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Abstract

In visual object tracking, by reasonably fusing multiple ex-
perts, ensemble framework typically achieves superior per-
formance compared to the individual experts. However, the
necessity of parallelly running all the experts in most exist-
ing ensemble frameworks heavily limits their efficiency. In
this paper, we propose POST, a POlicy-based Switch Tracker
for robust and efficient visual tracking. The proposed POST
tracker consists of multiple weak but complementary experts
(trackers) and adaptively assigns one suitable expert for track-
ing in each frame. By formulating this expert switch in con-
secutive frames as a decision-making problem, we learn an
agent via reinforcement learning to directly decide which ex-
pert to handle the current frame without running others. In
this way, the proposed POST tracker maintains the perfor-
mance merit of multiple diverse models while favorably en-
suring the tracking efficiency. Extensive ablation studies and
experimental comparisons against state-of-the-art trackers on
5 prevalent benchmarks verify the effectiveness of the pro-
posed method.

1 Introduction

Visual object tracking plays a vital role in many practical
applications such as autonomous driving, video surveillance,
human-computer interaction, etc. As a basic pre-processing
component, visual tracking is also a time-critical task.

In the past decade, several popular tracking frameworks
have emerged. Different trackers perform distinctively with
their own strength and weakness. Compared with a single
model that typically struggles to deal with various challeng-
ing factors, it is well recognized that ensemble-based ap-
proach, by absorbing the strength of multiple diverse ex-
perts/models, has the superiority to handle complex scenar-
ios. In an ensemble framework, the core problem lies in how
to effectively fuse or switch among multiple models. Some
algorithms rely on the expert self-evaluation such as the out-
put scores of different models (Han, Sim, and Adam 2017)
or forward-backward trajectory consistency (Lee, Sim, and
Kim 2015) to assess each single expert. On the other hand,
some ensemble methods leverage the pair-wise relationship
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Figure 1: Top: classic ensemble trackers mostly operate
multiple experts in parallel. Bottom: our method avoids un-
necessary computations by directly assigning only one ex-
pert to handle the current frame.

to vote on or evaluate the reliability of different experts
(Wang and Yeung 2014). Despite their impressive perfor-
mance, previous ensemble frameworks mostly suffer two
limitations: (1) the fusion or selection strategies are man-
ually designed in a heuristic manner and typically contain
carefully selected hyperparameters; (2) the overall efficiency
is inevitably reduced by running multiple models in parallel.

When tracking objects, humans can rapidly capture the
most discriminative features based on the tracking environ-
ment to distinguish the target from backgrounds. In dif-
ferent scenarios, our visual system takes advantage of dif-
ferent cues to track (e.g., color, shape, or semantics), and
most of them may be redundant in a certain circumstance.
The ensemble tracker shares partial similarity with the hu-
man visual system from the perspective of maintaining mul-
tiple cues for robust tracking. However, by concurrently
operating multiple models, previous ensemble frameworks
(Lee, Sim, and Kim 2015; Bailer, Pagani, and Stricker 2014;
He et al. 2018; Han, Sim, and Adam 2017) generally make a
tradeoff between efficiency and performance. So a question
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emerges: can we avoid running all the models and directly
find out a suitable one to still achieve high accuracy without
sacrificing efficiency?

In this paper, we propose POST, a POlicy-based Switch
Tracker for efficient and high-performance visual tracking.
Similar to ensemble framework, our dynamic switch method
maintains an ensemble of experts to retain the performance
merit of diverse models. However, unlike the classic ensem-
ble framework, our tracker is free of running multiple mod-
els online for result fusion, showing extremely promising
efficiency. Specially, as shown in Figure 1, we only run one
suitable expert in each frame, making our switch framework
is almost as efficient as an individual expert and the over-
all computational cost is independent of the expert number.
Such an adaptive switch relies on making the correct deci-
sion on selecting an expert in each frame. By virtue of Re-
inforcement Learning (RL) (Mnih et al. 2015), we learn an
agent to predict the policy for the desired decision. The agent
dynamically decides which is the suitable expert, and its
decision-making capability is gradually improved by watch-
ing and exploring a large volume of videos offline following
the RL rule. Different from previous ensemble frameworks
putting emphasis on modeling the relationship of multiple
experts, our agent predicts policies by directly analyzing the
tracking environment as well as historic actions, which is
more close to the judgment process of our visual system.

The main contribution of this work is the proposal of a
policy-based switch tracking framework, which has been
rarely investigated in the literature. Specifically, we build an
expert ensemble using the state-of-the-art SiamRPN model
(Li et al. 2018a), and combine this expert ensemble with
an agent network to form our POST tracker. To encourage
expert diversity and acquire superior accuracy, we further
improve the base expert using an efficient color-histogram
based model. Leveraging the agent trained via reinforcement
learning, our framework dynamically switches different ex-
perts across frames, maintaining the performance advantage
of diverse models while effectively avoiding unnecessary
computations. The proposed method exhibits state-of-the-art
performance on 5 prevalent tracking benchmarks while op-
erating at a high speed of over 100 frames per second (FPS).
Finally, it is worth mentioning that the proposed simple yet
effective framework is quite generic, and has the potential
for other tasks that benefit from such a multi-model selec-
tion or switch mechanism.

2 Related Work
In this section, we briefly review the related methods includ-
ing visual object tracking, ensemble tracking and reinforce-
ment learning based tracking approaches.
Visual Tracking. Visual object tracking aims to localize an
unknown target object specified at the initial frame. In re-
cent years, correlation filter based approaches (Henriques et
al. 2015; Bertinetto et al. 2016a; Ma et al. 2015; Danelljan
et al. 2016; 2017; Li et al. 2019) have attracted consider-
able attention, which tackle the tracking task by effectively
solving a ridge regression problem in Fourier domain. By
fusing multiple features (Ma et al. 2015; Qi et al. 2016;
Danelljan et al. 2016), adaptive update (Huang and Zhou

2019), and boundary effect suppression (Galoogahi, Fagg,
and Lucey 2017; Li et al. 2018b), the performance of cor-
relation trackers have been greatly improved. The classifica-
tion based methods (Nam and Han 2016; Song et al. 2018;
Zhang, Huang, and Yang 2019) treat the tracking task as
binary classification, which draw plentiful candidates in
each frame and classify the target as well as background
objects. The Siamese network based methods (Bertinetto
et al. 2016b; Tao, Gavves, and Smeulders 2016) approach
tracking task from the perspective of similarity estima-
tion. On the basis of the Siamese framework, the correla-
tion layer (Valmadre et al. 2017) and unsupervised learning
(Wang et al. 2019) have been recently investigated. Since
Siamese trackers are free of the online model update, they
mostly exhibit real-time performance. The recent Siamese
trackers with a region proposal network (Li et al. 2018a;
Zhu et al. 2018) achieve a faster speed by discarding multi-
scale estimation of the object.

Ensemble Tracking. To absorb the strength of different
models, ensemble framework involves multiple weak ex-
perts to complement each other. The MEEM algorithm
(Zhang, Ma, and Sclaroff 2014) exploits the relationship be-
tween the current tracker and its historical snapshots us-
ing entropy minimization. BranchOut method (Han, Sim,
and Adam 2017) maintains multiple diverse fully-connected
layers to better distinguish the target from backgrounds.
The pair-wise relationship is also widely explored in vision
tasks (Choi et al. 2016; Zeng et al. 2019). The multi-cue
correlation tracker (Wang et al. 2018) considers both pair-
wise relationship and self-consistency of multiple experts.
In addition, some ensemble frameworks treat the off-the-
shelf visual trackers as black boxes and analyze their re-
turned bounding boxes to fuse the final results (Wang and
Yeung 2014). However, the aforementioned fusion or selec-
tion strategies are mostly manually designed. By running
multiple models in parallel, the efficiency is inevitably re-
duced. In contrast, as an alternative of the classic ensemble
approaches, the proposed POST method is free of parallelly
executing multiple experts and directly makes decisions by
virtue of the agent trained via reinforcement learning.

RL in Visual Tracking. In recent years, RL has made im-
pressive progress with the power of deep learning, and many
algorithms have emerged in the RL field such as DQN (Mnih
et al. 2015) and DDPG (Lillicrap et al. 2016). In the visual
tracking community, many RL based trackers have been pro-
posed. ADNet (Yun et al. 2017) learns policies to dynami-
cally move and refine the bounding box for fast and accurate
visual tracking. The Actor-Critic Tracker (ACT) (Chen et al.
2018) and DRL-IS approach (Ren et al. 2018) further exploit
the continuous actions to tackle this issue. The EAly Stop
Tracker (EAST) (Huang, Lucey, and Ramanan 2017) adap-
tively chooses cheap low-level or deep features via an agent.
In (Dong et al. 2018), deep RL is used for hyperparameter
optimization within a Siamese tracker. Different from the
above methods, we leverage the RL technique from a dif-
ferent view, i.e., adaptively switch among different experts
in each frame. Our simple yet effective RL based solution
avoids the heuristic design of fusion rules as well as the un-
necessary computational burden during online tracking.
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Figure 2: The proposed switch framework is shown in (a), where the agent dynamically selects one expert to handle the current
frame. The detailed POST tracker is shown in (b), which contains an ensemble of weak experts as well as an agent network.

3 Method
In Figure 2, we show an overview of the proposed policy-
based switch tracker. The proposed POST method contains
an agent and an expert ensemble. The expert ensemble is
further composed of several weak experts/trackers with di-
verse tracking capabilities. In each frame, the agent receives
the input environment and decides the action of choosing
which expert. Note that only one expert is assigned to track
in every frame and therefore the overall computational cost
is independent of the expert number.

In the following, we first introduce the components of our
expert ensemble in Section 3.1. Then, we present our agent
model as well as the training details in Section 3.2.

3.1 Expert Ensemble

Revisiting SiamRPN. The Siamese network (Bertinetto et
al. 2016b) comprises two identical branches to extract fea-
tures from the template and search patches. Then the target
feature representation is convolved with the feature of the
search region to generate a response map. The maximum
value of the response map represents the predicted target
position. This process regards visual tracking as a similar-
ity metric learning problem. The recent SiamRPN method
(Li et al. 2018a) improves the SiamFC tracker (Bertinetto et
al. 2016b) by incorporating an RPN model, which consists
of two branches for classification and regression separately.
It formulates the tracking task as one-shot object detection
since the convolutional weights of classification and regres-
sion branches merely need to be computed once in the initial
frame. During online tracking, the SiamRPN model directly
detects the target in the search region, as shown in Figure 3.
For more details, please refer to (Li et al. 2018a).
Improved SiamRPN. Siamese model utilizes the generated
response map to distinguish the target from distractors. Sim-
ilar objects may disturb the tracker and therefore a cosine
window is applied to the response map to suppress the back-
ground distractors, which is considered as prior motion in-

formation. However, a simple cosine window fails to model
the relationship between foreground and background objects
since it merely penalizes the region far from the previous
target location. In this work, we improve the robustness of
Siamese trackers by incorporating a color-histogram based
model (Possegger, Mauthner, and Bischof 2015). Specifi-
cally, we compute the color histograms of the target object
H(O) and background region H(B). Then, for each pixel
in a candidate patch (e.g., a pixel in k-th bin), we calcu-

late its probability through pk = H
k(O)

Hk(O)+Hk(B)
. The com-

puted value pk ∈ [0, 1] denotes the probability of each pixel
belonging to the target object. This color-histogram based
per-pixel score map can better suppress the distractors as
shown in Figure 4, and we combine it with the cosine win-
dow through the element-wise product to improve the track-
ing robustness.

Ensemble Details. We choose the DaSiamRPN (Zhu et al.
2018) as our base expert since (1) it achieves state-of-the-
art performance on several standard benchmarks and outper-
forms its previous version (i.e., SiamRPN) due to superior
model training strategy; (2) it is free of online model update,
which enables us to safely switch among multiple experts in
successive frames.

Different experts adopt diverse backbone networks or mo-
tion models. In our experiments, we construct 4 diverse ex-
perts: (1) Expert I adopts the standard DaSiamRPN model
with an AlexNet-like backbone model; (2) Expert II is the
improved Expert I with our aforementioned color model;
(3) Expert III adopts a larger backbone network that doubles
the model channel in the original DaSiamRPN; (4) Expert
IV improves III via the proposed color model. In our ex-
periments, we observe that different experts have distinctive
tracking capabilities and their performance is variant in dif-
ferent videos, which means that they can complement each
other to achieve superior accuracy. In the training stage, we
first train the base experts following (Zhu et al. 2018). Then,
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Figure 3: Architecture of the SiamRPN tracker.

Figure 4: Given a search patch (a), previous Siamese track-
ers apply a cosine window (b) to the response map to penal-
ize the surrounding background region. We improve this in-
tuitive method by using an additional color-based per-pixel
map (c). After combining (b) and (c), our method (d) can
better suppress the distractors.

we fix their model parameters and further train the agent net-
work via reinforcement learning.

3.2 Learning Policy via Reinforcement Learning

After constructing the expert ensemble, the key issue lies in
how to assign a suitable expert in each frame. We formulate
this expert switch problem as a Markov Decision Process
(MDP). Formally, in MDP, there are a set of states S, ac-
tions A and a reward function R. In the t-th frame, the agent
analyzes the current state St and takes an action At (i.e., ex-
pert selection in frame t). After taking the action, a scalar
reward will be given reflecting how well the agent performs.
By maximizing the total discounted sum of the future re-
wards, the agent learns the best policy to take actions (Mnih
et al. 2015). In the following, we elaborate the state, action,
reward and the training of our agent.
State. The state of our framework is a tuple (finit, fcur, dhis),
where finit is the feature representation of the search region
in the initial frame, fcur denotes the feature representation of
the current search region, and dhis represents the vector of
the history of taken actions. By involving the initial feature
finit, the agent receives a reference and learns the potential
target and environment changes. This intuitive design shares
partial similarity with the Siamese tracker, which proves to
be effective in visual tracking.

In each frame, the search region image patch is resized
to 107 × 107 and represented by a 512-dim feature vector
via a CNN model with four convolutional layers. The his-
tory action vector dhis is obtained by concatenating the latest
k actions. In our experiments, we maintain 4 experts and let
k = 5, therefore the per-frame action is a 4-dim one-hot vec-
tor and dhis has 20 dimensions. The total state representation
in each frame is 512 + 512 + 20 = 1044 dimensional. As

illustrated in Figure 2, after two fully-connected layers, this
1044-dim vector is mapped to a 4-dim vector, representing
the expected future reward (i.e., Q value in DQN (Mnih et
al. 2015)) of taking 4 different actions.

In our agent, the first four convolutional layers are initial-
ized via the VGG-M network (Chatfield et al. 2014), and
the following fully-connected layers are randomly initial-
ized. Each layer is followed by a ReLU activation.
Action. As discussed above, the action of our agent is choos-
ing an expert from the ensemble, which is represented by a
4-dim one-hot vector.

Given the current action in frame t, our POST method op-
erates the corresponding expert to predict the tracking result.
In frame t+1, we extract the search region based on the pre-
vious target position. Then the agent receives the next state
St+1 and will determine a new action At+1. By this state
transition in successive frames, we achieve an MDP within
the RL framework, as shown in Figure 2.
Reward. The reward function R(St, At) reflects the perfor-
mance influence by conducting the action At based on the
state St. In visual tracking, previous RL based methods typ-
ically compute the overlap between the tracking result and
ground-truth bounding box to give the reward. For instance,
the reward is positive if the overlap score exceeds a cer-
tain threshold (e.g., 0.7), and vice versa (Yun et al. 2017;
Chen et al. 2018). In our framework, since we aim to choose
a suitable expert, we focus on relative performance gain in-
stead of directly comparing with the ground-truth label. To
better evaluate the tracking performance, we propose to si-
multaneously consider overlap precision (OP) and distance
precision (DP), both of which are widely adopted evaluation
metrics in visual tracking.

In the training stage, we operate all the experts. For i-th
expert, we first compute the intersection-over-union (IoU)
between its predicted bounding box Bi and the ground-truth
G as follows:

Oi =
Area(Bi

⋂
G)

Area(Bi

⋃
G)

. (1)

Then we calculate the center location error between Bi and
the ground-truth: Di = ‖center(Bi) − center(G)‖, and fur-
ther normalize it using Eq. 2.

D̃i = exp

(
−

1

2σ2
Di

2

)
, (2)

where σ is the average value of the target width and height.

By normalizing the center location error, D̃i ∈ [0, 1] and can
be combined with the overlap score Oi to comprehensively
evaluate the tracking performance. Overlap metric and dis-
tance metric evaluate the performace from different perspec-
tives. Therefore, unlike previous RL based trackers (Yun et
al. 2017; Chen et al. 2018) merely utilizing OP, we propose
to combine both OP and DP metrics. The final expert score
P is defined as follows:

Pi = Oi · D̃i. (3)

Finally, we find out the highest expert score Pmax among all
the scores {Pi}

4
i=1. Our adaptive expert switch mechanism

aims to improve the performance by choosing a better expert
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in each frame. Therefore, supposing the action at state St is
choosing the k-th expert, then the corresponding reward is
given as follows:

R(St, At) = Pk − Pmax. (4)

The agent will receive a higher reward if its chosen ex-
pert performs better among multiple experts, and the upper
bound of the reward is 0 in case of the currently selected ex-
pert is optimal. Our designed reward function based on the
relative performance gain forces our agent to predict better
policies that bring performance improvement.
Training of Deep Q-Network. Since our action space is
discrete and relatively low-dimensional, we utilize deep Q-
learning (Mnih et al. 2015) to tackle this expert switch prob-
lem. Deep Q-Network (DQN) learns an action-value func-
tion Q(St, At) to select the action At that provides the
highest reward. In training, we could iteratively update the
action-value function by

Q(St, At) = Rt + γ max
At+1

Q(St+1, At+1), (5)

where γ is the discount factor. The function Q(S,A) is
learned via a deep Q-Network (i.e., the agent in Figure 2),
which takes the state as input and returns a 4-dim Q-value
vector. The action with the highest Q-value is regarded as
the current optimal choice.

To iteratively update the Q function in Eq. 5, Deep Q-

learning involves a target action-value function Q̂(St, At)

with parameters θ
′

, which is copied from the Q func-
tion every τ steps. In training stage, given N pairs of
(St, At, Rt, St+1) from the replay memory, the model
Q(S,A) can be learned by minimizing the following loss:

L =
1

N

∑

t

(yt −Q(St, At; θ))
2
, (6)

where yt = Rt + γQ̂(St+1, At+1; θ
′

). In addition, we also
apply the ǫ-greedy strategy to gradually shift the model
training from exploration to exploitation by gradually reduc-
ing the value of ǫ. Algorithm 1 summarizes the training pro-
cess of our agent model.

3.3 Tracking via POST

After offline training, our agent is readily ready for action
prediction. Note that in online tracking, the agent fixes its
pretrained parameters and does not receive any new reward.

The time cost of our agent is about 2.4 ms in each frame.
Compared to the DaSiamRPN model, the computational
cost of our lightweight agent is relatively small and there-
fore the action-making process merely slightly decelerates
the overall speed. Thanks to our expert switch mechanism,
our POST tracker achieves an average speed of multiple ex-
perts (about 105 FPS) and outperforms all of them in track-
ing accuracy.

4 Experiment

In this section, we first introduce the experimental details.
Then, we analyze the effectiveness of our policy-based en-
semble framework. Finally, we compare our method with

Algorithm 1: Training of Deep Q-Network

Input: Training sequences and ground-truth.
Output: Trained weights for the Q network.

1 Initialize replay memory M ;
2 Initialize action-value function Q with weights θ;

3 Initialize target action-value function Q̂ via θ
′

= θ;
4 for episode = 1, 2, ..., n do
5 for t = 1, 2, ..., tmax do
6 if random number δ < ǫ then
7 select a random action At;
8 else
9 select the action At by Q network;

10 end
11 Handle the current frame using all the experts

and compute their expert scores {Pi}
4
i=1;

12 Choose the expert determined by the action and
calculate the corresponding reward Rt;

13 Obtain the next state St+1 ;
14 Store transition (St, At, Rt, St+1) in M;

15 end
16 Sample a mini-batch of transitions

(St, At, Rt, St+1) from M;
17 Update the network using Eq. 6;

18 Update the Q̂ by θ
′

= θ every τ steps;
19 Reduce the ǫ-greedy threshold ǫ;

20 end

state-of-the-art trackers on 5 standard tracking benchmarks
including OTB-2013 (Wu, Lim, and Yang 2013), OTB-2015
(Wu, Lim, and Yang 2015), Temple-Color (Liang, Blasch,
and Ling 2015), UAV123 (Mueller, Smith, and Ghanem
2016), and LaSOT (Fan et al. 2019).

4.1 Experimental Details

For the experiments on the OTB-2013, OTB-2015, Temple-
Color, and UAV123, we use the videos from VOT-2013,
VOT-2014, and VOT-2015 (Kristan et al. 2016) to train the
agent and the overlapped videos are excluded. On the La-
SOT dataset, we utilize its provided training videos to train
the agent. We randomly choose continuous 20 to 40 frames
in a video for each episode, and our agent is trained for
2 × 105 episodes using Adam optimizer. The size of the re-
play buffer M is set to 10000. The learning rate is 0.0001,
discount factor γ = 0.9 and batch size is 128. As for the ǫ-
greedy, we initially set ǫ = 1 and reduce it by 5% every 2000
episodes and fix it after it is reduced to 0.1. The experimental
environment is PyTorch on a computer with 4.00GHz Intel
Core I7-4790K and NVIDIA GTX 1080Ti GPU.

In all experiments, we use one-pass evaluation (OPE) with
distance and overlap precision metrics (Wu, Lim, and Yang
2013). The distance precision threshold is 20 pixels. The
overlap success plot uses thresholds ranging from 0 to 1,
and the area-under-curve (AUC) score is computed to eval-
uate the overall performance.
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Metric I II III IV POST (Ours)

OTB-2013
DP 85.9 89.1 88.4 89.0 90.7 (1.6∼4.8% ↑)

AUC 65.3 66.0 65.9 66.4 67.8 (1.4∼2.5% ↑)

OTB-2015
DP 86.2 86.8 85.8 87.6 88.4 (0.8∼2.6% ↑)

AUC 65.2 65.4 64.9 66.1 67.2 (1.1∼2.3% ↑)

TC128
DP 74.6 76.4 73.4 75.1 78.1 (1.7∼4.7% ↑)

AUC 54.1 55.5 53.1 54.4 56.3 (0.8∼3.2% ↑)

UAV123
DP 77.2 77.8 77.3 78.4 80.0 (1.6∼2.8% ↑)

AUC 59.3 59.4 61.2 61.5 62.9 (1.4∼3.6% ↑)

LaSOT
DP 41.0 41.9 44.8 45.1 46.3 (1.2∼5.3% ↑)

AUC 43.2 44.0 46.8 47.2 48.1 (0.9∼4.9% ↑)

Speed FPS 160 145 94 82 105

Table 1: Comparison with our baselines (i.e., Expert I, II, III,
and IV) on five challenging datasets. The evaluation metrics
include distance precision at 20 pixels (DP score) and area-
under-curve of the success plots (AUC score).
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Figure 5: Expert running percentage (left) and the assgined
expert per frame (right) in the Girl2 video.

4.2 Framework Effectiveness Study

Effectiveness of Color-based Model. As discussed in Sec-
tion 3.1, we improve the Expert I and III using a color-based
model. As shown in Table 1, Expert II outperforms I and
Expert IV outperforms III, which illustrates the effective-
ness of our method. The color model is robust at handling
deformable targets (Bertinetto et al. 2016a) and can com-
plement the template matching based Siamese model. It is
worth mentioning that weak experts (e.g., Expert I) still play
an important role since the model diversity is crucial for our
switch framework.

Comparison with Base Experts. In Table 1, we compare
the performance of our POST tracker with its individual ex-
perts. From the results, we can see that our final algorithm
consistently outperforms its individual experts, ranging from
1.2%∼5.3% in DP metric and 0.8%∼4.9% in AUC metric
on different benchmarks. In Figure 5, we visualize the ex-
pert per-frame switch in a video, where different experts are
triggered in different scenes (or a short span of time).

As for the tracking speed, Expert I with a lightweight
model exhibits the highest speed while its tracking perfor-
mance is relatively unsatisfied. In contrast, Expert IV with
a big backbone network and our color model achieves high
accuracy while the tracking speed is the lowest. Our POST
tracker significantly outperforms Expert I and II in track-
ing accuracy (about 3% in all datasets). Compared with the
strong Expert III and IV, our POST tracker is still superior
to them in both performance and efficiency. Overall, by dy-
namically switching different experts, our ensemble tracker
achieves superior accuracy and a balanced speed.

Comparison with Other Fusion Strategies. We further
compare our policy-based fusion method with manually de-

OTB-2013 OTB-2015 TC-128 UAV123 LaSOT FPS

Best IV IV II IV IV
Baseline 66.4 66.1 55.5 61.5 47.2

Average 67.1 66.8 55.2 61.9 46.5 32
Max 66.6 66.4 55.6 61.5 47.0 32
Random 66.1 65.6 55.2 61.7 46.1 128

POST 67.8 67.2 56.3 62.9 48.1 105

Table 2: Comparison with manually designed fusion strate-
gies. The evaluation metric is AUC score. Our framework
achieves superior accuarcy while ensuring high efficiency.

signed strategies. In Table 2, the “Average” denotes the mean
value of the bounding boxes of four experts. The “Max” rep-
resents choosing the expert with the highest classification
score in each frame, which is widely adopted in ensemble
based trackers. The “Random” denotes randomly choosing
one expert in each frame. From the results in Table 2, we
can observe that our POST method exhibits the best per-
formance on all five datasets. Note that the “Average” and
“Max” strategies need to run all the experts, and therefore
the tracking speed is significantly reduced (only 32 FPS).
In contrast, our method achieves a superior selection policy
with promising tracking efficiency (105 FPS).

4.3 Comparison with State-of-the-art Methods

In this section, we compare with state-of-the-art real-time
trackers including KCF (Henriques et al. 2015), SiamFC
(Bertinetto et al. 2016b), CFNet (Valmadre et al. 2017),
SCT (Choi et al. 2016), CSR-DCF (Lukezic et al. 2017),
Staple (Bertinetto et al. 2016a), ECOhc (Danelljan et al.
2017), ACT (Chen et al. 2018), ACFN (Choi et al. 2017),
RT-MDNet (Jung et al. 2018), and DaSiamRPN (Zhu et al.
2018). In addition, we also compare with remarkable non-
real-time trackers including HCF (Ma et al. 2015), ADNet
(Yun et al. 2017), MDNet (Nam and Han 2016), C-COT
(Danelljan et al. 2016), ECO (Danelljan et al. 2017), and
VITAL (Song et al. 2018).
OTB-2013 and OTB-2015. OTB-2013 and OTB-2015 are
widely used benchmarks in visual tracking with 50 and 100
videos, respectively. From Table 3, we can observe that our
POST tracker achieves state-of-the-art performance on these
two datasets. In Figure 6, we compare our POST tracker with
some real-time trackers using precision and success plots.
As illustrated in Figure 6, the proposed POST tracker obvi-
ously outperforms the recent real-time trackers.

The high performance of our POST method can be at-
tributed to its strong baseline (i.e., DaSiamRPN) to some
extent. However, compared with DaSiamRPN, our POST
tracker still obviously outperforms it since (1) we improve
the original SiamRPN method using a simple yet effective
color-based model; (2) we further construct an ensemble of
diverse SiamRPN models and dynamically switch among
them using a pretrained agent.
Temple-Color. Temple-Color is a tracking dataset contain-
ing 128 color videos. On this benchmark, we also compare
with the recent real-time and non-realtime trackers in Table
3. The proposed method achieves competitive performance
among non-realtime trackers and outstanding performance
among real-time trackers (Figure 7).
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Metric KCF SiamFC Staple ECOhc RT-MDNet DaSiamRPN HCF ADNet MDNet C-COT ECO VITAL POST

OTB-2013
DP 74.0 80.9 79.3 87.4 - 85.9 89.0 90.3 94.8 89.9 93.0 95.0 90.7

AUC 51.4 60.7 59.5 65.2 - 65.3 60.5 65.9 70.8 67.2 70.9 71.0 67.8

OTB-2015
DP 69.6 77.1 76.4 85.6 88.5 86.2 84.2 88.0 90.9 89.8 91.0 91.7 88.4

AUC 48.5 58.2 58.1 64.3 65.0 65.2 56.6 64.6 67.7 67.1 69.1 68.2 67.2

TC-128
DP 54.9 68.8 67.1 75.1 78.8 74.6 - - - 78.1 79.8 - 78.1

AUC 38.7 50.3 50.7 55.8 56.3 54.1 - - - 57.4 59.7 - 56.3

UAV123
DP 52.3 61.3 - 72.5 77.2 77.2 - - - - 74.1 - 80.0

AUC 33.1 39.9 - 50.6 52.8 59.3 - - - 51.7 52.5 - 62.9

LaSOT
DP 16.6 33.9 23.9 27.9 - 41.0 28.6 - 37.3 - 30.1 36.0 46.3

AUC 17.8 33.6 24.3 30.4 - 43.2 25.0 - 39.7 - 32.4 39.0 48.1

Speed FPS 270 83 70 50 46 160 12 3 1 0.3 6 1 105

Table 3: Comparison with state-of-the-art real-time (left) and non-realtime (right) trackers on five benchmarks including OTB-
2013, OTB2015, Temple-Color, UAV123, and LaSOT. The evaluation metrics are distance precision at 20 pixels (DP score)
and area-under-curve of the success plots (AUC score).
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Figure 6: Precision and success plots on the OTB-2015
dataset for recent real-time trackers.
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Figure 7: Precision and success plots on the Temple-Color
dataset for recent real-time trackers.

UAV123. In Table 3, we list the available results of some
methods on the UAV123 dataset. Our POST tracker exhibits
promising potential for low-altitude UAV tracking. For ex-
ample, our approach significantly outperforms ECO by 5.9%
DP score and 10.4% AUC score, respectively.

LaSOT. LaSOT is the recently released large-scale tracking
dataset, which contains 1400 videos and the average video
length is more than 2500 frames. As a consequence, LaSOT
is much more challenging. In Figure 8, we compare the pro-
posed POST tracker with top-ranked methods evaluated on
the LaSOT using precision and success plots. As shown in
Figure 8, on the testing set, our method surpasses other state-
of-the-art trackers by a large margin. For example, the pro-
posed POST tracker outperforms the best tracker in LaSOT
(i.e., MDNet) by 9.0% DP score and 8.4% AUC score. Com-
pared to our baseline DaSiamRPN, our method still outper-
forms it by 5.3% DP score and 5.1% AUC score as shown in
Table 3.
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Figure 8: Evaluation on the LaSOT testing set using the pre-
cision and success plots. Only top 20 trackers are shown in
the figure. Best viewed in color and zoom in.

5 Conclusion

In this paper, we propose a simple yet effective policy-based
switch tracker, which contains an agent as well as an en-
semble of Siamese models. In each frame, the agent assigns
only one expert to track the target, making the computational
complexity of our switch framework be O(1) in terms of
expert number. In addition, the making decision capability
of our agent is offline learned following the RL rule, avoid-
ing manually designing heuristic fusion strategies. Extensive
experiments on five challenging benchmarks show that our
POST tracker achieves state-of-the-art performance as well
as satisfactory efficiency.
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