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ABSTRACT Solar power forecasting with a day-ahead horizon has played an important role in the

operational planning of generating units in power system operations. We aim to develop a solar power

forecasting model suitable for a tropical climate, using Thailand as a model, and hence present a linear

recursive regression model as a post-processing step for reducing the errors obtained from the Weather

Research and Forecasting (WRF) model. This model consists of submodels, each of which predicts the

solar irradiance of a particular time of the day. By using a stepwise regression method, we found that WRF

forecasts of irradiance, temperature, relative humidity and the solar zenith angle were selected as highly

relevant inputs of the model. The regression model coefficients are updated according to a Kalman filtering

(KF) scheme so that the model can flexibly adapt to fluctuations in the solar irradiance. We then modify the

KF update formula to accommodate the limitation in measurement availability at the time of executing the

forecasts. The proposed KF formula can be generalized to find the optimal prediction given that the available

measurements are mapped by an affine transformation. The obtained results using actual data from a solar

rooftop system located in the central region of Thailand showed that the normalized root-mean-square error

(NRMSE) of the solar power was about 12-13% and this was decreased from the NRMSE of the WRF

model by 7-12% on average. This improvement was the best out of similar post-processing steps based on

the model output statistics framework.

INDEX TERMS Solar irradiance forecasting, Numerical weather prediction, WRF, Kalman filter, model

output statistics

I. INTRODUCTION

R
ECENT renewable energy research has focused on the

techniques of solar power forecasting to enhance the

power system reliability performance through a smart-grid

energy management system. Forecasting specifications can

vary upon different temporal horizons, which are related to

and are important for the different power system operations

[1], [2]. Our primary focus is on the one-day-ahead horizon

because of its usage for planning and unit commitment, as

one of the current goals of the Electricity Generating Au-

thority of Thailand (EGAT). The review [1] has described all

the essential elements of forecasting methods and common

techniques, including statistical methods, machine learning,

numerical weather prediction (NWP), and hybrid methods

[1], [3], [4]. In addition, recent review [2] also provided

an economic assessment and specified common techniques

with required inputs for each forecasting temporal horizon.

Several studies have concluded that NWP forecasts are more

beneficial and more accurate than using cloud information

from satellites for longer time horizons (15–240 h in ad-

vance) [1], [2], [5], [6]. For this reason, the widely-used

methods for day-ahead forecasting have mainly included a
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combination of NWP (as the main model) with statistical

methods or machine learning.

The NWP models solve partial differential equations that

explain the model dynamics of Earth’s atmosphere and pre-

dict involved weather variables. The models can be divided

into two categories. The first are global models which run

on a global domain such as GFS (Global Forecast Sys-

tem), while the second is a regional model that forecasts

only a spatial subdomain [1]. Recent regional models have

been developed by different countries, one of which is the

Weather Research and Forecasting (WRF) model, available

in public domain [7]. Its specific configuration and design

for solar energy forecasting was upgraded to WRF-Solar by

including representation of aerosol-cloud-radiation systems

and implementing more efficient numerical approaches [8],

[9]. For solar power forecasting purposes, NWP models can

be used to predict the solar irradiance (I) from one hour up to

several days ahead with accuracy that varies upon the NWP

schemes, grid sizes, and horizons. Various NWP models with

multi-day horizons were previously evaluated on locations

in the U.S. [10], where, in particular, the root-mean-square

error (RMSE) of next-day irradiance prediction from the

WRF model ranged from 107–173 W/m2, depending on the

climate conditions (arid or humid continental). In southern

Spain [11], WRF models predicted 1- to 2-day ahead with

the RMSE around 101-188 W/m2. The NWP models by

SolarAnywhere combine forecasts of the sky-cover fraction

and yielded yearly RMSE of I in the range of 139–189

W/m2 [12]. A study of NWP models revealed that they

generally bring large positive biases, which could exceed

200 W/m2 under cloudy conditions in the U.S. [13]. Also,

as evidently seen in Singapore, which has the same tropical

climate as Thailand, WRF models overestimate I with an

RMSE in the range of 240-258 W/m2 [14].

The large NWP prediction bias can be reduced by applying

a forecast enhancement scheme, or a hybrid method that

combines two or more existing models to add up the advan-

tages from several schemes, whose final prediction outputs

can be I (in-direct approach) or solar power (P ; direct

approach). When the NWP and another model are employed

in the cascade sense, the other model is viewed as a post-

processing step to improve the NWP forecasts and was found

to be a linear model [15], [16], multi-linear adaptive regres-

sion splines (MARS) [17], or nonlinear models such as artifi-

cial neural network (ANN)/recurrent neural network (RNN)

[18]–[23], fuzzy [21], genetic algorithm [24], or support

vector machine (SVM) [15], [24]; all of which were shown

to significantly reduce the bias from a baseline. Among

these works, the reported RMSE of I in the Rome region

amounted to 145-149 W/m2 [18] or in the range of 96–105

W/m2 [19]. As a comparative study, NWP outputs were used

as predictors for several statistical models including linear

regression, generalized additive model, binary trees, random

forest, and SVM [15]. The best model of predicting solar

power was the random forest that had at least a one-third

lower error than that of the baselines.

Integrating a model with NWP can also be employed as a

bias correction scheme. For this, let ŷnwp be an NWP predic-

tion of y with a residual error e, expressed by y = ŷnwp + e.

A new residual can be better corrected via ê1 = Ge, where G
is a model designed for characterizing the unexplained solar

dynamics that remains in e. The final prediction is then given

by ŷ = ŷnwp + ê1. Previous studies have applied the bias

correction approach using G as a linear model [25] with the

solar zenith angle and the clear sky index as predictors, or G
can be nonlinear such as ANN or wavelets [26], [27].

These post-processing steps for improving NWP forecasts

are also known as model output statistics (MOS), as initially

proposed in the context of weather predictions [28] as a linear

regression. As an extension, the regression coefficients can

also be recursively estimated to fit best with recent mea-

surement. This scheme was previously implemented using

Kalman filtering (KF) to remove the bias, which obeys a

linear equation explained by various predictors such as the

Global Environmental Multiscale (GEM) model’s forecasts

[29] or the set of WRF forecasts and solar zenith angle [30].

The KF scheme, denoted as MOS+KF, reduced the RMSE of

I from NWP by around 38-40% in Reunion Island [30] and

by around 11-23% in Canada [29]. In [31], [32], a dynamic

MOS was applied to several NWP models whose coefficient

weights were adjusted to deliver an integrated NWP forecast;

this blended output was further used with the observed data

to perform a forward error correction. The whole process

constitutes the DICast methodology as the main day-ahead

irradiance forecasting in the operational Kuwait Renewable

Energy Prediction System.

Previously mentioned post-processing methods were de-

terministic frameworks that provided point forecasts, but

improving NWP can also be performed with probabilistic

frameworks that also bring more information about distri-

bution or uncertainty of forecast values. A few examples of

techniques in probabilistic forecasting were quantile gradient

boosting [33] and analog ensemble (AnEn) [34], [35]; the

AnEn used DICast forecast results as the input to forecast

solar power in [31], [32].

Although the aforementioned studies presented several

techniques of day-ahead forecasting applied to various cli-

mate conditions, further research is still required to explore

suitable frameworks for other locations, including Thailand.

The first goal of this study was to identify the important

weather variables to solar irradiance using a statistical frame-

work and compare this with the literature. The second goal

was to develop a forecasting model that provide point fore-

casts and can be conveniently incorporated into a unit com-

mitment program run by the Short-term Operation Planning

Section (SOPS) under the Generation Operation Planning

Department of EGAT. In this case, the unit commitment

program requires daily predictions of the next-day P during

7:00–16:00 h, to be readily available by 13:00 h of the current

date. To the best of our knowledge, the previous studies

did not take this practical constraint into account and some

complications are introduced due to limited resources of
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local measurements at the time of forecasting. This paper’s

contribution is to present forecasting models by engaging

practical implementation concerns in the modeling process.

The proposed model consists of 10 MOS+KF submodels,

each of which forecasts I of each hour during the day. The

inputs of all submodels are selected by partial correlation,

stepwise regression, and subset regression analyses. In the

forecasting procedure, the model requires the measured data

to update the model parameter in a daily manner. As an

operational constraint, the predicted P of the next day must

be released by 13.00 h, while the ground measurement or any

model inputs obtained after 13:00 h are still not available.

We then modify the equations of the KF for updating the

parameters in the minimum-mean-square sense using only

the existing data. The best forecast I is the conditional mean

of the next-day I given the information up to present. After

the day-head forecasts of I are obtained, we apply a linear

photovoltaic (PV) conversion model to estimate the P using

the forecasted I .

The proposed forecasting scheme is presented in Sec-

tion III, while the background on the MOS+KF is presented

in Appendix A and our analytical results on the modified KF

are in Appendix B. The experimental results evaluated on

data collected from lab-scale solar stations are illustrated in

Section IV.

II. FORECASTING SPECIFICATIONS

A. PROBLEM STATEMENT

This work aims to predict the PV power (P ) one day in

advance to help improve the generation scheduling perfor-

mance of the SOPS in anticipation of a high penetration of

PV generation. The SOPS usually starts to plan the gener-

ation for the next day after 13:00 h. Suppose d is a day

index and t is an hour index during the day. Then tf was

denoted as the forecasting time (the time that forecasts must

be released), specified by users, and is 13:00 h in this study.

Our forecasting model must provide hourly forecasted P of

day d+1 between 7:00 to 16:00 by tf of day d. The available

inputs for the proposed model are the (i) meteorological

forecasts from NWP (I , temperature (T), relative humidity

(RH)), (ii) ground measurements from weather stations ac-

quired up to time tf (I ,T,RH,wind speed (WS)) and (iii)

other deterministic variables such as the solar zenith angle

(cos θ) or clear-sky irradiance (Iclr). Based on the existing

computation resources and a pre-analysis of our NWP im-

plementation in Section II-B, a scheme of improving NWP

forecasts of I using the available inputs must be executed

during 3:00 to 13:00 h of day d.

B. THE WRF DATA

Next-day weather forecasts are influential inputs for a day-

ahead forecasting model as I highly depends on meteorolog-

ical variables, whose forecasts are commonly obtained from

an NWP model [1], [2]. The NWP model used in this study

was the WRF model, developed and maintained as a commu-

nity model by the National Center for Atmospheric Research

FIGURE 1: The two domains of WRF with grid spacing of

9×9 km2 and 3×3 km2. The two solar sites are located at the

center of the second domain with the latitude and longitude

of (13.737 N,100.532 E).

TABLE 1: Physics options set in the WRF model [36, §5].

Physics options Schemes

Micro physics options WRF Single–moment six–class Scheme
Planetary boundary layer
physics options

Mellor–Yamada Nakanishi Niino
(MYNN) Level 2.5 Scheme

Cumulus parameterization
options

Grell 3D scheme

Shortwave and longwave
options

RRTMG shortwave and longwave
schemes [37]

Land surface options Unified Noah land surface model
Surface layer options Revised MM5 scheme

[7]. The WRF model requires initial and lateral boundary

conditions which can be obtained from global or regional

models with a domain that emcompasses the WRF domain.

In this work, we used the GFS (global model) provided by

the National Oceanic and Atmospheric Administration. The

WRF outputs used in this study were the predicted T,RH and

I (global horizontal irradiance or GHI, namely SWDOWN

from WRF output). Fig. 1 shows the first spatial domain set

in WRF with a grid spacing of 9 × 9 km2 that covered the

western, central and eastern regions of Thailand, while the

second domain (3×3 km2) focused on central Thailand. The

temporal resolution of one-day-ahead WRF forecasts was

one hour. The Weather Forecast Bureau of the Thai Mete-

orological Department (TMD) suggested the WRF physics

parameterizations in Table 1 which generally worked well

for weather forecasting in Thailand (private communication,

Aug 2017).

Time constraint. From Fig. 2a, the GFS model was run

daily at 0:00, 6:00, 12.00, and 18.00 h Universal Time

Coordinated (UTC), or at 7:00, 13:00, 19:00, and 1:00 h

Thailand Standard Time (TST) and marked in blue dots.

The GFS model takes 4 h to run the entire forecast, so the

input data for the WRF were available to download at 11:00,

17:00, 23:00, 5:00 h TST (shown in green dots). Our PC

(CPU: Intel®Xeon®Processor E5-2620 v4 2.10GHz 8 Cores
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FIGURE 2: Time schedule of input data in the WRF model.

16 threads 20 MB SmartCache 8 GT/s QPI, DDR4-2400

RAM 32 GB) takes 2 h to compute the one-day-ahead WRF.

Therefore, the WRF predictions are available at times marked

as red dots in Fig. 2a. It was not possible to obtain the WRF

predictions of day d + 1 by 13:00 h on day d (forecasting

time) unless the WRF model was run two days in advance.

As such, the WRF model was set to provide two-day-ahead

predictions twice, each computation taking 4 h , on day d−1,

using the GFS inputs of 00:00 h UTC and 12:00 h UTC.

The latter time was selected because the resulting forecast

of irradiance had a lower error. Our WRF implementation

concluded in Fig. 2b indicated the operational specification

that the post-processing scheme for improving WRF fore-

casts must take place during 3:00-13:00 h (TST).

C. MEASUREMENT DATA

The solar measurement data were collected from two

rooftop-solar stations (8 kW and 15 kW) and meteorologi-

cal sensors installed at the Electrical Engineering Building,

Chulalongkorn University, Thailand. We used I from the

pyranometer and P from the energy meter. Typical prepro-

cessing steps were required to assure the data quality con-

trol, including duplicate recordings, missing values, out-of-

range values, outliers, and non-updated values. All erroneous

records were imputed differently depending on the record

length. We applied a linear interpolation to short consecutive

records (less than 1h), while for long records (more than 1h),

we implemented a moving average with a window covering

the previous and the next 10 days of imputed values.

In conclusion, we used measurements of I and P that

were downsampled using moving average to hourly format,

and used forecasts of I,T,RH from the WRF. All data were

collected hourly from 7:00–16:00 h (TST) during January 1,

2017 to December 31, 2018. Data during 17:00-18:00 h were

excluded due to a shading effect on the building rooftop. The

training data set were selected during January 1, 2017 to June

30, 2018 and the test data were from July 1 to December 31,

2018. The ratio of training to test datasets was 3:1.

III. PROPOSED METHOD

Based on previous reviews in [1], [2], [4], [38], there are three

main aspects as options to be considered. Firstly, indirect so-

lar power forecasting was performed, where I was predicted

and then using a PV power conversion model, the predicted

power was obtained. A benefit of the indirect over direct

forecasting is that we could characterize forecasting errors

from the irradiance forecasting model and power conversion

model separately since both measurements of I and P can

contain outliers or missing values to different degrees. An-

other reason is that a good irradiance forecasting model can

be readily applied to other solar farm areas, while the process

of training PV power conversion models to a specific location

does not require much computational effort. Secondly, from

the literature of improving NWP forecasts [13], [16], [25],
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[29], [30], the common input choices of correcting NWP

forecasts are IwrfTwrf ,RHwrf , wind speed (WSwrf), and

deterministic inputs including the clear sky index (kwrf ),

solar zenith angle (cos θ), and clear-sky irradiance (Iclr).
While it is commonly known that these weather variables are

correlated with I , a feature selection should be systematically

performed on the data sets in this region in order to regard

only significant inputs. Thirdly, spatial averaging has become

a common post-processing step of NWP forecasts to reduce

the errors [13], [29], [39]. From these points of view, we

design the whole scheme of solar power forecasting in Fig. 3,

where the key result of our paper is the solar irradiance fore-

casting module as a post-processing step from WRF forecasts

using the proposed modified KF scheme to accommodate the

operational constraints.

Local weather 

measurements 

WRF outputs

Data-preprocessing Variable selection

Solar irradiance

forecasting
PV power conversion

Deterministic variables

FIGURE 3: Proposed scheme of one-day-ahead PV power

forecasting.

A. SPATIAL AVERAGING

It is known that spatial averaging can reduce NWP forecast

errors. In [25], the RMSE was reduced by half when using a

spatial area of 3◦ × 3◦ in the averaging. Our WRF forecasts

were computed at a grid spacing of 3 × 3 km2. This study

applied a spatial averaging of WRF forecasts, given by

Îspatial(t) = (1/mn)
m∑

i=1

n∑

j=1

Înwp(pi, qj)(t), (1)

where Îwrf(pi, qj) is the predicted I from the WRF model

at latitude and longitude coordinates of (pi, qj), and t is the

time index. We consider using (m,n) = (3, 3), (5, 5), (7, 7)
in averaging, which correspond to spatial areas of 6×6, 12×
12, and 18× 18 km2, respectively.

B. VARIABLE SELECTION

We followed the previously reported scheme of variable

selection that used partial correlation, stepwise regression,

and subset regression [40]. The variables used to per-

form a significance test on the regression coefficients were

Îwrf , R̂Hwrf , T̂wrf , Iclr, cos θ, and k̂wrf (clear-sky index).

Note that we calculated Iclr from the Ineichen clear sky

model [1] with an estimated Linke turbidity value of 4.8597
for Thailand, using the least-squares (LS) method.

The results in Table 2 were performed on the training data

and suggested that Iwrf ,RHwrf ,Twrf , and cos θ were mostly

TABLE 2: Selected weather variables from various methods

using the data collected from January 1, 2017 to June 30,

2018.

Method
Predictor variables

Îwrf R̂Hwrf T̂wrf Iclr cos θ k̂wrf

Partial correlation • • •

Forward stepwise • • • • •

Backward stepwise • • • • •

Subset regression

AIC • • • •

BIC • • • •

selected by all the methods and subsequently used as the

predictors of the proposed MOS model, given by

Îmos(t) = β1Îwrf(t) + β2R̂Hwrf(t)

+ β3T̂wrf(t) + β4 cos θ(t). (2)

Note that the clear-sky index, k̂wrf = Îwrf/Iclr was not

selected by any variable selection method due to its depen-

dence on Îwrf and Iclr. The significance test of regression

coefficients in (2) was performed at a significance level of

α = 0.05 and the results are shown in Table 3, where all

of the selected variables were significant in the regression

model (2).

TABLE 3: Regression coefficients, standard error, and p-

values of the coefficients of the proposed MOS model.

Variables Unit Coeff. SE p-value

Îwrf(t) W/m2 0.522 0.020 1.545× 10−137

R̂Hwrf(t) % 0.183 0.190 2.279× 10−9

T̂wrf(t) °C -4.280 0.536 1.613× 10−15

cos θ(t) - 267.84 19.901 1.214× 10−40

C. SOLAR IRRADIANCE FORECASTING MODEL

Empirical distributions of the residual errors of spatially

averaged WRF irradiance forecasts are shown in Fig. 4.

Overall, the WRF model tended to overestimate (shown

as significant positive biases during 10:00-16:00 h), which

agrees with previous findings [13]. Relatively high degrees of

error variations were observed during 11:00 to 14:00 h, while

the error was generally smaller in the early morning. These

results suggest that an adaptive forecasting model should be

designed and customized to different bias characteristics for

each hour.

The proposed forecasting model for I was based on the re-

gression model: Î(t) = β1x1(t)+β2x2(t)+ · · ·+βpxp(t) =
xTβ, where x = (x1, . . . , xp) are predictors (the important

variables to solar irradiance) and β is the parameter estimated

by the least-squares (LS) method. The post-processing step

applied the KF to estimate β in an online-manner to compen-

sate for the estimation error when up-to-date measurements

of I arrive. This is referred to as MOS in the literature of

meteorological forecasting and recursive least-squares (RLS)

in estimation. This approach starts with assuming that β ,

regarded as a state variable, obeys a random walk equation,

VOLUME 4, 2016 5
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FIGURE 4: Histogram of residual errors of the predicted solar irradiance from the WRF model, collected at various hours of

the day. The red lines are the mean of error.

where I(t) is the output of a state-space system. A detailed

background is given in Appendix A.

Splitting the data 

by hours

Combine the forecasts 

of all hours

PV conversion

WRF

forecasts
Deterministic

Variables

Submodel     

+

-KF Update 

of parameters

Submodel 1 Submodel 2 Submodel   each submodel

runs KF updates

FIGURE 5: The daily-step irradiance forecasting model.

As empirical distributions of WRF are biased depending

upon the time (Fig. 4), our main forecasting model was

proposed to consist of h submodels, each forecasting I
of a specific hour (i.e., submodels 1,2,. . . , h predicts I at

7:00, 8:00,. . . , 16:00 h, respectively, where h = 10) and

the scheme is presented in Fig. 5. From this setting, β(t)
refers to the regression coefficient of a submodel of hour

t, for t ∈ {t1, t2, . . . , th} = {7:00,8:00,. . . ,16:00 h}. The

forecasting scheme at tf starts with collecting model inputs

(WRF forecasts and solar zenith angle of the next day) and

then splits these inputs into different hours. Each submodel t
takes the corresponding inputs to produce the next-day Î of

time t in parallel. Consequently, the irradiance forecasts of all

hours are merged and converted to the predicted power. Each

submodel also runs KF to update its parameters by taking the

bias as the correction input.

In Appendix A, we mentioned that the KF update can

be run either in hourly or daily steps. As we aimed for

a day-ahead forecasting and each hour-specific submodel

has its own parameter, our assumption in applying KF was

that β(t) should evolve daily, i.e., the parameter of today

should be adjusted from yesterday’s value when the new

measurement is observed. Hence, the model is proposed as

a daily-step model and consists of the state-space equations:

for t = t1, . . . , th as shown in (3)-(4):

β(d+1)(t) = β(d)(t) + w(d)(t), (3)

I(d)(t) = C(d)(t)β(d)(t) + v(d)(t), (4)

where the output matrix, defined from the MOS model (2) is

C(d)(t) =
[
Î
(d)
wrf(t) R̂H

(d)

wrf(t) T̂
(d)
wrf(t) cos θ(t)(d)

]
.

(5)

Our notation of z(d)(t) is the variable of day d at hour

t ∈ {t1, . . . , th}, so the system (3) and (4) progresses

as d = 0, 1, . . . , for each fixed hour. In the context of

a stochastic state-space system, w and v are the state and

measurement noises whose covariance matrices are required

when applying the KF.

As mentioned previously, we proposed a modified KF

scheme to update the parameters before tf=13:00 h when

some measurements of I are not available. It is more

compactly unified to explain this idea by combining all

h submodel equations as a single vector equation. If we
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(a) At time tf of day d, we update the model parameters of 7:00-
13:00 h (blue lines) using available measurements. The parameters
of 14:00-16:00 h (red lines) were updated on day d − 1 and held
to day d. Parameters of all submodels are used for the prediction of
day d+ 1.
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(b) At time th of day d, measurements of 14:00-16:00 h are avail-
able; hence, the measurements of all hours are complete, denoted by
the green lines. All submodels’ parameters can be updated using the
conventional KF routine and will be used for the next day at time
tf . No forecasts are released at th of day d.

FIGURE 6: Updating time of the parameters in Kalman filter.

define z(d+1) = (β(d+1)(t1), . . . , β
(d+1)(th)) and y(d) =

(I(d)(t1), . . . , I
(d)(th)) then all h models in (3) and (4) can

be grouped in a single state-space system as

z(d+1) = Az(d) + w(d), y(d) = C(d)z(d) + v(d), (6)

where z(d) ∈ Rph, y(d) ∈ Rh, A = Iph (identity

matrix of size ph) and C(d) is block-diagonal, given by

diag(C(d)(t1), C
(d)(t2), . . . , C

(d)(th)). In a KF context, de-

note ẑ(d+1|d) as the state estimate of day d+1 using the past

information up to day d, K(d) is the Kalman gain of day d,

and P (d+1|d) = E[(z(d+1) − ẑ(d+1|d))(z(d+1) − ẑ(d+1|d))T ]
is the corresponding covariance of the state estimation error.

Moreover, W and V are covariances of w(d) and v(d), re-

spectively. In a conventional KF [41], when A is identity and

C(d),W, V, P (0|0) are block diagonal, then K(d), P (d|d), and

P (d|d−1) are also block diagonal matrices. Therefore, ẑ(d|d)

and ẑ(d+1|d) can be updated in parallel for each t. The details

of the initial parameters and noise covariances are given in

Appendix C.

Modification of KF. From the forecasting specification in

Section II, the predicted P of the next day must be provided

by tf = 13.00 h of each day, so the measurements during

13:00-16:00 h are not available. KF scheme can only use the

available chunk of measurements, cast as Fy(d) where F =[
Ir 0r×(h−r)

]
and r is the number of hours between t1 and

tf . To deal with this practical constraint, we applied the result

of Proposition 1 in Appendix B, which explains how the

optimal estimator in the KF scheme should be modified when

the measurement is transformed by a general matrix F . The

modified KF iteration at tf is as follows.

Measurement update at tf :

K(d) = P (d|d−1)(C(d))TFT

×
[
FC(d)P (d|d−1)(C(d))TFT + FV FT

]−1

,

ẑ(d|d) = ẑ(d|d−1) +K(d)(Fy(d) − FC(d)x̂(d|d−1)),

P (d|d) = (I −K(d)FC(d))P (d|d−1).

If A = I , P (d|d−1) is initialized by a diagonal matrix, and

C(d) is block diagonal, then we can show that the last h −
r rows of K(d) are zero, which implies that the coefficients

β(d)(t) associated with t > tf are not updated.

Time update at tf :

ẑ(d+1|d) = Aẑ(d|d), P (d+1|d) = AP (d|d)AT +W.

The output of the KF scheme is the next-day forecasted

I , given by Î(d+1) = ŷ(d+1) = C(d+1)ẑ(d+1|d)(t) for

t ∈ {t1, t2, . . . , th} where C(d+1) contains the WRF pre-

dictions of day d+1 as stated in (5). For details, the KF state

estimates of t ∈ {t1, t2, . . . , tf} are updated and are used to

predict I as blue lines in Fig. 6a. The KF state estimates of

t ∈ {tf +1, tf +2, . . . , th} are not updated and are held from

the value of day d− 1 at time th as the red line in Fig. 6a. At

time th of day d, the local measurements can all be collected

as the green line in Fig. 6b. We then updated the KF again

using the regular procedure. All submodels’ parameters are

updated but no forecasts are delivered out at this stage.

D. PV POWER CONVERSION MODEL

From a review of PV cells in [42, §3.5], the solar power

can be estimated instantly from the solar irradiance and cell

temperature, guiding us to use a static conversion model

expressed by P (t) = β1I(t) + β2T(t) + β3I(t) · T(t). For

solar power prediction of day d+1, all the terms on the right

hand side are replaced with the predictions of day d+ 1 as

P̂ (d+1)(t) = β1Î
(d+1)(t) + β2T̂

(d+1)
wrf (t)

+ β3Î
(d+1)(t) · T̂

(d+1)
wrf (t), (7)

where (β1, β2, β3) can be estimated from the linear regres-

sion method using historical data.

IV. PERFORMANCE EVALUATION

This section presents the forecasting performance of the

WRF model and the improvement obtained by the proposed

method. The residual error is defined as ŷ − y (prediction-

measurement), so the model overestimates if the averaged

residual error is positive. We consider common performance

indices including RMSE, mean-bias error (MBE), mean ab-

solute error (MAE) and their normalization counterparts:

NRMSE, NMBE and NMAE using the installed capacity

of the two solar power sites as the normalization factor.

Reported results and computer codes are available at https:

//github.com/jitkomut/solarnwpmos.
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FIGURE 7: The RMSE of the spatial average of predicted

solar irradiance from WRF under various areas. The RM-

SEs (averaged over all samples) after spatial averaging are

274.42W/m2 (no averaging), 263.15 W/m2 (6x6 km2),

260.99 W/m2 (12x12km3), and 260.34 W/m2 (18x18 km2).

A. THE WRF PREDICTIONS

Since a solar site typically is not located on an exact grid

of WRF forecasts, one can choose the nearest grid point to

represent the prediction of a point of interest. Performing a

spatial averaging (1) over the areas of 6 × 6, 12 × 12, and

18×18 km2, we observed a decreasing trend of RMSE as the

area increased in Fig. 7, consistent with [25]. Thus, we used

the spatially-averaged WRF forecasts on the area of 18× 18
km2 instead of the forecasts on the single nearest grid point.

B. SOLAR POWER FORECASTING

We consider a persistence model as a baseline and MOS-

based methods in the literature to be compared with our

irradiance forecasting model. Applying the PV model in

Section III-D, we obtained the predicted P converted from

the predicted I from the following models.

• Persistence irradiance model produces the forecasts of

day d + 1: Î(t) = k(t)Iclr(t) for all t. If t ≤ tf , the

clear-sky index k(t) is computed from the measured I
of day d; otherwise, k(t) is computed from Îwrf(t) of

day d.

• Lorenz [25] applied MOS as a bias correction by re-

gressing WRF biases (Îwrf − I) on the 4th-order poly-

nomial of cos θ(t) and k(t). The prediction was then

Îlorenz = Îwrf + B̂ias and denoted as MOSlorenz.

• Pelland [29] produced forecasts for 0 to 2-day-ahead

horizons by performing a bias correction with KF that

updated parameters in an hourly step. The bias was

regressed on Îwrf and the prediction was Îpelland =

Îwrf+B̂ias, denoted as KFpelland. The noise covariances

were frequently updated from sample errors.

• Diagne [30] developed an hour-ahead forecasting

model, applying the same hourly KF scheme as [29] but

the bias was regressed on Îwrf and cos θ(t) and the noise

covariances were V = 0.01, and W = I . The prediction

was Îdiagne = Îwrf + B̂ias and denoted as KFdiagne.

Measured data

Predicted data

= 13.00 hrs

At time of day

use recently updated     

to compute the forecasts of 

day 

a single set of coefficients is updated hourly

Our Scheme

   sets of coefficients are updated daily in parallel
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Pelland and Diagne Schemes

FIGURE 8: Comparison of KF update schemes between our

method and those in the literature. At time tf of day d,

measurements corresponding to blue lines are used to update

the model parameters and compute the forecasts. For our

scheme, the submodel parameters of 14:00-16:00 h are held

from the updates on day d− 1 (red lines).

The main differences between our KF model, denoted

as KFdaily and the KF schemes of Pelland and Diagne,

illustrated in Fig. 8, are that (i) both of their models contained

a single set of regression coefficient β, while our model has

h sets of β, each corresponding to submodel parameters, and

(ii) their KF schemes update β in hourly format, while our

approach updates β of each submodel in a daily manner. Both

KFpelland and KFdiagne rely on the regression model with the

output as Bias = Îwrf − I , then at the forecasting time tf ,

the parameters updated from the previous hour are held and

used to compensate for the predicted bias. Although KFdiagne

was originally intended for an hour-ahead forecasting, its

implementation for the day-ahead forecasting in our study

can suggest if the hourly update scheme and the choice of

predictors and KF parameter settings are suitable for a day-

ahead forecasting purpose.

We are also aware of other post-processing schemes using

complex nonlinear models, such as neural networks in the

recent literature. However, we limit our comparison to be

among linear recursive models using a KF scheme because

of its structural simplicity and that the additional feature

of updating parameters can be an advantage over complex

models. In the implementation of the method listed above,

we used the same parameter setting, known to affect the

performance, as in the reference. Potential factors influencing

the forecasting accuracy of models are the (i) influential

variables included in the model, (ii) model structure, and (iii)

KF parameter settings such as noise covariances.

Fig. 9 shows the RMSE and MBE of I versus hour of

the day. All forecasting methods yielded the same trends of
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FIGURE 9: Solar irradiance forecasting performance.

TABLE 4: The regression coefficients of PV conversion

models (7) for 8 kW and 15 kW PV systems. The output is

the predicted power (kW).

PV site
Regression coefficient of the predictor

Îwrf (kW/m2) T̂wrf (°C) Îwrf T̂wrf

8 kW 9.4451 −0.0031 −0.0929
15 kW 17.9051 −0.0226 −1.4267

errors that are generally high during 12:00-14:00 h due to

a high degree of fluctuation in weather conditions. Clearly

from the MBE plot, the WRF model yielded positive biases

and hence overestimated. After 10:00 h, the naive persistence

model reduced the RMSE from WRF by 11–21% (computed

as the improved RMSE relative to the RMSE of WRF),

MOSlorenz was improved from the WRF by 24–39% and our

method greatly reduced the RMSE by 31–42%. As recursive

estimations, the Diagne and Pelland methods unexpectedly

did not perform as well as the (non-recursive) Lorenz model,

implying that it may be due to the parameter setting in

their KF schemes. The state noise covariance, W , known to

influence the adaptation rate of parameters and set as W = I
in [30], was too high for our day-ahead forecasting using

this dataset. Unsatisfactory results of the Pelland model [29]

can be explained from the online estimates of W and V that

resulted in too frequent changes of the model parameters.

Our method outperformed the Lorenz model because of our

KF scheme of updating model parameters and the choice of

model inputs. While we selected the variables in (2) using

a statistical method that favors independent variables, highly

correlated with I , the Lorenz model used only the solar zenith

angle, but not other weather variables.

The ratio of Îwrf ’s coefficient shown in Table 4 to the

installed capacity is around 1.18–1.19 (area−1) for the two

solar sites. Hence, a benefit of using a simple linear conver-

sion model is that in other areas, we can use this ratio factor to

estimate the potentially generated power if the area is known.

The hourly accuracy of solar power prediction in Fig. 10

indicates that our method achieved the best performance in

all hours, similar to the irradiance forecasting results.

The averaged accuracy (over all hours) are shown in Ta-

ble 5. Our method achieved the lowest RMSE in irradiance

prediction of 156 W/m2 and the lowest NRMSE of 12.7%

and 13.7% in solar power prediction. These are significant

reductions (by around 8%) from the NRMSE of WRF power

forecasts. The second best model, in terms of RMSE and

MAE was the adjusted Diagne model, obtained by reducing

the covariance W required in the KF update from I to 10−5I .

This supported our hypothesis that even though Diagne’s

model was intended for an hour-ahead forecasting, its bias

correction and KF schemes are interesting to be compared

with, while tweaking W from their original value is needed

to obtain a suitable frequency update of the day-ahead model.

Our method can further reduce the NRMSE and NMAE of P
from the adjusted Diagne model by around 0.7% and 0.45

%, respectively. As for MBE, our method did not achieve

the least averaged bias in all cases but the values were in

a comparable range. The p-values of the Wilcoxon signed

rank test shown in Appendix D suggest that our method

yielded significant improvements of irradiance RMSE and

MAE (except MBE), over all the other compared models.

An example of time series plots of the predicted P of the

8 kW station is shown in Fig. 11. We selected the 10 days of

lowest (and highest) daily-averaged RMSE from our method

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3099481, IEEE Access

S. Suksamosorn et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Solar power forecasting error (8-kW Station)

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

5

10

15

20

25

30

N
R

M
S

E
 (

%
)

7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Hours

-10

-5

0

5

10

15

20

N
M

B
E

 (
%

)

WRF Persistence Mos
Lorenz

KF
Diagne

KF
Pelland

KF
daily

(a) 8-kW Solar station.
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(b) 15-kW Solar station.

FIGURE 10: Solar power forecasting performance.
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FIGURE 11: Examples of predicted solar irradiance.

TABLE 5: Solar power forecasting performances. The

RMSE, MAE and MBE of I in % are normalized by the

averaged GHI of 393.2W/m2. The NRMSE, NMAE and

NMBE of P are normalized by the plant capacity.

Method RMSE (W/m2) NRMSE (%) NRMSE (%)

(Irradiance) (Power,8 kW) (Power,15 kW)

WRF 254.14 (64.79 %) 20.77 21.95

Persistence 216.28 (55.14 %) 17.61 19.10

Lorenz 168.43 (42.94 %) 13.60 14.55

Diagne 228.30 (58.20 %) 18.42 20.01

Diagne (adjusted) 166.66 (42.49 %) 13.39 14.48

Pelland 200.81 (51.20 %) 15.87 17.11

KF (daily) 156.42 (39.88 %) 12.71 13.70

Method MAE (W/m2) NMAE (%) NMAE (%)

(Irradiance) (Power,8 kW) (Power,15 kW)

WRF 186.52 (47.55 %) 15.39 16.20

Persistence 154.53 (39.40 %) 12.69 13.93

Lorenz 134.95 (34.40 %) 10.89 11.53

Diagne 167.08 (42.60 %) 13.40 14.62

Diagne (adjusted) 128.24 (32.69 %) 10.18 11.13

Pelland 155.94 (39.76 %) 12.15 13.15

KF (daily) 120.44 (30.71 %) 9.83 10.68

Method MBE (W/m2) NMBE (%) NMBE (%)

(Irradiance) (Power,8 kW) (Power,15 kW)

WRF 150.51 (38.37 %) 13.30 13.77

Persistence -0.33 (-0.08 %) 1.03 0.30

Lorenz 2.67 (0.68 %) 1.32 0.63

Diagne -38.83 (-9.90 %) -2.21 -3.24

Diagne (adjusted) -6.68 ( -1.70 %) 0.40 -0.36

Pelland -15.53 (-3.96 %) -0.35 -1.23

KF (daily) -3.77 (-0.96 %) 0.72 -0.03

Diagne (adjusted) uses W = 10−5I (instead of W = I in the original setting)

to illustrate the performance of measurement tracking when

fluctuations occurred. All the methods generally performed

well on the days that I fluctuated less. However, the Pelland

and (original) Diagne models tended to over adapt in the

opposite direction to the measurement trend, resulting in

overall degraded performances.

V. DISCUSSION

Comparing the prediction performance between our method

and the other techniques in the literature is not trivial, as (i)

each post-processing method used different NWP models,

(ii) the climate conditions vary in different regions, and (iii)

the solar sites have different capacities. For irradiance fore-

casting performance, normalizing the RMSE by the averaged

GHI can partly compensate for climate variations in different

regions. Nevertheless, previous studies used different consid-

ered time periods in computing the averaged GHI, resulting

in minor variations in the normalized RMSE. Here, we used

the improved RMSE of the post-processing models relative to

the RMSE of the baseline NWP, calculated as 100%×(rmse-

rmsewrf )/rmsewrf , to compare the effectiveness of the post-

processing steps in the literature, while variations in the

NWP implementation are controlled. Table 6 shows that

our MOS+KF post-processing with a variable selection im-

proved the baseline WRF performance by 38%, a competing

progress compared to others, especially for [14], [43] that

have a tropical climate close to that of Thailand.

For the solar power performance, most studies normalized

the RMSE with a data-dependent factor (such as the mean,

or the range) but computation details were not available. For

example, we recommend that zero-valued observations of P
from early morning or late evening should be excluded when

calculating the mean; otherwise the RMSE can be too opti-

mistically low [2, §8.3]. Thus, the compared performances

shown in Table 7, were selected from studies that used the

installed capacity as the normalization factor. These studies

first applied a weather classification and customized each

submodel to the specified weather conditions. Whereas our

method does not require a prior classification step, it also

achieves a comparable performance to that of [44], and our

VOLUME 4, 2016 11
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TABLE 6: Examples of day-ahead solar irradiance prediction in literature. The improvement (%) is relative to the NWP.

Ref. Region Based NWP Model Improvement (%)

[20] Northeastern Brazil (25 sites) WRF ANN 10–50
[29] Canada (11 sites) WRF (no spatial avg) MOS+KF 0–22
[26] La Reunion Island WRF ANN 17–18
[14] Singapore WRF MOS (step-wise regression, PCA) 25–30
[43] Singapore WRF and WRF+data assimilation Random forest 20–34

Our method Central Thailand WRF MOS+KF 38

TABLE 7: Examples of the one-day-ahead solar power pre-

diction in the literature.

Ref. Forecasting model Condition NRMSE (%)

[45] ANN - 23.99

[46] ANN
Clear 12.50
Partially cloudy 24.00
Cloudy 36.90

[44]

Wavelet+ Winter 12.51
Fuzzy ARTMAP + Spring 13.13
Firefly Summer 12.11

Fall 12.82

[47] Wavelet+ANN

Clear 7.19
Cloudy 16.82
Overcast 17.61
Rainy 19.67

Our method MOS+KF 10 submodels 12.7-13.7

NRMSE is even 11% less than the nonlinear ANN model

of [45].

From Fig. 10, our method can reduce the NRMSE from

the WRF by around 7–12% during 10:00-16:00 h for both

solar sites. Significant decreases were obtained from the

submodels of 12:00,13:00 and 14:00 h, implying that our

hypothesis is right. The main forecasting model should be

split into hourly submodels in order to suitably compen-

sate for errors from the WRF forecast, since the temporal

dynamics of the weather condition throughout the day can

be viewed as different hourly characteristics of solar radi-

ation. The designed structure of containing submodels also

makes the model as flexible as nonlinear ones, supported

by performances reported in Tables 6 and 7. In addition to

this structure, the parameter adjustment in our KF scheme

provides the advantage that the model can adapt to uncertain

conditions on the next day.

VI. CONCLUSION

Techniques for day-ahead forecasting of solar power gener-

ally employ an NWP model whose performance can typically

be improved by a post-processing method. We implemented a

KF scheme to update the parameters of the linear regression

submodels; each of which predicts I at a particular time of

the day. The modified KF scheme was proposed to consider

the practical constraint that measurement data are limited

at the time of forecasting, so the modified KF scheme was

proposed. Outperforming other post-processing methods in

the literature, our model achieved the NRMSE of solar power

in the range of 12–13%, an additional reduction of 7-12%

from the WRF performance. We also achieved a comparable

performance with those of nonlinear models from previous

studies, suggesting that employing simple linear models can

be sufficient and are computationally cheap for real-time

implementations.

Applying our method to other solar sites or with different

forecasting configurations has some concerns and limita-

tions. Our KF scheme is dependent on the forecasting speci-

fication (that forecasts must be released by 13:00 h). If users

aim to apply our method with another problem statement,

one has to carefully modify the KF update rule in different

submodels. We also recommend that some of the initial KF

parameters can be suitably tuned or input variable selection

can be re-performed based on our methodology for other site

locations. The limitation of relying on linear models can be

extended to adaptive nonlinear models. If the nonlinearity is

represented as a linear combination of nonlinear functions,

it is possible to modify the KF scheme to update the weight

coefficients in a similar way to our approach.

.

APPENDIX A BACKGROUND ON KF AS RECURSIVE

ESTIMATION

Given a linear discrete-time stochastic system with the state

x ∈ Rn, output y ∈ Rm, state noise w and measurement

noise v, then:

xt+1 = Axt + wt, yt = Cxt + vt, t = 0, 1, 2, . . . (8)

This is a classical result in linear system theory that when

the noises are Gaussian, the optimal prediction of xt+1 given

the information set of measurements Yt = {yt, yt−1, . . .} is

the conditional mean E[xt+1|Yt] and can be obtained in a

recursive fashion via the KF [48, §4.4], [41]. This involves

two important predicted sequences and their covariances:

(x̂t|t, Pt|t) and (x̂t|t−1, Pt|t−1), the pair of the optimal esti-

mates of xt and its covariance, conditioning on Yt and Yt−1,

respectively. At time t, the KF update consists of two update

steps. First, the measurement update utilizes the current yt
to adjust the state prediction and its covariance, where the

Kalman gain compensates the estimation error in yt.

Kt = Pt|t−1C
T (CPt|t−1C

T + V )−1,

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1),

Pt|t = (I −KtC)Pt|t−1.

(9)

Second, the time update (or prediction update) suggests that

the optimal predicted state of time t + 1 and its covariance

progress according to the system description (8) to give (10).

x̂t+1|t = Ax̂t|t, Pt+1|t = APt|tA
T +W. (10)
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The KF scheme requires the system matrices (A,C), initial

parameters: x̂0|−1 = x0, P0|−1 = P0, and noise covariances

W,V of w and v, respectively.

The KF can be applied to recursively update the coef-

ficients of a linear regression model. In our context, the

irradiance, as the response variable, can be explained as a

linear function of a selected predictor x, given by I =
β1x1 + β2x2 + βnxn. A recursive least-squares (RLS) relies

on the assumption that β obeys the random walk equation:

βt+1 = βt + wt, It = Xtβt + vt, (11)

which is a time-varying version of (8) when β plays the

role of the state x, I is the output y, A = I and C =
Xt = (x1t, x2t, . . . , xnt). Thus, at time t (when the current

information of It is available), one can perform KF updates

(9) and (10) for (11) to obtain the predicted state β̂t+1|t and

the predicted output Ît+1 = Xt+1β̂t+1|t. Since the regressor

matrix at t + 1 is needed for Ît+1, users often select the

predictors whose values at time t + 1 can be obtained at the

forecasting time t; common choices are clear-sky irradiances,

solar zenith angle, or NWP weather forecasts. The user-

defined covariance W suggests a degree of uncertainty about

β and so its choice affects the changing rate of βt. When

one believes that the measurements are highly uncertain, V
should be set sufficiently large, so that Kt in (9) becomes

small, meaning less effect of output estimation error to com-

pensate for x̂t|t in the update.

We note that applying the KF as an RLS can be performed

in different ways. First, the time index t can evolve daily or

hourly and the choice can be justified upon the forecasting

model specification (hour-ahead or day-ahead) that suggests

about updating frequency of model coefficients. Second, the

output It in (11) can be replaced with e = Inwp−I , meaning

that the regression model is developed for a bias correction

for NWP forecasts instead of directly explaining I .

APPENDIX B MODIFIED KF

We revisit the problem of deriving a KF update of

a linear time-invariant system (8), where the current

measurement is available through an affine transforma-

tion. More specifically, the stated problem is to derive

E[xt+1|Fyt, Fyt−1, Fyt−2, . . .] in a KF fashion with a

Gaussian assumption. The transformation F can represent

several practical actions on the current measurement, e.g.,

(i) when a measurement sensor needs a calibration, F can

be regarded as a scaling matrix, (ii) when sensors of some

components of y are broken, F is cast as a projection matrix,

(iii) when components of y are fused, F is a row vector con-

taining positive entries. We state this result in the following

proposition.

Proposition 1. Consider (8) when each of wt, and vt is

i.i.d.1 Gaussian with zero mean and covariance W , and

V respectively. When {Fys}
t
s=0 is available, the optimal

1independent and identically distributed

estimate of xt and yt in an MSE sense is obtained by the

modified KF scheme.

Measurement update:

Kt = Pt|t−1C
TFT (FCPt|t−1C

TFT + FV FT )−1,

x̂t|t = x̂t|t−1 +Kt(Fyt − FCx̂t|t−1),

Pt|t = (I −KtFC)Pt|t−1.

Time (or prediction) update:

x̂t+1|t = Ax̂t|t, Pt+1|t = APt|tA
T +W.

Proof. Firstly, we denote Yt = (Fyt, Fyt−1, Fyt−2, . . . , Fy0)
as the set of available information up to time t, we only

know Fyt, not a complete yt. Let x̂t|s = E[xt|Ys] be

the optimal estimate of xt given the measurement up to

time s, with the corresponding covariance of error, Pt|s =
E[(xt − x̂t|s)(xt − x̂t|s)

T ]. When the noises w, and v
are assumed to be Gaussian, the two conditioned variables:

u1 = xt|Yt−1 and u2 = Fyt|Yt−1 are jointly Gaussian with

mean: (x̂t|t−1, FCx̂t|t−1) and covariance
[

Pt|t−1 Pt|t−1C
TFT

FCPt|t−1 FCPt|t−1C
TFT + FV FT

]
,

[
Σ11 Σ12

ΣT
12 Σ22

]
.

(12)

Since (u1, u2) are jointly Gaussian, the conditioned variable

u1|u2 is also Gaussian, with the conditional mean given by

E[u1|u2] = x̂t|t−1 +Σ12Σ
−1
22 (u2 − FCx̂t|t−1).

We can also see a convenient fact that:

u1|u2 = xt|{Fyt, Yt−1} = xt|Yt. (13)

Therefore, the conditional mean E[xt|Yt] is given by

x̂t|t = x̂t|t−1 +Kt(Fyt − FCx̂t|t−1),

where Kt denotes the modified Kalman gain:

Kt = Pt|t−1C
TFT (FCPt|t−1C

TFT + FV FT )−1.

From (13), the conditional covariance of u1|u2 is, in fact,

Pt|t and since u1|u2 is Gaussian, the conditional covariance

is the Schur complement of the (1, 1) block of the matrix

in (12). Hence, we arrive at the measurement update of the

covariance: Pt|t = Pt|t−1 −KtFCPt|t−1. For the prediction

(or time) update, we condition the state equation (8) on Yt:

xt+1|Yt = Axt|Yt + wt|Yt = Axt|Yt + wt,

because wt is uncorrelated with Yt. Taking the expectation,

we obtain x̂t+1|t = Ax̂t|t because wt has zero mean. Using

the description of xt+1 from (8), we can compute

Pt+1|t = E[(x̂t+1|t − xt+1)(x̂t+1|t − xt+1)
T ]

= E[(Ax̂t|t −Axt − wt)(Ax̂t|t −Axt − wt)
T ]

= APt|tA
T +W.

This completes the proof of the modified KF formula when

the available output is {Fys}
t
s=0.
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APPENDIX C PARAMETERS IN KALMAN FILTER

From a known result of the linear regression model: y =
Xβ+e with p predictors and a sample size of N , an estimate

of noise variance is σ̂2 = 1
N−p

‖ê‖22, where ê = y − Xβ̂,

and the estimated covariance of β̂ is Covβ̂ = σ̂2(XTX)−1.

Initialized parameters of KF applied to (6) can be explained

as follows. Firstly, when the MOS model (2) is arranged in

y = Xβ, we compute the least-squares estimate, β̂(t)ls for

each t = {t1, t2, . . . , th}, and the residual error of time t is

denoted by {e(d)(t)}Nd=1. Hence, the estimated variance of

error term is σ̂2(t) = 1/(N − p)
∑N

d=1[e
(d)(t)]2. Then, the

initial KF parameters are chosen as follows.

ẑ(0|−1) =
[
β̂ls(t1) β̂ls(t2) · · · β̂ls(th)

]
,

P (0|−1) = diag(cov(β̂ls(t1)), . . . , cov(β̂ls(th)),

W = 10−4diag(ẑ(0|−1)),

V = diag(σ̂2(t1), σ̂
2(t2), . . . , σ̂

2(th)).

The initial state variable is selected as the LS estimate of

the MOS model and the covariance of state estimate is the

covariance of the corresponding LS estimate. The state noise

covariance is 0.01% of the magnitude of the LS estimate,

meaning that the coefficients are intended to be adapted quite

slowly in the KF update. The sensor noise covariance is an

approximation of the residual error in the MOS model.

APPENDIX D SIGNIFICANCE TEST ON FORECASTING

METRIC IMPROVEMENT

The irradiance forecasting performance indices: RMSE,

MAE, and MBE from all models were tested for any sig-

nificant improvement using the (non-parametric) Wilcoxon

signed rank test. The null hypothesis was that metricother −
metricours comes from a distribution with a median less than

zero (the left tail test). The bold-face p-value (of less than α)

in Table 8 indicates a preference for the alternative hypothesis

that the metric difference has a median greater than zero, or

loosely speaking, our method has a significant improvement

over the other methods.

TABLE 8: The sign rank statistic and p-values of the

Wilcoxon signed rank test with a significance level of 0.05.

RMSE MAE MBE

Metrics stat p-val stat p-val stat p-val

WRF 55 9.77e-04 55 9.77e-04 55 9.77e-04
Persis 55 9.77e-04 55 9.77e-04 31 3.85e-01
Lorenz 53 2.93e-03 55 9.77e-04 31 3.85e-01
Pelland 55 9.77e-04 55 9.77e-04 15 9.03e-01
Diagne 55 9.77e-04 55 9.77e-04 9 9.76e-01
Diagne (adj) 55 9.77e-04 55 9.77e-04 17 8.62e-01

As samples for running the test, we used 10 values of each

metric computed in the 10-fold cross validation. The non-

parametric test was adopted instead of a common t-test since

the assumed normal distribution for the t-test is not known to

be held with the forecasting metrics. We did not perform the

significance test of solar power forecasting metrics because

all the methods used the same PV conversion model,
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