
Post Quantum Noise
Yawning Angel∗

yawning@oasislabs.com
Oasis Labs

USA, San Francisco

Benjamin Dowling∗
b.dowling@sheffield.ac.uk
University of Sheffield

UK, Sheffield

Andreas Hülsing∗
andreas@huelsing.net

TU Eindhoven
The Netherlands, Eindhoven

Peter Schwabe∗
peter@cryptojedi.org

MPI-SP
Germany, Bochum

Florian Weber∗†
f.j.weber@tue.nl
mail@florianjw.de
TU Eindhoven

The Netherlands, Eindhoven

ABSTRACT
We introduce PQNoise, a post-quantum variant of the Noise frame-
work.We demonstrate that it is possible to replace theDiffie-Hellman
key-exchanges in Noise with KEMs in a secure way. A challenge
is the inability to combine key pairs of KEMs, which can be re-
solved by certain forms of randomness-hardening for which we
introduce a formal abstraction. We provide a generic recipe to turn
classical Noise patterns into PQNoise patterns. We prove that the
resulting PQNoise patterns achieve confidentiality and authentic-
ity in the fACCE model. Moreover we show that for those classical
Noise-patterns that have been conjectured or proven secure in the
fACCE model our matching PQNoise patterns eventually achieve
the same security. Our security proof is generic and applies to any
valid PQNoise pattern. This is made possible by another abstrac-
tion, called a hash-object, which hides the exact workings of how
keying material is processed in an abstract stateful object that out-
puts pseudorandom keys under different corruption patterns. We
also show that the hash chains used in Noise are a secure hash-
object. Finally, we demonstrate the practicality of PQNoise deliv-
ering benchmarks for several base patterns.

CCS CONCEPTS
• Security and privacy → Cryptography; Security protocols.

KEYWORDS
Protocol; Post-Quantum Cryptography; Noise; PQNoise; Provable
Security
ACM Reference Format:
YawningAngel, BenjaminDowling, AndreasHülsing, Peter Schwabe, and Flo-
rian Weber. 2022. Post Quantum Noise. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22),

∗Author list in alphabetical order, see: https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf
†Second mail is strongly preferred, first is only listed for institutionaly payed
submission-fee.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560577

November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3548606.3560577

1 INTRODUCTION
In 2014, Perrin set out to simplify the process of designing, describ-
ing, analyzing, and securely implementing secure-channel proto-
cols through the Noise Protocol Framework [32]. The success of this
endeavour is illustrated by the long list of users, including What-
sApp, WireGuard, Slack, I2P and the Lightning Network [29]. At
the heart of Noise is the idea of using Diffie-Hellman (DH) key ex-
change [17] as the only asymmetric primitive – forward secrecy
is achieved through DH with ephemeral keys, authentication of
parties is achieved through static DH keys. Perrin informally de-
scribed this concept of authenticated key agreement without sig-
natures used by Noise as “Hash all these DHs together to get a final
key” [33].

What DH operations are performed and what exactly is “hashed
together” is expressed in handshake patterns, that Noise specifies
in a concise and easy-to-parse language. As one example, consider
the “KN” pattern (“\\” indicates a line break): “-> s \\... \\->
e\\<- e, ee, se”

On a high level what this pattern means is that the responder
(on the right side of the arrows) is aware of the static public DH
key (-> s) of the initiator (on the left side of the arrows) before
the online phase of the protocol starts (-> s is before ...). In the
online phase the initiator first generates an ephemeral DH key pair
and sends the ephemeral public key to the responder (-> e).The re-
sponder then also generates an ephemeral key pair (e) and sends
the public key to the initiator (<- e). Both parties then combine
their respective ephemeral secret keys with the ephemeral pub-
lic key of the peer to obtain a shared ephemeral-ephemeral DH
key (ee) and additionally compute the static-ephemeral DH se us-
ing the initiator’s static secret key and the responder’s ephemeral
public key on the initator’s side and the initiator’s static public
key and the responder’s ephemeral secret key on the responder’s
side. For a more detailed description of how patterns translate into
cryptographic operations and protocols messages, and in particu-
lar how public and shared keys are absorbed into protocol state,
see the Noise Protocol Framework specification [32]; for the cryp-
tographic protocol implementing the KN pattern, see Figure 1.

The KN pattern is an example of a named pattern in Noise; a sub-
set of these named patterns are the so-called fundamental patterns.

97

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://doi.org/10.1145/3548606.3560577
https://doi.org/10.1145/3548606.3560577
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560577&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

There exist twelve interactive and three non-interactive fundamen-
tal patterns. These patterns exist for every combination of each
party having 1) No static public key, 2) a static public key Known
to their peer, or 3) a static public key that has to be transmitted (X)
during the interaction. For the initiator there is furthermore the
possibility that 4) he has a static public key that he is willing to
send with the Initial message, even if this may reduce anonymity.
For each of the resulting 12 cases, Noise defines a fixed pattern,
named by the two letter combination derived from concatenating
the letters indicating the case for the initiators key and that for
the responders key, giving: NN, NK, NX, KN, KK, KX, XN, XK, XX,
IN, IK and IX. E.g., NN deals with the case where neither party
has a static public key, whereas IK applies to the case where the
initiator’s key is not initially known to the responder, but the re-
sponder’s key is known to the initiator upfront and the initiator is
willing to send his public key with the first message.

One interesting feature of secure-channel protocols in Noise is
that they do not separate the key-agreement or handshake phase
from the data-transmission phase: in fact, Noise allows to send
early payload messages together with every handshake message.
These early payloadmessages are encrypted underwhatever shared
key material has already been established, but they typically do
not enjoy the full security properties established by the end of
the handshake. This means that we cannot analyze the security
of Noise handshakes as standalone, monolithic authenticated-key-
agreement protocols in, for example, the CK [13], eCK [28], or
CK+ [26] model. This issue was addressed by Dowling, Rösler, and
Schwenk with the introduction of the fACCE model [19], a multi-
stage variant of the ACCE model introduced for the analysis of
TLS [24].

The design decision to rely on Diffie-Hellman as the only asym-
metric primitive in Noise leads to elegant protocols offering ex-
tensive security and privacy properties; the instantiation of DH
with X25519 [7] in Noise also leads to efficient implementations of
these protocols in multiple programming languages. However, the
strong reliance on DH also comes with a downside: Noise does not
have any straight-forward migration path to post-quantum cryp-
tography. Indeed, DH offers the functionality of non-interactive
key exchange (NIKE) [20], and no efficient post-quantum instan-
tiation of this functionality is known today. The most plausible
candidate is CSIDH [14], but unfortunately even at bleeding-edge
security levels andwith all state-of-the-art optimizations it is about
three orders of magnitude slower than X25519 [6]. Also, the con-
crete security against quantum attackers is still subject of heavy
debate [9, 11, 31].

Our Contribution. The closest primitive to DH that does have
efficient post-quantum instantiations is key encapsulation mecha-
nisms (KEMs). For specific DH-based authenticated key-exchange
protocols, KEMs have been used before to replaceDH, e.g., in PQWire-
Guard [23]; in this paper we generalize this approach and investi-
gate what a purely KEM-based, post-quantum Noise framework
looks like.

While it is straightforward to replace DH by a KEM in some
cases, in others it is not, for a multitude of reasons: First, authenti-
cation with KEMs can only be done in an interactive challenge-
response fashion, whereas it is possible to view any DH public

key as an already existing challenge, allowing for non-interactive
authentication. Secondly, it is possible to combine arbitrary DH
keyshares, which is not the case for KEMs as public keys cannot
be combined.This causes issues in the cases where Noise combines
two static shares. Thirdly, Noise is extremely flexible and offers a
huge amount of possible patterns. So far, computational security
proofs are given for individual patterns which results in a large
number of individual security proofs, and many patterns without
computational proofs of security at all, though a number of sym-
bolic analyses of Noise exists [22, 25].

We resolve all of these issues. We provide a recipe to translate
a Noise-pattern into a PQNoise pattern that, at the possible cost
of additional roundtrips, achieves the same confidentiality and au-
thenticity as the original pattern. In some cases we can do bet-
ter than applying our generic translation. We provide optimized
PQNoise alternatives for all 12 interactive fundamental patterns
and for the non-interactive N-pattern (The K- and X-patterns don’t
have non-interactive equivalents in PQNoise). Our recipes solve
the second issue by noting that approaches like the NAXOS trick
provide a way to mix a static secret into the randomness effec-
tively guaranteeing that the result is secret as long as either the ran-
domness or the static secrets are uncorrupted. We introduce static-
ephemeral entropy combination (SEEC) as an abstraction of these
approaches, which is suitable for the security analysis of PQNoise,
is met bymany existing constructions, and allows the implementer
to chose a suitable instantiation for their respective target system.

We give a generic proof of security in the computational model
resolving issue three.This is enabled by the introduction of another
abstraction termed “hash-object”, a formalization of the “Hash all
these DHs together to get a final key” idea. A hash-object is a state-
ful object into which values can be fed and from which keys can
be extracted. When using this to analyze PQNoise, we require that
the outputs of this object are pseudorandom as long as at least one
random input was absorbed into the object before that is unknown
to the adversary. We provide a formal definition of this primitive
and prove that the way Noise hashes key shares into a hash-chain
instantiates it. This abstraction allows to remove a lot of pattern-
specific complexity from the security proofs, which in turn allows
us to write them in a generic manner. We conjecture that this ap-
proach is fully applicable to all versions of classical Noise, allowing
for a more comprehensive computational analysis than what cur-
rently exists, thoughwe leave that for futurework.We remark here
that our proof does in fact not just apply to the specific PQNoise
patterns that we specify, but to every PQNoise protocol, including
for example hybrid ones (which we don’t specify here).

Our security analysis is performed in the fACCE-model [19],
that was already used in the analysis of Noise, though we modify
the model in a few places. First, there are some cosmetic changes
that we believe make both the model and the resulting statements
more accessible, such as renaming confusingly named operations.
Second, we provide the resulting security statements as a simple
table that maps uncorrupted secrets to achieved security goals in
a given stage instead of providing a list of named security goals
that are also not necessarily independent. This allows to simplify
the freshness conditions significantly.

98

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Finallywe present a proof-of-concept implementation of PQNoise
inGo and report on benchmarking results.The results clearly demon-
strate the practicability of post-quantum key exchanges in a wide
variety of settings. We remark here that providing a post-quantum
version of Noise essentially provides a solution for all applications
that need key exchanges that are requiring neither backwards-com-
patibility nor crypto-agility at runtime; naturally the former is not
a problem that can be solved generically and the later is a property
whose desirability is getting called increasingly into question as
more and more newer protocols don’t offer which matches com-
munity-surveys [37]. The software is available from:
https://gitlab.com/yawning/nyquist/-/tree/experimental/pqnoise.

2 PQNOISE
In this section we present our design for PQNoise. We start with
a description of PQNoise. Afterwards, we introduce SEEC (Static-
Ephemeral Entropy Combination), our abstraction of methods that
mix a static key into the randomness source to guarantee secu-
rity in a bad randomness setting. With this we then present our
recipe to translate Noise patterns into PQNoise patterns. We con-
clude with a discussion of the optimized fundamental-patterns for
PQNoise.

2.1 PQNoise
PQNoise aims to be the post-quantum counterpart to Noise and
shares many of its characteristics. One of these is the generic ap-
proach of providing a large number of possible patterns whose
description is similar to that of Noise patterns. However, given
that PQNoise uses KEMs for key exchange, some tokens are dif-
ferent. The single-letter tokens (s and e) stand for the sending of
public keys, just as before.The four tokens (ee, se, es and ss) repre-
senting combination of DH-key-shares are dropped. In their place
PQNoise introduces ekem and skem, that indicate the sending of
a ciphertext that was encapsulated to the ephemeral/static public
key of the receiving party and the mixing of the encapsulated se-
cret into the hash-object (our abstraction of the hash-chains used
in Noise) similar to the old two-letter tokens.

On a lower abstraction-level PQNoise intentionally works es-
sentially exactly like classical Noise, with the exceptions that we
replace the asymmetric primitives and use SEEC for the entropy
of all probabilistic algorithms, except the generation of static keys.
Noise starts mixing shared keys into its hash chain as soon as they
are available, extracts a session key from it and starts encrypting
all further messages, except the ephemeral key shares, using an
AEAD scheme. We stick to this approach.

Noise and PQNoisemaintain effectively two hash-chains (one of
which we will later model as a hash-object): The first one, h, is ini-
tialized as the hash of a pattern-label. Whenever a value x needs to
be added to it, the party in question computesH(h, x) and replaces
h with it. The first thing that is added to h are unspecified associ-
ated data that can be chosen freely by the application. Following
that all public keys are added as soon as they are transmitted (if
they are Known, they get added at the very start). Furthermore all
AEAD-ciphertexts are added after they are sent/successfully de-
crypted. In turn h is used directly (without further hashing) as
associated data whenever an AEAD-ciphertext is created and is

intended to be usable as a unique handshake-hash after the com-
pletion of the handshake-phase.

The second hash-chain ck is the one from which the protocol
derives its encryption-keys. The key-chain ck is initialized by the
hash of the pattern-label as well. Afterwards, whenever both par-
ties establish a shared secret ki (in classical Noise a Diffie-Hellman
shared secret, in PQNoise the key that is encapsulated in a KEM-
ciphertext), Noise computes a temporary value (which we will re-
fer to as tmp) as HMAC-HASH(ck, ki) and derives a new value for
ck andwhatever keys it needs by computingHMAC-HASH(tmp, ctr),
where ctr is set to 0 for the new value of ck and to 1 for the derived
key.There is one exception to this with the last addition of a shared
secret, where the two produced values are not used as a new value
for ck and a session-key, but instead as the initiator’s and respon-
der’s session keys for the remaining session. For the purposes of
our analysis we model this as hash-object and refer to Section 4.1
for more details.

The actual encryption in PQNoise is done via an AEAD-scheme,
where the key is the session-key derived from ck, h is used as as-
sociated data and the nonce is a simple counter, that is initially set
to zero, increases by 1 with every use and is reset to zero once a
new session-key is established. To send an ephemeral key (e), the
sender creates a new ephemeral keypair 𝑝𝑘𝑒, 𝑠𝑘𝑒 using the key-
generation-algorithmwith the output of SEEC as entropy and adds
𝑝𝑘𝑒 to the current payload andℎ. To send a static key (s), the sender
adds their static public key to the current payload and ℎ.

Sending of KEM-ciphertexts (ekem, skem) is where the largest
differences between Noise and PQNoise are: Firstly we differenti-
ate between the ephemeral (EKEM), the initiator’s (IKEM) and the
responder’s (RKEM) KEM.This allows the use of different KEMs in
the same protocol in a similar manner to PQWireguard [23] which
can allow for more efficient protocols and enable a “poor man’s hy-
brid encryption”, where even a catastrophic break of one scheme
preservers confidentiality if there is no additional corruption.) As
depicted in Algorithm 1, during Send the sender encapsulates a key
𝑘𝒳 to the receiver’s public key 𝑝𝑘𝒳 using hardened randomness
(see Section 2.2). If the KEM in question is not ephemeral (for com-
patibility with Noise) and there is already a shared key 𝑘𝑖 (which
by the requirements of Noise has to be at least partially derived
from EKEM) the resulting ciphertext 𝑐𝑡𝒳 (together with possible
further payload pl that doesn’t further affect the KEM-operation,
see the full version [3]) is encrypted with the AEAD-scheme un-
der 𝑘𝑖 using the current nonce 𝑛 and the current handshake-hash
ℎ as associated data and the resulting ciphertext is added to the
send-buffer. Otherwise 𝑐𝑡𝒳 is added directly to the send-buffer. In
either case ℎ is updated by hashing the previous value with what-
ever was added to the send-buffer and 𝑘𝒳 is added to the keychain
by calling 𝑐𝑘. in(𝑘𝒳), producing the next secret key 𝑘𝑖+1. Lastly
the sender sets the nonce 𝑛 to 0.

The actions by the receiver during Recv mirror those of the
sender: After either decrypting or receiving 𝑐𝑡𝒳 he adds what he
received to ℎ, decapsulates it with his secret key 𝑠𝑘𝒳 and inputs
the resulting key into the key-chain 𝑐𝑘 producing 𝑘𝑖+1 and resets
the nonce 𝑛 to 0.

We refrain from providing detailed pseudocode for the other op-
erations here as they are essentially identical to classical Noise and

99

https://gitlab.com/yawning/nyquist/-/tree/experimental/pqnoise

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

Algorithm 1: Transmission of KEM-ciphertexts.
1 Function Send:
2 …
3 𝑟 ← 𝑆𝐸𝐸𝐶.GenRand(𝑠𝑒𝑒𝑐_𝑠𝑘)
4 𝑐𝑡𝒳, 𝑘𝑘𝒳 ≔ 𝑋𝐾𝐸𝑀. encaps(𝑝𝑘𝒳, 𝑟)
5 if 𝑋𝐾𝐸𝑀 ≠ 𝐸𝐾𝐸𝑀 ∧ 𝑘𝑖 ≠ ⊥:
6 𝑐𝑖 ≔ 𝐴𝐸𝐴𝐷.𝑒𝑛𝑐(𝑘𝑖, 𝑛, ℎ, pl)
7 ℎ ≔ H(ℎ, 𝑐𝑖)
8 else:
9 ℎ ≔ H(ℎ, 𝑐𝑡𝒳)

10 𝑘𝑖+1 ≔ 𝑐𝑘. in(𝑘𝑘𝒳), 𝑛 = 0
11 …
12 Function Recv:
13 …
14 if 𝑋𝐾𝐸𝑀 ≠ 𝐸𝐾𝐸𝑀 ∧ 𝑘𝑖 ≠ ⊥:
15 …||𝑐𝑡𝒳 ≔ 𝐴𝐸𝐴𝐷.𝑑𝑒𝑐(𝑘𝑖, 𝑛, ℎ, 𝑐𝑖)
16 ℎ ≔ H(ℎ, 𝑐𝑖)
17 else:
18 ℎ ≔ H(ℎ, 𝑐𝑡𝒳)
19 𝑘𝑘𝒳 ≔ 𝑋𝐾𝐸𝑀. decaps(𝑠𝑘𝒳, 𝑐𝑡𝒳)
20 𝑘𝑖+1 ≔ 𝑐𝑘. in(𝑘𝑘𝒳), 𝑛 = 0
21 …

refer to the full version [3]instead.We note however that we imple-
mented a compiler that transforms any PQNoise-pattern into such
detailed pseudocode while also performing some basic soundness-
checks (for example that there is no use of keys that are not yet
known) on the input and full type-checking on the produced code
(though the types are not displayed as part of the LaTeX-output).
We provide the pseudocode resulting from the thirteen fundamen-
tal PQNoise-patterns (see below) in the full version [3]and the com-
piler at https://florianjw.de/diverses/pqnoise-codegen.tar.bz2.

To give an illustrative example of how PQNoise and Noise differ
we refer to Figure 1, which displays the KN-pattern of classical
Noise and its PQNoise-counterpart. The main differences can be
seen around the use of KEMs: Since KEM-keys cannot be combined,
PQNoise requires the sending of additional ciphertexts (𝑐𝑡𝑒 and 𝑐𝑡ℐ
instead of just 𝑔𝑏) which also have to be encrypted (𝑐0) and added
to ℎ. That (and the use of SEEC) aside, the protocols are however
remarkably similar. Overall these similarities and differences are
representative for the other patterns.

2.2 SEEC
Bad random number generators are a real-world issue. And it does
not matter for this whether they are intentionally broken by ma-
licious governments [10] or accidentally by well-meaning individ-
uals [16]. Hence, this is covered in modern definitions of security
for protocols, introducing the corruption of ephemeral secrets as a
valid attack.

The Noise-framework itself considers this an issue that should
be solved on system level instead of per-protocol and does not
include any countermeasures for this case. Nonetheless the KK-
and the IK-patterns derive their key among other sources from

Initiator Responder

ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖𝑔𝐴)
𝑎 ←$ ℤ𝑝

ℎ ← H(ℎ‖𝑔𝑎)
𝑔𝑎

𝑏 ←$ ℤ𝑝
𝑘𝑎𝑏 ← 𝑔𝑎𝑏

ℎ ← H(ℎ‖𝑔𝑏)
ck, 𝑘0 ← KDF(ck, 𝑘𝑎𝑏, 2)

𝑘𝐴𝑏 ← 𝑔𝐴𝑏

ck, 𝑘1 ← KDF(ck, 𝑘𝐴𝑏, 2), 𝑛 ← 0
𝑐0 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)

𝑔𝑏, 𝑐0
𝑘𝑎𝑏 ← 𝑔𝑎𝑏

𝑘𝐴𝑏 ← 𝑔𝐴𝑏
𝑚0 ∶= dec(𝑘1, 𝑛, ℎ, 𝑐0)

ℎ ← H(ℎ‖𝑐0)
𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0

Payload Data

Initiator Responder

ck, ℎ ← H(KN_label)
ℎ ← H(ℎ‖𝑎𝑑), 𝑛 ← 0

ℎ ← H(ℎ‖pk𝐴)
𝑟0 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐴)
pk𝑒, sk𝑒 ← KEM.KGen(1𝜆; 𝑟0)

ℎ ← H(ℎ‖pk𝑒)
𝑝𝑘𝑒

𝑟1 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)
𝑐𝑡𝑒, 𝑘𝑒 ← KEM.Encap(pk𝑒; 𝑟1)
ℎ ← H(ℎ‖𝑐𝑡𝑒)

ck, 𝑘0 ← KDF(ck, 𝑘𝑒, 2)
𝑟2 ← GenRand(𝑠𝑒𝑒𝑐𝑠𝑘𝐵)

𝑐𝑡ℐ, 𝑘ℐ ← KEM.Encap(pkℐ; 𝑟2)
𝑐0 ← enc(𝑘0, 𝑛, ℎ, 𝑐𝑡ℐ)

ℎ ← H(ℎ‖𝑐0)
ck, 𝑘1 ← KDF(ck, 𝑘ℐ, 2), 𝑛 ← 0

𝑐1 ← enc(𝑘1, 𝑛, ℎ, 𝑚0)
𝑐𝑡𝑒, 𝑐0, 𝑐1

𝑘𝑒 ← KEM.Decap(sk𝑒, 𝑐𝑡𝑒)
𝑐𝑡ℐ ← dec(𝑘0, 𝑛, ℎ, 𝑐0)
𝑘ℐ ← KEM.Decap(skℐ, 𝑐𝑡ℐ)
𝑚0 ← dec(𝑘1, 𝑛, ℎ, 𝑐1)

ℎ ← H(ℎ‖𝑐0)
𝑘𝑖, 𝑘𝑟 ← KDF(𝑐𝑘1, 𝜖, 2), 𝑛 ← 0

Payload Data

Figure 1: The KN patterns of classical Noise (left) and
PQNoise (right). For reasons of space we use the follow-
ing conventions here: highlighted actions are performed by
both parties as soon as they receive all necessary values to
perform the computations in question. If any decryption-
or decapsulation-algorithm returns ⊥, the party in question
aborts the protocol.

a static-static Diffie-Hellman exchange. The intention behind this
was purely to achieve initiator-authenticity earlier than otherwise
possible. However, later academic analysis [19] came to rely upon
it to achieve protection from so called Maximal Exposure (or MEX-
) attacks [26], where the adversary can learn the randomness of
parties.

Removing this protection fromPQNoisewould thereforeweaken
the patterns compared to the security that published analysis promises
for their classical counterparts, even if those properties were never
promised by the designers of these patterns. As we outlined above,
there is no direct replacement for the Static-Static exchange when
usingKEMs. Nevertheless, similar security properties can be achieved
when combining a static secret with the random coins used in the
encapsulation algorithm.

The first time something like this was proposed was as part
of the NAXOS-protocol [28]. Later Fujioka, Suzuki, Xagawa and
Yoneyama [21] used “twisted PRFs” to achieve a similar result. Later
still Akhmetzyanova, Cremers, Garratt, Smyshlyaev and Sullivan [1]
proposed to use hashed signatures of random messages, arguing
that the secret keys for signature-schemes often reside in special
protected hardware to begin with, making this a practical match.
This was then standardized by the IETF as RFC 8937 [15].

Since the exact choice of such a system should be transparent
for all peers, we consider it an implementation detail and refrain
from specifying any concrete technique. Instead we introduce the
notion of Static-Ephemeral Entropy Combination (SEEC) as an ab-
straction of all of these and similar approaches and base our anal-
ysis on this abstract notion. This allows us to generically analyze

100

https://florianjw.de/diverses/pqnoise-codegen.tar.bz2

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

PQNoise without forcing implementers to use any specific system.
Indeed, SEEC also covers cases where themixing is done on system
level, matching well with the philosophy of Noise while formally
describing the requirements to achieve security also under MEX
attacks.

Intuitively a SEEC-scheme consists of a pair of algorithmsGenKey
and GenRand. GenKey is a probabilistic algorithm that returns a
long-term key sk. GenRand then takes sk and some random coins
and returns a pseudorandom value r, where r is indistinguishable
from a true randomvalue if either sk is uncorrupted and the random-
coins fresh (but possibly known to the adversary) or if the random-
coins are uncorrupted. Additionally we allow but do not require
GenRand to modify sk. The reason is that this is necessary to al-
low SEEC-schemes to implement pre- and post-compromise secu-
rity. This is a weaker notion than one could strive for, but most
existing schemes would not instantiate a stronger notion which
would therefore undermine our goal of allowing the implementer
to choose freely which one to use. We provide a more formal defi-
nition and “PRP-SEEC” as a simple, exemplary instantiation in the
full verison [3].

2.3 Translating Patterns
Given the general description of PQNoise, it remains to be shown
how we move from a Noise pattern to a PQNoise pattern, generi-
cally. While the translation of most steps is straightforward, there
are two non-trivial cases that have to be handled with care. The
first one is any instance of a Static-Ephemeral or Ephemeral-Static
exchange, where the sending-party is the owner of the static key.
In the DH case they immediately prove the identity of the sender
(assuming the static key is uncorrupted), establishing authentic-
ity right away. This does not work with KEMs, as the owner of
the static public key cannot combine their secret key with their
peer’s ephemeral public key. The obvious workaround of having
their peer create and send the ciphertext (as in the case where the
sending party is owner of the ephemeral key) is not equivalent as
it does not yet confirm the authenticity of the owner of the static
key. Instead, the owner has to send an additional key-confirmation
message (i.e., if this was the lastmessage, another AEAD ciphertext
from the static key owner using a key derived from the encapsu-
lated value is necessary). In effect this adds up to one roundtrip.

The second one is replacing a Static-Static exchange, as there is
no direct equivalent for it. However, using and extending the tech-
nique from the previous paragraph we can create a workaround
that achieves similar security. In Noise the Static-Static exchange
establishes authenticity for both parties and confidentiality (assum-
ing uncorrupted static keys). Sending encapsulations for both static
KEMs would almost establish the same properties as long as we se-
cure the coins used by the encapsulating party using SEEC with a
static secret. The resulting shared secrets are unknown to the ad-
versary as long as the static keys are uncompromised. Afterwards,
a key confirmation is necessary by the initial sender. Given that
this adds a full roundtrip and that ss is usually used to get an early
shared secret before a roundtrip, it may sometimes be more rea-
sonable to drop this combination entirely, using se and es for au-
thenticity.

Everything else can usually stay as it is, with the exception that
the transmission of the responder’s ephemeral public key can be
dropped entirely. (This is under the assumption that the initiator
sends an ephemeral public key before the responder does; other-
wise the initiators ephemeral public key gets dropped. As it would
delay the arrival at forward secrecy, we see little reason to devi-
ate from that convention and are unaware of any proposals to use
such patterns.)

This gives us the following recipe to translate patterns in a man-
ner that we conjecture to preserve the security (“conjecture” be-
cause while we prove the security of the PQNoise patterns, we lack
a generic proof of classical Noise to compare the results to):

Ephemeral-Ephemeral exchanges (ee) can be directly replaced by
sending a ciphertext for the ephemeral KEM (ekem).

Ephemeral-Static exchanges (es) sent by the initiator and Static-
Ephemeral exchanges (se) sent by the responder can be di-
rectly replaced by sending a ciphertext for the receiving par-
ties KEM (skem).

Ephemeral-Static exchanges (es) sent by the responder and Static-
Ephemeral exchanges (se) sent by the initiator are more
complicated: When the initiator in Noise sends se, we re-
place this by the initiator finishing his current turn, follow-
ing to which the responder sends skem, the initiator replies
with a key-confirmation that may also contain the remain-
ing operations given in the line of the original pattern. The
same approach is used for es sent by the responder, with
reversed roles.

Static-Static exchanges (ss) where the initiator is the original sender,
are replaced as follows.The initiator sends skem, computing
her coins using SEEC with a static secret and ends her turn.
The responder responds with skem, the coins also obtained
using SEECwith a static secret, and ends his term. Lastly the
initiator has to send another message for key confirmation.
If the responder is the original sender, roles are reversed.

After removing duplicate actions (usuallymultiple uses of skem),
we conjecture the resulting pattern to achieve the same confiden-
tiality, authenticity, integrity, anonymity and deniability as the
original one; While we don’t further analyze the later three goals,
the lack of a generic analysis of classical noise (which is out of
scope for this work) prevents us from proving the first two. Our
generic analysis does however show that PQNoise matches (or ex-
ceeds) the conjectured / proven security [19] for those original
Noise-patterns, that have been analyzed in the fACCE-model. This
may come at the disadvantage of only achieving that security at a
later point in the interaction, due to the additional roundtrips.

One property that cannot be preserved by this translation-approach
is that the ephemeral key-share of a party is used with both shares
of their peer; Because of this the peer could be certain that the
derived keys belong to the same ephemeral key using DH. This is
no longer the case with KEMs since there is in general no way to
derive useful information about the used ephemeral entropy from
the ciphertext and reusing entropy may even introduce vulnerabil-
ities. In our formal analysis this does not cause problems for confi-
dentiality and authenticity. However, protocol designers who rely
upon the dual-use of the ephemeral keys in Noise for other pur-
poses need to be aware of this.

101

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

2.4 Fundamental Patterns
With the above recipe we can convert any Noise pattern into a
PQNoise-pattern. The result of this transformation is however not
always optimal in terms of roundtrips. For this reason we hand-
picked a PQNoise-pattern to match each of the twelve fundamen-
tal classical Noise-patterns ({𝐼, 𝑁, 𝐾, 𝑋} × {𝑁, 𝐾, 𝑋}). These
PQNoise patterns are designed to not only achieve at least the same
amount of confidentiality and authenticity, put to also do that as
efficient as possible. (The equivalent security follows from the use
of the same KEMs, for which our proofs show that each KEM will
introduce some degree of security independent of the order of their
use, but possibly at different protocol-stages.)

All of them ended up having a direct equivalent in classical
Noise when looking beyond its own fundamental patterns from
which they result as part of the generic translation: The IK and
the KK patterns are equivalent to IKnoss and KKnoss [34]. All pat-
terns that involve (non-early) transmitted keys are equivalent to
the deferred patterns where the transmitted key sees deferred use
(every “X” becomes “X1”), for example IX is equivalent to IX1 and
XX is equivalent to X1X1. All other patterns are equivalent to their
namesakes.

While some of these patterns require more roundtrips than their
classical counterparts and may achieve certain degrees of security
at a slightly later point, they all eventually end up achieving the
same degree of security that was conjectured or proven [19] for
their classical counterparts.

Noise also provides three non-interactive patterns ({𝑁, 𝐾, 𝑋}).
The authenticated 𝐾- and 𝑋-patterns cannot be translated into
non-interactive versions of PQNoise, as the initiator cannot prove
his identity in a non-interactive way using only KEMs. The unau-
thenticated 𝑁 -pattern can however be translated trivially and es-
sentially results in the standard KEM/DEM-construction. We note
that our analysis applies to the 𝑁 -pattern as well and therefore
include it in the list of the thirteen fundamental PQNoise patterns.

We depict the interactive ones of these in Figure 2 and pro-
vide more detailed descriptions and a comparison with their Noise
counterparts in the full version [3].

3 OVERVIEW OF THE FLEXIBLE ACCE
FRAMEWORK

We analyze the security of PQNoise in the flexible authenticated
and confidential channel establishment (fACCE) framework [19]
whichwas developed for the analysis of Noise. Herewe give a high-
level overview of the cryptographic primitive fACCE, and define
fACCE security, highlighting areas that we have modified for our
specific setting of post-quantum channel-establishment protocols.

The main divergence between the original fACCE model and
our version is how we structure and represent freshness conditions.
These allow the protocol analyser to determine in which settings
an attack is valid, i.e. after what set of compromises or adversary
actions is the adversary considered to win the game.This is largely
determined by a definition ofwhen a protocol is supposed to achieve
a certain security goal. In the original fACCE model, this was rep-
resented as a series of freshness counters, which captured confi-
dentiality or authentication under certain types of attacks e.g. au𝜌

defines when the party with role 𝜌 authenticates itself, and thus

pqNN:
-> e
<- ekem

pqNK:
<- s
...
-> skem, e
<- ekem

pqNX:
-> e
<- ekem, s
-> skem

pqKN:
-> s
...
-> e
<- ekem, skem

pqKK:
-> s
<- s
...
-> skem, e
<- ekem, skem

pqKX:
-> s
...
-> e
<- ekem, skem, s
-> skem

pqXN:
-> e
<- ekem
-> s
<- skem

pqXK:
<- s
...
-> skem, e
<- ekem
-> s
<- skem

pqXX:
-> e
<- ekem, s
-> skem, s
<- skem

pqIN:
-> e, s
<- ekem, skem

pqIK:
<- s
...
-> skem, e, s
<- ekem, skem

pqIX:
-> e, s
<- ekem, skem, s
-> skem

Figure 2: The interactive fundamental PQNoise patterns.

when it is considered a non-trivial attack that the adversary can
inject or modify messages from the 𝜌-party. This resulted (in their
full model) in ten counters, each capturing a specific type of attack
and compromise paradigm.

We instead represent all combinations of secrets (long-term and
ephemeral) for each session as rows in a security table (ST), with au-
thentication and confidentiality columns. For each combination of
secrets, we indicate in which stage(s) authentication and confiden-
tiality hold if the adversary has not corrupted those secrets. This
results in a simpler, more intuitive representation as it focuses on
the natural question: under any given compromise strategy, when
does the protocol achieve (if at all) confidentiality and authenticity?
instead of requiring the reader (or protocol designer) to understand
and interpret cryptographic history (e.g., the eck counter describes
an adversary that can compromise either session’s ephemeral ran-
domness). We also use copies of ST (which we denote the freshness
table or FT) as a tool within our formalism, serving to simplify
our freshness conditions: each session begins with a full FT, and
whenever an adversary compromises a particular type of secret,
the rows with that secret are removed from FT. An adversary that
attempts to break the security of stages that are not associatedwith
some combination of secrets are considered invalid as the result
of trivial attacks. In addition to this, we make a small number of
mostly aesthetic changes:

• We rename Enc and Dec as Send and Recv. We note that
this better matches their semantics, as Send and Recv also
transmit channel-establishmentmaterial, and potentially do

102

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

not perform encryption and decryption at all, depending on
the protocol.

• We require that each Send operation increments the stage
counter of the channel. The original fACCE model only in-
cremented the stage counter when new (and increased) se-
curity properties are reached. This change ties the stage of
the channel to its flow in the channel communication. As
a result, we modify the definition of fACCE protocols to no
longer output the stage counter 𝜍 when sending or receiving
messages, as it is sufficient to count the messages between
communicating parties.

We now turn to describing the fACCE primitive and security
framework on a high-level, and give some additional insight into
the changes made to the freshness conditions. The full model can
be found in the full version [3].
fACCE Primitive Description.On a high-level, fACCE is a cryp-
tographic protocol that both establishes a secure channel and pro-
vides authenticated and confidential communication between two
parties. Eschewing amodular approach, channel establishment and
payload transmission are handled by the same algorithms – where
Send sends channel establishment information and (potentially en-
crypted) payload data, and Recv receives.These functions may also
update the internal state of the sessions.

Definition 3.1 (Flexible ACCE). A flexible ACCE protocol fACCE
is a tuple of four algorithms KGen, Init, Send,Recv associated with
a long-term secret key space ℒ𝒮𝒦, a long-term public key space
ℒ𝒫𝒦, an ephemeral secret key space ℰ𝒮𝒦 an ephemeral public
key space ℰ𝒫𝒦, and a state space 𝒮𝒯. The definition of fACCE
algorithms are as follows:
KGen →$ (sk, pk) generates long-term keys where sk ∈ ℒ𝒮𝒦,

pk ∈ ℒ𝒫𝒦. Note that this captures both long-term asym-
metric key pairs, as well as potential long-term symmetric
secrets (which we consider a part of sk).

Init(sk, ppk, 𝜌, ad) →$ st initializes a session to begin communica-
tion, where sk (optionally) are the initiator’s long-term se-
cret keys, ppk (optionally) is the long-term public key of the
intended session partner, 𝜌 ∈ {i, r} is the session’s role
(i.e., initiator or responder), ad is data associated with this
session, and sk ∈ ℒ𝒮𝒦 ∪ {⊥}, ppk ∈ ℒ𝒫𝒦 ∪ {⊥}, ad ∈
{0, 1}∗, st ∈ 𝒮𝒯.

Send(sk, st, 𝑚) →$ (st′, 𝑐) continues the protocol execution in a
session and takes message 𝑚 to output new state st′, and
messages 𝑐1, where sk ∈ ℒ𝒮𝒦 ∪ {⊥}, st, st′ ∈ 𝒮𝒯, 𝑚, 𝑐 ∈
{0, 1}∗. Note that Send may generate additional ephemeral
key pairs (epk, esk) ∈ ℰ𝒫𝒦 × ℰ𝒮𝒦2.

Recv(sk, st, 𝑐) →$ (st′, 𝑚) processes the protocol execution in a
session triggered by 𝑐 and outputs new state st′, and mes-
sage 𝑚, where sk ∈ ℒ𝒮𝒦 ∪ {⊥}, st ∈ 𝒮𝒯, st′ ∈ 𝒮𝒯 ∪
{⊥}, 𝑚, 𝑐 ∈ {0, 1}∗. If st′ = ⊥ is output, then this denotes
a rejection of this ciphertext.

We assumemessages sent in fACCE are sent in a ping-pong fash-
ion, i.e., the initiator sends a message to the responder, who replies
1Note that messages here may consist of channel establishment data (such as keying
material), encrypted payload data, or even plaintext payload data. In what follows, we
refer to these generically as “ciphertexts”, even when sending plaintext data.
2In the security experiment, these are stored within state st

to the initiator, and so on. Multiple messages in a single flow are
thus extensions of a single message. Each message monotonically
increases the stage of the protocol, i.e., the first message sent from
initiator to responder is stage one, the first message sent from re-
sponder to initiator is stage two, etc. This differs from the original
fACCE, which only increments stages when achieving new secu-
rity properties.

We define the correctness of an fACCE protocol in the full ver-
sion [3]. Intuitively an fACCE protocol is correct if messages sent
from the established channel were equally accepted by their part-
ner.

Execution Environment. Here we describe (on a high-level) the
execution environment for our fACCE security experiment. We
consider a set of 𝑛𝑃 parties each (potentially) maintaining a long-
term key pair {(sk1, pk1), … , (sk𝑛𝑃

, pk𝑛𝑃
)}, (sk𝑖, pk𝑖) ∈ ℒ𝒮𝒦 ×

ℒ𝒫𝒦. Each party can participate in up to 𝑛𝑆 sessions, with each
session potentially lasting 𝑛𝑇 stages. Each session samples per-
session randomness rand used throughout the protocol execution.
We denote both the set of variables that are specific for a session
𝑠 of party 𝑖 as well as the identifier of this session as 𝜋𝑠

𝑖 . Further
details on the session state can be found in the full version [3].

Honest partnering is defined over the transcript sent between
two sessions. Intuitively, a session has an honest partner if all ci-
phertexts the honest partner received were sent by the session
(without modification) and vice versa, and at least one party re-
ceived a ciphertext at least once. The full definition of honest part-
ner can be found in the full version [3].

The fACCE model can capture authentication and confidential-
ity under various compromise paradigms, similar to the levels of au-
thentication and confidentiality encoded by the original fACCE’s
various counters. We also highlight that this approach aligns with
the typical structures of proofs of fACCE protocols – when one
of the right-hand columns is not ∞, this represents a case distinc-
tion in the proof. This proof structure is common in the analysis
of authenticated key exchange protocols, especially those in the
extended-Canetti-Krawczyk (eCK) model [28], such as the proofs
of WireGuard [18] and PQWireGuard [23].

To facilitate the security game, the challengermaintains for each
session 𝜋𝑠

𝑖 a set 𝕊𝜋𝑠
𝑖
that contains labels of all secrets that each

session (and its honest partner) maintains – the long-term secret
values sk𝑖, sk𝑗 (both asymmetric and symmetric), all ephemeral
secret values sampled during the 𝑛𝑇 stages of the protocol exe-
cution esk1

𝑠, esk1
𝑡 … , 𝑒𝑠𝑘𝑛𝑇𝑠 , esk𝑛𝑇

𝑡 and the state maintained during
the protocol executions at each stage st1𝑠, st1𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡 . Thus
𝕊𝜋𝑠

𝑖
= (sk𝑖, sk𝑗, esk1

𝑠, esk1
𝑡 , … , esk𝑛𝑇

𝑠 , esk𝑛𝑇
𝑠 , st1𝑠, st1𝑡 … , st𝑛𝑇𝑠 , st𝑛𝑇

𝑡).
Each session in an fACCE experiment is associated with a four

column freshness table FT (a copy of the original ST), with each
element of the powerset of 𝕊𝜋𝑠

𝑖
(labels for each secret for itself and

its honest partner) contained in the left column, and stage coun-
ters / tuples in the Confidentiality, Authenticity of Initiator, and Au-
thenticity of Responder columns.The intuition here is that the table
declares at which stages confidentiality and authenticity (for each
role) are achieved under the assumption that the associated com-
binations of secrets have not been compromised by an attacker.

Consider the NK Noise Pattern ST displayed in Table 1 (see
the full version [3]for the full protocol). In the table we denote

103

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

Table 1: The NK Noise Pattern (<-s \\... \\->e, es \\<-e,
ee) and associated fACCE security table.

Secrets Conf Auth - i Auth - r
𝑠ℛ ∞ ∞ ∞
𝑠ℛ, 𝑒ℐ 1 ∞ 2
𝑠ℛ, 𝑒ℛ ∞ ∞ ∞
𝑒ℐ, 𝑒ℛ 2 ∞ ∞
𝑠ℛ, 𝑒ℐ, 𝑒ℛ 1 ∞ 2

the ephemeral Diffie-Hellman secret value that the initiator sam-
ples as 𝑒ℐ and the responder samples as 𝑒ℛ, and the long-term
Diffie-Hellman secret value that the responder maintains (𝐵) as
𝑠ℛ. If (at least) the long-term key of the responder 𝑠ℛ and the
ephemeral key of the initiator 𝑒ℐ remain uncompromised the NK
Pattern achieves responder authentication in stage 𝜍 = 2, and does
not achieve initiator authentication. If 𝑒ℛ, 𝑒ℐ remain uncompro-
mised, NK achieves confidentiality in stage 𝜍 = 2, and if 𝑠ℛ and 𝑒ℐ
remain uncompromised then NK achieves confidentiality of mes-
sages in stage 𝜍 = 1. The intuition on an attacker’s winning condi-
tion is that if the adversary breaks security in any stages associated
with a particular combination of secrets that have not been com-
promised, the adversary wins.

Adversarial Model. In order to model active attacks in our envi-
ronment, the security experiment provides theOInit,OSend,ORecv
oracles to an adversary 𝒜, who can use them to control communi-
cation among sessions, togetherwith the oraclesOCorrupt,OReveal
and ORevealRandomness.

Following the direction of the original fACCE work, we treat
the authentication and confidentiality properties similarly to the
original AEAD notion of Rogaway [35]: the game maintains a win
flag (to indicate whether the adversary broke authenticity or in-
tegrity of ciphertexts) and changes encryption behaviour based on
randomly sampled challenge bits (to model indistinguishability of
ciphertexts). In order to win the security game, adversary 𝒜 either
has to trigger win ← 1 or output the correct challenge bit 𝜋𝑠

𝑖 .𝑏𝜍 of
a specific session stage 𝜍 at the end of the game.

In addition, the challenger maintains a set of freshness flags
𝜋𝑠

𝑖 .fr𝜍 for each stage 𝜍 of each session 𝜋𝑠
𝑖 . When 𝒜 makes a query

to OCorrupt, OReveal or ORevealRandomness, then 𝒞 deletes all
rows in the freshness table FT that contain the secret revealed to
𝒜. All stages for all sessions that are not an element of the right-
hand columns are now considered un-fresh, and the correspond-
ing freshness flags are set to 0. When 𝒜 terminates and outputs a
session 𝜋𝑠

𝑖 and a stage counter 𝜍 such that the freshness flag associ-
ated with 𝜋𝑠

𝑖 .𝜍 is 0, then 𝒞 simply outputs a random bit 𝑏∗ instead
of 𝜋𝑠

𝑖 .𝑏𝜍 = 𝑏′.
We describe the function of each oracle below. The details on

excluding trivial attacks as the result of these oracles can be found
in the full version [3].
OInit(𝑖, pk𝑗, 𝜌, ad) initializes a new session 𝜋𝑠

𝑖 (if not yet initial-
ized) of party 𝑖 to be partnered with party 𝑗, invoking
fACCE. Init(sk𝑖, pk𝑗, 𝜌, ad) →[𝜋𝑠

𝑖 .rand] 𝜋𝑠
𝑖 .st using random-

ness 𝜋𝑠
𝑖 .rand and returning the index of the session 𝑠.

OSend(𝑖, 𝑠, 𝑚0, 𝑚1) triggers the encryption of the message 𝑚𝑏
where 𝑏 = 𝜋𝑠

𝑖 .𝑏𝜍 by invoking Send(sk𝑖, 𝜋𝑠
𝑖 .st, 𝑚𝑏) →[𝜋𝑠

𝑖 .rand]
(st′, 𝑐) for an initialized 𝜋𝑠

𝑖 if |𝑚0| = |𝑚1|. Note that 𝑐 con-
tains both the explicit ciphertext encryption of the message
𝑚𝑏 and any channel establishment messages that are sent
in this stage. Finally 𝑐 is appended to 𝜋𝑠

𝑖 .𝑇𝑠.
ORecv(𝑖, 𝑠, 𝑐) triggers invocation of Recv(sk𝑖, 𝜋𝑠

𝑖 .st, 𝑐) →[𝜋𝑠
𝑖 .rand]

(st′, 𝑚) for an initialized 𝜋𝑠
𝑖 and returns (𝑚, 𝜍) only if 𝜋𝑠

𝑖
has no honest partner, and returns 𝜍 if an honest partner ex-
ists. If an honest partner exists, and the session is currently
fresh, then outputting the plaintext message 𝑚 would leak
the challenge bit, so we must prevent this leakage. The ad-
versary breaks authentication (and thereby win ← 1 is set)
if the received ciphertext was not sent by a session of the in-
tended partner but was successfully received (i.e., there ex-
ists no honest partner and the output state is st′ ≠ ⊥), and
𝒜 has not issued queries that trivially break authentication
in this stage. Finally 𝑐 is appended to 𝜋𝑠

𝑖 .𝑇𝑟 if decryption
succeeds.

ORevealRandomness(𝑖, 𝑠) → rand outputs the ephemeral random-
ness rand sampled by session 𝜋𝑠

𝑖 . The freshness table FT and
freshness flags are updated by the challenger.

OCorrupt(𝑖) → sk𝑖 outputs the long-term secret key sk𝑖 of party
𝑖 and updates the freshness table FT and freshness flags.

OReveal(𝑖, 𝑠) → 𝜋𝑠
𝑖 .st outputs the current session state 𝜋𝑠

𝑖 .st, and
updates the freshness table FT and freshness flags.

Finally, we formalise the security of an fACCE primitive in the
full version [3]. A flexible ACCE protocol fACCE is post-quantum
secure if it is correct and AdvfACCE𝒬 is negligible for all quantum
algorithms 𝒬 running in polynomial-time.

4 ANALYSIS
In this section we present our security analysis of PQNoise. To be-
gin, we model Noise’s use of key-derivation-functions as a “hash-
object”. This allows us to separate the analysis of Noise into the
analysis of the hash-object, which focuses on the local key deriva-
tion activities of a user, and the analysis of the key exchange exe-
cuted between users.

We note that besides the key-derivation-chain (“key-chain”) Noise
also computes a second hash-chain ℎ to create a handshake-hash;
the modelling and analysis in the following section do not apply
to that chain.

4.1 Hash-Object
Noise has a somewhat convoluted key derivation process as it de-
rives fresh symmetric keys every time it computes a new shared
key. Towards this end, Noise makes use of a key-chain into which
all shared secrets are absorbed and from which all session-keys
are extracted. This chain effectively is a PRF chain in which a pre-
vious chaining value is used as key, and any new input is used
as input. The output is split into an output and a new chaining
value. In an analysis this can be treated as a series of independent
pseudorandom function calls. However, the proofs that result from
this approach tend to have a long sequence of game hops applying
the dual-PRF assumption to replace PRF outputs by random val-
ues based on the chaining value or the input being pseudorandom.

104

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

These are shared by many proof-steps and distract from the core
part of the different proofs. Because of this, we introduce an ab-
straction that allows us to treat such chains as a single object with
new security properties that allow to prove security of protocols
like (PQ)Noise. We call the new object a hash-object, provide a def-
inition of pseudorandomness for such objects, and prove that the
construction of a hash-object used in Noise achieves this property.

Noise usually creates multiple outputs whenever it inputs a new
value into its hash-chain, the first of which is usually used as a form
of a state that we model as the state 𝑠 of our hash-object. At the
end of the handshake-phase Noise uses the first result directly as
output and forgoes the creation of a new state. To model this we
introduced a function finalize that mostly behaves like the regular
input-function, except that it does not return a new state.

Definition 4.1 (Hash-Object). Formally a hash-object is a tuple
of three deterministic algorithms: create, input, finalize, and an
integer-constant 𝑛.
create(1𝜆) → 𝑠 takes a security-parameter 𝜆 and returns a state

𝑠.
input(𝑠, 𝑚) → 𝑠′, ℎ takes a state 𝑠 and message 𝑚 ∈ {0, 1}∗ and

returns a new state 𝑠′ and a list ℎ ∈ ({0, 1}𝜆)𝑛 of hashes of
length 𝑛 .

finalize(𝑠, 𝑚) → ℎ works like input, except that it does not return
a state.

For convenience sake we will use class-style notation (i.e. ℎ ∶=
𝑠. input(𝑚) instead of 𝑠, ℎ ∶= input(𝑠, 𝑚)).

Definition 4.2 (Pseudorandom Hash-Object). We say that a hash-
object HO is a pseudorandom hash-object if and only if ∀𝒜 ∈
QPT, 𝜆 ∈ ℕ:

∣ Pr [Exp𝑃𝑅𝐻𝑂
HO,𝒜,0 (1𝜆) = 1]

− Pr [Exp𝑃𝑅𝐻𝑂
HO,𝒜,1 (1𝜆) = 1] ∣ =∶ Adv𝑃𝑅𝐻𝑂

HO, 𝒜 (1𝜆) ≤ negl (𝜆)where

Exp𝑃𝑅𝐻𝑂
HO,𝒜 is defined as in Experiment 1.

The core idea behind this definition is that the adversary re-
ceives oracle-access to an arbitrary number of hash-objects into
which he can feed whatever values he likes. At any point in time he
can request to add the random secret 𝑟 that is sampled once at the
start of the game to any oracle by invoking Rand. From that point
onwards all the outputs from the randomized hash-object will ei-
ther be true random values or real, depending on the challenge-bit.
Everything else in this definition is just there to prevent trivial at-
tacks: history keeps track of the exact queries performed on each
hash-object. queries is a dictionary that saves the set of queries that
were previously performed on hash-objects with a given history to
prevent running both In and Fin on objects in the same state, as the
later would reveal the resulting state of the former. cache is a dic-
tionary that is used to ensure that two hash-objects with the same
history always return the same results even if they have been ran-
domized and return truly random values.

With this we define the Noise Hash Object as depicted in Al-
gorithm 2. This is more or less a direct recreation of how Noise
defines HKDF, except that it distinguishes the case where the first
argument is then used as state from the casewhere no state is main-
tained and everything is returned as output.

TheoRem 4.3. ANoise HashObject NHO is a secure pseudo-random
Hash-Object ifHMAC-HASH is a dual-prf with:Adv𝑃𝑅𝐻𝑂

NHO, 𝒜,qi
(1𝜆) ≤

⎛⎜⎜
⎝

AdvCollResHMAC-HASH, 𝒜′ (1𝜆) +
AdvPRF-SWAP

HMAC-HASH, 𝒜′ (1𝜆) +
(2 ⋅ q) ⋅ AdvPRFHMAC-HASH, 𝒜′ (1𝜆)

⎞⎟⎟
⎠

where q refers to the total num-

ber of oracle-queries.

We refer to the full version [3]for a proof. Intuitively the collision-
resistance of HMAC-HASH implies that only identical histories re-
sult in equal states and the HMAC-HASH being a dual-PRF (the
full version [3] for a definition) ensures that once r has been added
to a chain, its first state becomes pseudorandom which is retained
upon subsequent calls.

4.2 PQNoise
At this point we can now start the analysis of PQNoise itself. We
consider PQNoisewith andwithout the use of SEEC.The reason for
analyzing both is that Noise has traditionally considered bad RNGs
a problem of the operating system which combined with the fact
that the use of SEEC is (if there is no corruption) unobservable from
the outside, suggests that the Noise-project may refuse to specify
the use of SEEC and leave it as an implementation-detail.

Let Π be a PQNoise-protocol and Π′ be the same protocol with-
out the use of SEEC. Let#𝐼 ,#𝑅 and#𝐸 refer to the stage ofΠ/Π′

during which the KEM-ciphertexts for the initiator’s/ responder’s/
ephemeral public keys are sent and ∞ if they are not sent. Let 𝑛𝑃
be the number of parties participating in a protocol, 𝑛𝑆 be the max-
imum number of sessions a party participates in, and 𝑛𝐾 the total
number of session-keys that a party uses. We are using standard-
definitions for AEAD, PRFs, PRF-SWAPs, and KEMs (see the full
version [3]). On top of that we use the definition of pseudo-random
hash-object (PRHO) from above.

Intuitively the following four theorems can be summarized like
this: In PQ-Noise, authenticity for a party 𝒫 is established once
it sends a valid reply to a message that was encrypted with un-
corrupted randomness under 𝒫’s uncorrupted public key. This is
because 𝒫’s peer 𝒰 is by the definition and requirements of this
case an honest peer whose KEM-ciphertext is fresh and can only be
decrypted by𝒫.𝒫’s response contains an AEAD-ciphertext whose
key is derived from the shared secret that only 𝒫 and 𝒰 have ac-
cess too. As AEAD-ciphertexts cannot be forged without the key,
and 𝒰 knows that the reply was not created by her, she can, by the
corruption-setting, conclude that she is talking to 𝒫.

TheoRem 4.4. Π achieves initiator-authenticity in stage #𝐼 + 1
if the initiator’s static key and either of the responders keys have not
been corrupted with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ
Π, 𝒜 (1𝜆) ≤ AdvCollResH, 𝒜′ (1𝜆) + 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆) + AdvPRHO𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

TheoRem 4.5. Π′ achieves initiator-authenticity in stage #𝐼 + 1
if the initiator’s static key and the responders ephemeral key have
not been corrupted with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℐ
Π, 𝒜 (1𝜆) ≤ AdvCollResH, 𝒜′ (1𝜆) + 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) +AdvPRHO𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

105

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

Experiment 1: Exp𝑃𝑅𝐻𝑂
HO,𝒜,b , the pseudo-randomness experiment for a hash-object HO.

1 𝑟 ←$ {0, 1}𝜆

2 hashes ∶= [], history ∶= [], j ∶= 0
3 randomized ∶= [0, … , 0]
4 finalized ∶= [0, … , 0]
5 queries ∶= ∅
6 cache ∶= dict()
7 Oracle Create:
8 i, j ∶= j, j + 1
9 hashes[𝑖] ∶= create(1𝜆)

10 history[𝑖] ∶= []
11 return 𝑖
12 Oracle Rand(𝑖, finalize):
13 randomized[𝑖] ∶= 1
14 if finalize:
15 return Fin(𝑖, 𝑟)
16 else:
17 return In(𝑖, 𝑟)

18 Oracle In(𝑖, 𝑚):
19 abort_if(finalized[𝑖]

∨ (history[𝑖] | |(“Fin”, 𝑚)) ∈ queries)
20 history[𝑖]. append(“In”, 𝑚)
21 queries∪ =history[𝑖]
22 if randomized [i]:
23 if cache[history[𝑖]] ≠ ⊥:
24 return cache[history[𝑖]]
25 ℎ0 ∶= hashes[𝑖]. input(𝑚)
26 ℎ1 ←$ ({0, 1}𝜆)𝑛

27 cache[history[𝑖]] ∶= ℎ𝑏
28 return ℎ𝑏
29 else:
30 return hashes[𝑖]. input(𝑚)

31 Oracle Fin(𝑖,m):
32 abort_if(finalized[𝑖]

∨ (history[𝑖] | |(“In”, 𝑚)) ∈ queries)
33 finalized[𝑖] ∶= 1
34 history[𝑖]. append(“Fin”, 𝑚)
35 queries∪ =history[𝑖]
36 if randomized [i]:
37 if cache[history[𝑖]] ≠ ⊥:
38 return cache[history[𝑖]]
39 ℎ0 ∶= hashes[𝑖]. finalize(𝑚)
40 ℎ1 ←$ ({0, 1}𝜆)𝑛

41 cache[history[𝑖]] ∶= ℎ𝑏
42 return ℎ𝑏
43 else:
44 return hashes[𝑖]. finalize(m)
45 return 𝒜Create,In,Fin,Rand(1𝜆)

Algorithm 2: Noise-compatible instantiation for the
pseudo-random hash-object.
1 Function create(1𝜆):
2 return “”
3 Function finalize(state,m):
4 (h0, [h1. … , h𝑛]) ∶= input(state,m)
5 return [h0. … , h𝑛−1])
6 Function input(state,m):
7 tmp ∶= HMAC-HASH(state,m)
8 last ∶= “”
9 for 𝑖 ∈ {0, … , 𝑛}:
10 h𝑖 ∶= HMAC-HASH(tmp, last|| byte(𝑖))
11 last ∶= h𝑖
12 return h0, [h1. … , h𝑛]

TheoRem 4.6. Π achieves responder-authenticity in stage #𝑅+1
if the responders static key and either of the initiator’s keys have not
been corrupted with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ
Π, 𝒜 (1𝜆) ≤ AdvCollResH, 𝒜′ (1𝜆) + 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆) + AdvIND-CCA𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆) + AdvPRHO𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

TheoRem 4.7. Π′ achieves responder-authenticity in stage #𝑅 +
1 if the responders static key and the initiator’s ephemeral key have
not been corrupted with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑎𝑢𝑡ℎℛ
Π, 𝒜 (1𝜆) ≤ AdvCollResH, 𝒜′ (1𝜆) + 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + 𝑛2
𝑃 ⋅ 𝑛𝑆 ⋅

(AdvIND-CCA𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆)+AdvPRHO𝐻, 𝒜′ (1𝜆)+𝑛𝐾 ⋅Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

We provide a detailed proof in the full version [3]. Intuitively
the security is a consequence of the ciphertext for the initiator’s/
responder’s static public key being generated with good random-
ness for an uncorrupted key.The resulting shared secret is then fed
into the hash-object whose outputs can be treated as random from
then on. Eventually the adversary would therefore have to break
the authenticity of the AEAD-scheme in order to create a message
as the key is essentially random at that point. The relatively low
tightness is a consequence of having to guess the attacked session
and parties.

Intuitively the next six theorems state that confidentiality is
achieved once a KEM-ciphertext for an uncorrupted keypair is sent.
As the stage in which these are sent depends on the pattern, the ac-
tual stage at whichmessages are confidential depends on it too and
on the corruption in question. To get the first confidential stage,
one has to pick the lowest stage of the applicable results given be-
low (if the conditions for a result are unmet because of unaccept-
able corruption or non-use of the associated KEM, that stage is ∞).
The first four of these theorems deal with uncorrupted static keys.

TheoRem 4.8. Π achieves confidentiality in stage #𝐼 if either
of the responders and the static key of the initiator is uncorrupted
and the responder is an honest party with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤
4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollResH, 𝒜′ (1𝜆)+𝑛2
𝑃 ⋅𝑛2

𝑆⋅(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)+AdvIND-CCA𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+
AdvPRHO𝐻, 𝒜′ (1𝜆)+(𝑛𝑆−1)⋅Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)+𝑛𝐾 ⋅AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a session
and 𝑛′

𝐾 refers to the total number of session keys that have been
used before the key encapsulated in IKEM has been put into the hash-
object.

106

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

TheoRem 4.9. Π′ achieves confidentiality in stage #𝐼 if the re-
sponders ephemeral key and the static key of the initiator are uncor-
rupted and the responder is an honest partywith:Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℐ

Π, 𝒜 (1𝜆) ≤
4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollResH, 𝒜′ (1𝜆) + 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA𝐼𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) +

AdvPRHO𝐻, 𝒜′ (1𝜆)+(𝑛𝑆−1)⋅Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)+𝑛𝐾 ⋅AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))
Where 𝑛𝐾 is the total number of session-keys used in a session

and 𝑛′
𝐾 refers to the total number of session keys that have been

used before the key encapsulated in IKEM has been put into the hash-
object.

TheoRem 4.10. Π achieves confidentiality in stage #𝑅 if either of
the initiators keys and the static key of the responder is uncorrupted
and the initiator is an honest party with: Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤
4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollResH, 𝒜′ (1𝜆)+𝑛2
𝑃 ⋅𝑛2

𝑆⋅(Adv𝑆𝐸𝐸𝐶
Σ, 𝒜′ (1𝜆)+AdvIND-CCA𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆

(1𝜆)+
AdvPRHO𝐻, 𝒜′ (1𝜆)+(𝑛𝑆−1)⋅Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆)+𝑛𝐾 ⋅AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a session
and 𝑛′

𝐾 refers to the total number of session keys that have been
used before the key encapsulated in RKEM has been put into the hash-
object.

TheoRem 4.11. Π′ achieves confidentiality in stage #𝑅 if the ini-
tiators ephemeral key and the static key of the responder are uncor-
rupted and the initiator is an honest partywith:Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓ℛ

Π, 𝒜 (1𝜆) ≤
4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvCollResH, 𝒜′ (1𝜆) + 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅ (AdvIND-CCA𝑅𝐾𝐸𝑀, 𝒜′,𝑛𝑆
(1𝜆) +

4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 + AdvPRHO𝐻, 𝒜′ (1𝜆) + (𝑛𝑆 − 1) ⋅ Advauth𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a session
and 𝑛′

𝐾 refers to the total number of session keys that have been
used before the key encapsulated in RKEM has been put into the hash-
object.

The proofs are largely similar to the previous ones, the main-
difference being that instead of relying on the unforgeability they
now need to rely on the confidentiality (IND$-CPA) of the AEAD-
scheme. The increased loss in tightness is a result of having to
guess the peer’s session and the attackedAEAD-key on top of what
the previous proofs had to guess. We provide them in the full ver-
sion [3].

The last two of the six confidentiality theorems deal with uncor-
rupted ephemeral keys and are largely analogous to the previous
four besides that.

TheoRem 4.12. Π achieves confidentiality in stage #𝐸 if both
the initiator and the responder have at least one uncorrupted key and
both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollResH, 𝒜′ (1𝜆) + 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅
(2 ⋅Adv𝑆𝐸𝐸𝐶

Σ, 𝒜′ (1𝜆) +AdvIND-CCA𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆) +AdvPRHO𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅
AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a session
and 𝑛′

𝐾 refers to the total number of session keys that have been
used before the key encapsulated in EKEM has been put into the hash-
object.

TheoRem 4.13. Π′ achieves confidentiality in stage #𝐸 if neither
the initiators nor the responders ephemeral keys are uncorrupted and
both are honest partners with:

Adv𝑓𝐴𝐶𝐶𝐸.𝑐𝑜𝑛𝑓𝐸
Π, 𝒜 (1𝜆) ≤ 4(𝑛𝑃 ⋅𝑛𝑆)2

2𝜆 +AdvCollResH, 𝒜′ (1𝜆) + 𝑛2
𝑃 ⋅ 𝑛2

𝑆 ⋅
(AdvIND-CCA𝐸𝐾𝐸𝑀, 𝒜′,1 (1𝜆) + AdvPRHO𝐻, 𝒜′ (1𝜆) + 𝑛𝐾 ⋅ AdvIND$-CPA𝐴𝐸𝐴𝐷, 𝒜′ (1𝜆))

Where 𝑛𝐾 is the total number of session-keys used in a session
and 𝑛′

𝐾 refers to the total number of session keys that have been
used before the key encapsulated in EKEM has been put into the hash-
object.

The proofs for these theorems are largely analogous to the one
before, except that they require two applications of SEEC (one on
either peer). We provide them in the full version [3].

Using these results we can then easily set up the fACCE-table for
any given PQNoise protocol: The authenticity-results can be taken
as they are. For confidentiality the lowest value that achieves secu-
rity is the relevant one. For the fundamental PQNoise patterns this
gives the results presented in Table 2. When compared with the
partially conjectured results for Noise [19] (see the full version[3])
we see that PQNoise ends up with the same security as classical
Noise eventually.

5 IMPLEMENTATION
We implement PQNoise as an extension of the “nyquist” imple-
mentation of Noise by Angel in the Go programming language [2].
As underlying instantiation of all KEMs we use Kyber-768 [4, 12];
specifically the highly optimizedGo implementation in Cloudflare’s
Circl library [27]. As Circl implements other post-quantum KEMs,
including all parameter sets of Kyber, but also SIKE [5], it would
be easy to change to a different instantiation of the KEMs.

When comparing performance between PQNoise handshakes
and corresponding Noise handshakes, we notice that computation-
ally, i.e., in terms of CPU cycles, PQNoise is more efficient. This
is not surprising, because Kyber-768 is considerably faster than
X25519-based DH key exchange in Noise. For example, on an Intel
Xeon E-2124 (Coffee Lake) CPU, eBACS [8] reports 125 303 cycles
for X25519 key generation and 135 390 cycles for X25519 shared-
key computation; on the same CPU eBACS reports only 39 881 cy-
cles for Kyber-768 key generation, 53 841 cycles for encapsulation,
and 42 281 cycles for decapsulation. On other recent 64-bit CPUs
the absolute numbers differ, but the big picture is similar: Kyber-
768 outperforms X25519 in terms of cycle counts.

However, this advantage in computational performance does
not mean that handshake times for PQNoise are faster than in
Noise. In fact all cryptography used in Noise or in (our instanti-
ation of) PQNoise is so fast that handshake times are largely de-
termined by data transmission, and this is where two disadvan-
tages of PQNoise kick in: first, post-quantum KEMs have much
larger public keys and ciphertexts than (pre-quantum) ECDH. Sec-
ond, in some scenarios KEM-based AKE requires more round trips
to achieve the same security. In order to investigate how these
two factors influence real-world handshake performance, we con-
sider the KK and the XX handshake patterns from Noise together
with their pqKK and pqXX counterparts from PQNoise. While both
patterns eventually achieve mutual authentication, for the KK and
pqKK patterns the amount of round trips is the same, while for the
pqXX pattern an additional message from the responder is required
compared to XX. We run benchmarks on a machine with two In-
tel Xeon Gold 6230 CPUs and 196GB of RAM. The experimental
setup is using the Linux kernel’s network-emulation features and

107

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber

Table 2: Security of the fundamental PQNoise patterns. Values of the form 𝑥/∞ mean that the security is achieved in stage 𝑥
if the party/parties that doesn’t/don’t use a static KEM still uses a static SEEC-key and never if that is not the case. We don’t
provide separate rows for authenticity without SEEC, as the 𝑠ℐ, 𝑒ℛ/𝑒ℐ, 𝑠ℛ-cases are identical, and the 𝑠ℐ, 𝑠ℛ-cases are trivially
insecure and have those rows dropped entirely if SEEC is not used.

Security Uncorr. N NN NK NX KN KK KX XN XK XX IN IK IX
Confidentiality 𝑒ℐ, 𝑒ℛ ∞ 2 2 2 2 2 2 2 2 2 2 2 2

𝑒ℐ, 𝑠ℛ 1 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2
𝑠ℐ, 𝑒ℛ ∞ 2/∞ 2/∞ 2/∞ 2 2 2 2 2 2 2 2 2
𝑠ℐ, 𝑠ℛ 1/∞ 2/∞ 1/∞ 2/∞ 2/∞ 1 2 2/∞ 1 2 2/∞ 1 2

Confidentiality 𝑒ℐ, 𝑒ℛ ∞ 2 2 2 2 2 2 2 2 2 2 2 2
(Without SEEC) 𝑒ℐ, 𝑠ℛ 1 ∞ 1 3 ∞ 1 3 ∞ 1 3 ∞ 1 3

𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 2 2 2 4 4 4 2 2 2
Authenticity (ℐ) 𝑠ℐ, 𝑒ℛ ∞ ∞ ∞ ∞ 3 3 3 5 5 5 3 3 3

𝑠ℐ, 𝑠ℛ ∞ ∞ ∞ ∞ 3/∞ 3 3 5/∞ 5 5 3/∞ 3 3
Authenticity (ℛ) 𝑒ℐ, 𝑠ℛ ∞ ∞ 2 4 ∞ 2 4 ∞ 2 4 ∞ 2 4

𝑠ℐ, 𝑠ℛ ∞ ∞ 2/∞ 4/∞ ∞ 2 4 ∞ 2 4 ∞ 2 4

Table 3: Median handshake times inms of KK and XXNoise
patterns and their pqKK and pqXX counterparts in PQNoise.

Fast network Slow network
Init. Resp. Init. Resp.

KK 16.35 0.42 98.73 0.41
pqKK 16.07 0.25 100.28 0.27
XX 16.02 16.1 98.47 98.6

pqXX 31.83 16.1 199.31 100.36

is largely following the setup used in [30] and [36]. For each of the
patterns we take 1000 measurements of the time it takes to per-
form a handshake, independently for initiator and responder. We
perform this measurements once over a fast network (1000Mbit
throughput, 31.1ms round-trip latency) and once over a slow net-
work (10Mbit throughput, 195.6ms round-trip latency).The results
are listed in Table 3. The KK and pqKK responder times do not in-
clude any network communication – after receiving the first hand-
shake message from the initiator, the responder can perform all
computations without having to wait for a further message. These
times thus show the computational advantage of Kyber-768 over
X25519. We also see that increased message sizes in PQNoise do
not have a major influence on performance in this TCP/IP-based
scenario. What does matter is the additional protocol message in
pqXX compared to XX: as expected, the initiator times are slower by
pretty exactly the half-roundtrip network latency.

6 ACKNOWLEDGEMENT
We thank Trevor Perrin and Denisa Greconici for many helpful
discussions.

This work has been supported by the Dutch Research Council
(NWO) through VIDI grant No. VI.Vidi.193.066, by the European
Research Council through Starting Grant No. 805031 (EPOQUE),
and byDeutsche Forschungsgemeinschaft (DFG, German Research
Foundation) as part of the Excellence Strategy of the German Fed-
eral and State Governments – EXC 2092 CASA - 390781972.

REFERENCES
[1] Liliya R. Akhmetzyanova, Cas Cremers, Luke Garratt, Stanislav Smyshlyaev, and

Nick Sullivan. Limiting the impact of unreliable randomness in deployed secu-
rity protocols. In Limin Jia and Ralf Küsters, editors, CSF 2020 Computer Security
Foundations Symposium, pages 277–287. IEEE Computer Society Press, 2020.

[2] Yawning Angel. nyquist - a Noise protocol framework implementation. https:
//github.com/Yawning/nyquist.

[3] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Flo-
rian Weber. Post Quantum Noise. Cryptology ePrint Archive, Paper 2022/539,
2022. https://eprint.iacr.org/2022/539.

[4] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber (version 3.02) – submission to round 3 of the nist post-
quantum project, 2021. https://pq-crystals.org/kyber/data/kyber-specification-
round3-20210804.pdf.

[5] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil
Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik. Supersingular isogeny key encapsu-
lation. Round-3 submission to the NIST PQC project, 2020. https://sike.org/
#specification.

[6] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Michael Meyer, Benjamin Smith, and Jana Sotáková. Ctidh: faster
constant-time csidh. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, (4):351–387, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/9069.

[7] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, vol-
ume 3958 of LNCS, pages 207–228. Springer, Heidelberg, April 2006.

[8] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. https://bench.cr.yp.to (accessed 29 Sep 2021).

[9] Daniel J. Bernstein, Tanja Lange, ChloeMartindale, and Lorenz Panny.Quantum
circuits for the CSIDH: Optimizing quantum evaluation of isogenies. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 409–441. Springer, Heidelberg, May 2019.

[10] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual ec: A standard-
ized back door. In The New Codebreakers, pages 256–281. Springer, 2016.

[11] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of
CSIDH. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 493–522. Springer, Heidelberg, May 2020.

[12] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a
CCA-secure module-lattice-based KEM. In 2018 IEEE European Symposium on Se-
curity and Privacy, EuroS&P 2018, pages 353–367. IEEE, 2018. https://cryptojedi.
org/papers/#kyber.

[13] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 453–474. Springer, Heidelberg, May 2001.

[14] Wouter Castryck, Tanja Lange, ChloeMartindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. InThomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS,

108

https://github.com/Yawning/nyquist
https://github.com/Yawning/nyquist
https://eprint.iacr.org/2022/539
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://sike.org/#specification
https://sike.org/#specification
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://bench.cr.yp.to
https://cryptojedi.org/papers/#kyber
https://cryptojedi.org/papers/#kyber

Post Quantum Noise CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

pages 395–427. Springer, Heidelberg, December 2018.
[15] Cas Cremers, Luke Garratt, Stanislav V. Smyshlyaev, Nick Sullivan, and Christo-

pher A. Wood. Randomness Improvements for Security Protocols. RFC 8937,
October 2020.

[16] The Debian-Project. Debian Security Advisory – DSA-1571-1 openssl – pre-
dictable randomnumber generator, May 2008. https://www.debian.org/security/
2008/dsa-1571.

[17] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[18] Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the
WireGuard protocol. In Bart Preneel and Frederik Vercauteren, editors, ACNS
18, volume 10892 of LNCS, pages 3–21. Springer, Heidelberg, July 2018.

[19] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible authenticated
and confidential channel establishment (fACCE): Analyzing the noise protocol
framework. In Aggelos Kiayias, Markulf Kohlweiss, PetrosWallden, and Vassilis
Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 341–373. Springer,
Heidelberg, May 2020.

[20] Eduarda S.V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-
interactive key exchange. Cryptology ePrint Archive, Report 2012/732, 2012.
https://eprint.iacr.org/2012/732.

[21] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Strongly secure authenticated key exchange from factoring, codes, and lattices.
In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 467–484. Springer, Heidelberg, May 2012.

[22] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers, and
David Basin. A spectral analysis of noise: a comprehensive, automated, for-
mal analysis of diffie-hellman protocols. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 1857–1874, 2020.

[23] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R.
Zimmermann. Post-quantum WireGuard. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 304–321. IEEEComputer Society, 2021. https://cryptojedi.
org/papers/#pqwireguard.

[24] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Authenticated con-
fidential channel establishment and the security of TLS-DHE. Journal of Cryp-
tology, 30(4):1276–1324, October 2017.

[25] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. Noise explorer:
Fully automated modeling and verification for arbitrary noise protocols. In 2019

IEEE European Symposium on Security and Privacy (EuroS&P), pages 356–370.
IEEE, 2019.

[26] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566.
Springer, Heidelberg, August 2005.

[27] Kris Kwiatkowski and Armando Faz-Hernández. Introducing circl: An ad-
vanced cryptographic library. Posting in the Cloudflare Blog, 2019. https:
//blog.cloudflare.com/introducing-circl/.

[28] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec 2007, volume 4784 of LNCS, pages 1–16. Springer, Heidelberg, November
2007.

[29] Nick Mooney. An Introduction to the Noise Protocol Framework, March 2020.
https://duo.com/labs/tech-notes/noise-protocol-framework-intro.

[30] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-
quantum cryptography in TLS. In Jintai Ding and Jean-Pierre Tillich, edi-
tors, Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 72–91. Springer, Heidelberg, 2020.

[31] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–492.
Springer, Heidelberg, May 2020.

[32] Trevor Perrin. Noise protocol framework. https://noiseprotocol.org/noise.pdf
(Revision 34 vom 2018-07-11).

[33] Trevor Perrin. The Noise Protocol Framework, December 2017. https://media.
ccc.de/v/34c3-9222-the_noise_protocol_framework.

[34] Trevor Perrin and Justin Cormack. Static-Static PatternModifiers for Noise, 2018.
Revision 1, 2018-11-18, unofficial/unstable, https://github.com/noiseprotocol/
noise_ss_spec.

[35] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press, November 2002.

[36] Peter Schwabe, Douglas Stebila, andThomWiggers. Post-quantum TLS without
handshake signatures. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS’20, pages 1461–1480. ACM, 2020.
https://cryptojedi.org/papers/#kemtls.

[37] Filippo Valsorda. Twitter-Survey on Crypto-Agility, April 2021. https://twitter.
com/FiloSottile/status/1386751406758105089.

109

https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://eprint.iacr.org/2012/732
https://cryptojedi.org/papers/#pqwireguard
https://cryptojedi.org/papers/#pqwireguard
https://blog.cloudflare.com/introducing-circl/
https://blog.cloudflare.com/introducing-circl/
https://duo.com/labs/tech-notes/noise-protocol-framework-intro
https://noiseprotocol.org/noise.pdf
https://media.ccc.de/v/34c3-9222-the_noise_protocol_framework
https://media.ccc.de/v/34c3-9222-the_noise_protocol_framework
https://github.com/noiseprotocol/noise_ss_spec
https://github.com/noiseprotocol/noise_ss_spec
https://cryptojedi.org/papers/#kemtls
https://twitter.com/FiloSottile/status/1386751406758105089
https://twitter.com/FiloSottile/status/1386751406758105089

	Abstract
	1 Introduction
	2 PQNoise
	2.1 PQNoise
	2.2 SEEC
	2.3 Translating Patterns
	2.4 Fundamental Patterns

	3 Overview of the Flexible ACCE Framework
	4 Analysis
	4.1 Hash-Object
	4.2 PQNoise

	5 Implementation
	6 Acknowledgement
	References

