
1 + BoaS1,qq aq t ' 

a ) _ a ) BoizS1,q a ) 
Tt x -Tt q -1+BoaSI,qq 7fi t • 

(3·11) 

Assuming that the system has a periodicity with respect to q, i.e., ;3x(q+qm)=/3x(q) 

and X(q+qm)=X(q), where Qm is a constant (e.g., 2nk-1
), the equation is integrated 

as 

(3·12) 

Equation (2·46) for X becomes 

L1X = ~ Boa
6
H

4
[ 2BoSt,q- 2

3
a (1 +5BoaS!,qq)( S1 + ~ BoaSf,q)] 1 + B:aS!,qq , 

(3·13) 

and it is integrated as 

X.x= ~ Boa
6
H

4
[- 2

3 afs~dq+Bo(3 4
5 

Jsr.qdq-
1
: S!S!,q+Cx)- ~ Bo

2
aSf.q], 

(3 ·14) 

where Cx is a constant introduced to guarantee the periodicity of X. Gathering the 

*> We omit the subscript (3) of pp>_ Also, in this section, L1 denotes the flat Laplacian. 
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Post-Newtonian Equations of Motion in the Flat Universe 25 

derivatives of the potential, Eqs. (3·10), (3·12) and (3·14), and substituting them into 

Eq. (2·58), the total PN force term is evaluated as 

FxPN = ~ Boa
6
H

4
[ 2 ~ js1dq+ Bo(- ~ 5 fsr,qdq+9S1S1,q~ Cx )+2Bo2aSr,q J. 

(3·15) 

Taking into account S1 ~ k-1, S1,qq ~ k and a6 H 4 ~to-\ the order of the magnitude of 

FxPN becomes ~k- 3 to-
4 • On the other hand, that of FxN is ~k- 1 to- 2 • So that, the PN 

correction force is of order Ko 2 ~(kto)-
2 smaller than that of the Newtonian force. 

However, as we conjectured in § 2, X and FxPN involve a spurious gauge mode 

which is proportional to a-I_. (The reason why it is a spurious mode is that the early 

evolution (a~l) of the metric quantities is described by the linear perturbation theory 

and that in this case, the behavior of X should agree with that of U. See Appendix 

A.) As we show in § 2, this unwanted behavior does not affect the behavior of the 

density fluctuation, so if we are only interested in the evolution of the density 

fluctuation, one may think that the choice of Q<a> is not important. However, in the 

numerical simulation, this is crucial. X.x and FxPN cx:.a-1 in the early phase, and FxPN 

may surpass FxN for a~l. In such a case, UxPN is also dominated by the spurious 

gauge mode. In an ideal calculation, a cancellation between the spurious modes in /3x 

and UxPN occurs, and the spurious mode in vfw is excluded. However, this is not 

always guaranteed in the numerical simulation if a truncation error is generated. 

Thus, to see physical modes correctly we should not use the constant mean curvature 

slice in the numerical simulation. 

Then, we try to perform the same calculations using a CPN slice. In the case of 

the Zel'dovich solution, (; is the non-linear term, so we can choose as 

(3 ·16) 

where Cb is a constant. In this case, the terms concerning the PN force become 

/3x,x=- ~ Bo2a4H 3(Sr,q+Cb), (3·17) 

X.x=3Bo2a6H
4
[f(I

4
3 

Sr.q- ~ Cb )dq-3S1S1,q+ Cx- BoaS1,q( ~ Sr,q+ ~ Cb) J, 
(3 ·18) 

and in total 

FxPN = -3Bo2a6H 4[f(I
4
3 

Sr,q- ~ Cb )dq- ~ S1S1,q+ Cx- ~ BoaS1,q(Sr.q+ Cb)], 

(3·19) 

where Cx is a constant. In this slice, no spurious gauge modes in X and FxPN (ex. a-1
) 

appear. This shows that the CPN slice is a good choice. 

Then, let us consider the effects of the PN force on the evolution of the velocity 

field and the density fluctuation.*> First, we integrate the equation for Ux. To solve 

*> Hereafter, the calculation is performed using the CPN slice. 
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26 M. Shibata and H Asada 

it, we split U:r into the Newtonian and PN parts as 

(3·20) 

Since UrN =a2 VN:r, the equation for Newtonian order becomes 

:r a :r_ F:rN 
VN,tlq+2-VN --z-. 

a a (3·21) 

Here, we know that the solution of VN:r is BotiSt,q. U:rPN should obey the equations of 

motion in the PN order, and the equation becomes 

PN + PN:r -FPN+ z[f3+((aVN:r)Z+ 3u) :r] :r U:r,tlq U:r VN,:r- :r a :r 
2 

VN VN,:r. (3·22) 

The left-hand side of Eq. (3·22) is rewritten as 

1 + B 
1 

S (u:rPN(1 + BoaSt,qq)),tiq. oa t,qq (3·23) 

Using this property, we can integrate Eq. (3·22) as follows: 

_2 PN _ 2 Bo
2 

H3 4[/( 13 sz 9 C )d C 9 S S a U:r -- 1 + BoaSt,qq a T t,q-8 b q+ :r-4 1 t,q 

+~Boa{ St,qq(f( 4S~.q-1 Cb )dq- ~ 5 StSt,q+ C:r )- ~ Sf.q- ~ CbSt,q} 

+ ~ Bo
2
a

2 
St,qSt,qq(- ~~ S~.q + ~ Cb)] , (3·24) 

and vfw becomes 

vfw= 1 + fo~sl,qq H
3
a

4
[ ( 2C:r+! jC17Sr.q-9Cb)dq) 

+ 
2
1
0

Boa{ St,qq(JC51Sr,q-63Cb)dq+24C:r )+31Sf,q-54CbSt,q} 

(3·25) 

Next, we calculate the time evolution of the density fluctuation, which is also 

straightforward. We write the conserved density D as 

(3·26) 

Then the evolution equation for aPN becomes 

(3·27) 

Substituting Eq. (3·22) into Eq. (3·27), we obtain the evolution equation for density 

fluctuations generated by the PN force, but unfortunately, this cannot be calculated 

analytically. Although the calculation is easily done by numerical integration, we 

only perform an order estimate for the evolution of aPN using the linear approxima-
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Post-Newtonian Equations of Motion in the Flat Universe 27 

tion, i.e., a~l. The order of magnitude of each mode in 8PN becomes 

(3·28) 

Here, we note that there is no spurious mode in 8PN. This is a natural consequence 

of the choice of PN=p(l-2U). The ratio of the Newtonian and PN modes of the 

density fluctuation can be also written as 

bon n-1 f ...._ 1 re~ (ktoY a or nL . (3·29) 

Hence, the PN effect is always a factor of (kto)-2 smaller than the Newtonian effect. 

This means that for the small-scale density fluctuation (kto"> 1), the PN correction can 

be neglected. Also, the effect of the PN term is very small in the early stage of the 

evolution (a~l). However, we cannot conclude that the PN terms are always 

negligible. In the last stage (z ::S 1) of the evolution of density fluctuations on a very 

large scale, the PN correction may become important. To explain this point, instead 

<)j re, we use the ratio between the Newtonian velocity and the PN velocity, because 

le do not know the detailed behavior of r11 in the last stage. In the late stage of the 

evolution, the order of the magnitude of re for each mode is written as 

bon n-1 bon P n-1 f 
1

....-- ....--
3 

rv~ (kto)2(1 + BoaS1,qq) a ~ (kto)2 p;;a or ::;,. n:::. · (3·30) 

Recall that bo determines the epoch when the first caustic (p-+ oo) is formed at a place 

q = Q1. If the epoch is a redshift of ZT. bo becomes 1 + zf. In the realistic evolution of 

the density fluctuation, the density does not diverge, and instead, some structure will 

be formed around q ~ Q1. Also, in the other coordinate points, the density fluctuation 

will continue to grow. Let us consider such a point where IP-Poi/Po becomes ~1 at 

z=O. Assuming that the Zel'dovich solution can be a good approximation for q=l=q1 

and z< zf, rv for such points can be approximately written as 

1 (1 +zf)n p 
rv~ (kto)z (l+z)n 1 Po for l~n~3. (3·31) 

If zf~5 and pfpo~lO with n=3, rv~severalX10 3 (kto)- 2 at z=O. Thus, in the late 

stage, the PN correction may contribute to the evolution of the very large-scale 

structure with the scale kto::S 100 (27rk-1 
~200h- 1 Mpc). 

§4. Summary 

In this paper, we have investigated the PN equations of motion in the flat universe 

and their effects on the evolution of the large-scale structure of the universe. In the 

first part of this paper, we formulate the cosmological PN equations of motion making 

use of the (3+ !)formalism in general relativity. To derive equations of motion 

which are useful for an actual analysis, there exist two important points, one being the 

choice of the density in the Newtonian order (pN), and the other the choice of the 

gauge condition. As for PN, we choose pN=p(l-2U) so that PN-Po denotes a gauge 
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28 M. Shibata and H. Asada 

invariant density in the early stage of the universe (a~l). As for the gauge condi· 
tion, we choose the pseudo TT gauge and CPN slice condition to eliminate the 
spurious gauge modes. In this formalism, the force term in the equations of motion 
is calculated from the six potentials which are derived by the six Poisson equations 
as is in the Newtonian case (although there is only one potential U in the Newtonian 
case). Therefore, these can be used for an actual numerical simulation if we use a 
standard numerical technique such as the particle-mesh method.9> 

In the second part of this paper, using the derived formula, we analyzed the PN 
correction of the Zel'dovich solution. In the analysis, we use not only the CPN slice, 
but also the constant mean curvature slice (K = - 3H) to show the importance of the 
choice of the slice condition. It is found that in the case of the constant mean 
curvature slice, the spurious evolution mode for the metric appears, but for the CPN 
slice, it does not. This shows that we should carefully choose the slice condition to 
see the physical phenomena in the PN equations of motion correctly, and that for that 
purpose, the CPN slice is useful. We also perform an order estimate of the effect of 
the PN correction to the evolution of the density fluctuation. We find that 1) the PN 
correction is not important when a~ 1 and/ or when the scale of the density fluctuation 
is not too large (K~1), but 2) for the very large-scale structure of the universe ( > 100 
h-1Mpc), the PN correction may become important in the late stage of the evolution 
(i.e., in the highly non-linear regime of the density fluctuation). However, estimates 
we perform in this paper are crude, and to see the quantitative effect of the PN 
correction, a numerical simulation is required. 

Although we do not have significant observational results as for the very large 
scale ~100 h-1Mpc,3

> there are observations which suggest that non-linear density 
fluctuations of very large scale do exist. 4>.s> Moreover, substantial progress is expect
ed in the area of the observation of the large-scale structure because several projects 
such as the SDSS project6

> will be in operation, and the results will be brought out in 
this decade. Such observations may find very large-scale structure of the universe. 
Preparing for the time when we could confirm the existence of such very large-scale 
structure, we should investigate the PN correction quantitatively and clarify whether 
it is important or not. To answer these questions, we need to perform detailed 
numerical calculations of the evolution of the very large-scale structure including PN 

correction. 
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Appendix A 

In this appendix, we consider the linear approximation theory in the Einstein-de 
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Post-Newtonian Equations of Motion in the Flat Universe 29 

Sitter universe (i.e., A =0) to determine the behavior of the metric quantities and the 

matter variables in the early stage of the universe. In the linear theory, the equations 

under the pseudo TT gauge condition become 

where 

0+2H8+B+2HB=a-2L1A, 

8+6¢+8=0, 

6¢+3HA+Q-B=O, 

LJA= -4npoa2(o-3A)+a 2(Q+2HQ), 

A=1-a, 

o=___e_-1 
Po ' 

cp=rp-1. 

From Eqs. (A·l)~(A·4), the equation foro can be derived as 

(A·1) 

(A·2) 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

(A·7) 

(A·8) 

(A·9) 

(A·10) 

By using om=o-3HC, where C=A or LJC=a2(8+ B), the equation is rewritten as 

.. . 3 2 -

om+2Hom-zH om-0. (A·ll) 

Here, om denotes a gauge invariant quantity,*>'12> and from this equation, we obtain the 

two evolution modes of the density fluctuation omrxa and r:xa-312
• 

Now, let us suppose that we must solve the equations without the gauge invariant 

quantity. Then, we must solve the coupled equations (A ·4) and (A ·10). Since the 

following discussion does not depend on Q, for simplicity, we choose the CPN slice as 

In this case, Eq. (A ·4) becomes a simple equation as 

LJA= -4;rpoa2(o-3HC)( = -4;rpoa2om). 

(A·12) 

(A·13) 

If we use the gauge invariant quantity om and consider only the growing mode rx a, we 

immediately find that the solution for A becomes rxa0
• Then, since 3HC~2A 

*> In the paper of Bardeen, this is expressed as €,.. There also exists another gauge invariant density 

fluctuation €g, and we may use it or a linear combination of €m and €• instead of €m. In this paper, we use 

€m because its growing mode has a simpler form than that of €g. Thus, €m makes it easier for us to extract 

the growing mode, especially in numerical computations. 
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30 M. Shibata and H. Asada 

=constant, 8 has the spurious mode ~ 2A. This means that if we use 8 instead of 8m, 
the undesirable mode will appear. Therefore, in order to see the physical density 

fluctuation, we must choose 8m as a density fluctuation instead of 8 (i.e., we had better 
choose PN=p(l-2U) as a density in the Newtonian order). 

Finally, we note that the above argument is independent of the choice of Q; unless 

we adopt a gauge invariant quantity as the density fluctuation, the spurious mode 

necessarily appears irrespective of the choice of Q. Therefore, in order to delete the 
spurious gauge mode, the gauge invariant choice of the density fluctuation is only one 

method. 

Appendix B 

We discuss the energy momentum tensor for N-body systems in this appendix. 

In the case of theN-body system, the energy momentum tensor is not defined as Eq. 

(2·30), but as 

(B·l) 

where mp and Zp"(t) denote an inertial mass and a trajectory of a particle, respective

ly, and pp denotes the mass density around a particle. Here, p and Pd=Da-3 become, 

respectively, 

( 
dt )-l . . 

p= ~mp¢- 6 a- 3 a--cti 8<3>(x'-zp'(t))( = ~pp), 

pd=~mpa- 3 8< 3 >(xj-zl(t)). 
p 

(B·2) 

In the PN approximation, p and PN are expressed as 

and 

(B·3) 

(B·4) 
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