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Introduction

◮ Bellare and Namprempre in 2008, have shown that in order to
obtain a secure (IND-CCA) Authenticated Encryption
construction, we only need:

◮ IND-CPA encryption scheme.
◮ SUF-CMA signature or MAC scheme.
◮ Use Encrypt-then-MAC technique.

◮ The question arises how to do this for quantum-resistant
schemes.

◮ We will adopt the definitions for the scenario with a quantum
adversary and will show how to obtain quantum-resistant
authenticated encryption schemes.
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Definition: IND-qCPA (Boneh and Zhandry, 2013)

A symmetric key encryption scheme E = (Encrypt,Decrypt) is
indistinguishable under a quantum chosen message attack
(IND-qCPA secure) if no efficient adversary A can win in the
following game, except with probability at most 1/2 + ǫ:
Key Gen: The challenger picks a random key k and bit b.
Queries: A is allowed to make two types of queries:

◮ Challenge queries: A sends messages m0,m1, and challenger
responds with c∗ = Encrypt(k ,mb).

◮ Encryption queries: For each such query, the challenger
chooses randomness r , and using it encrypts each message in
the superposition:

∑

m,c

ψm,c |m, c〉 −→
∑

m,c

ψm,c |m, c ⊕ Encrypt(k ,m; r)〉

Guess: A produces a bit b′, and wins if b = b′.
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IND-qCPA - Definition Notes

◮ Can not use natural extension of IND-CPA definition.

◮ Allowing full unrestricted quantum queries, makes the
definition too powerful.
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Definition: IND-qCCA (Boneh and Zhandry, 2013)

Same definition as for IND-qCPA, except that we also allow the
decryption queries for messages that do not contain the challenge
messages.

◮ Decryption queries: For each such query, the challenger
decrypts all ciphertexts in the superposition, except those that
were the result of a challenge query:

∑

c,m

ψc,m|c ,m〉 −→
∑

c,m

ψc,m|c ,m ⊕ f (c)〉

where

f (c) =

{

⊥ if c ∈ C

Decrypt(k , c) otherwise.

Guess: A produces a bit b′, and wins if b = b′.
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Definition: SUF-qCMA (Boneh and Zhandry, 2013)

A signature scheme S = (G , Sign,Ver) is strongly unforgeable
under a quantum chosen message attack (SUF-qCMA secure) if,
for any efficient quantum algorithm A and any polynomial q, A’s
probability of success in the following game is negligible in λ:

KeyGen: The challenger runs (sk , pk)← G (λ), and gives pk to A.

Signing Queries: The adversary makes a polynomial q chosen
message queries. For each query, the challenger chooses
randomness r , and responds by signing each message in the query:

∑

m,s

ψm,s |m, s〉 −→
∑

m,s

ψm,s |m, s ⊕ Sign(sk ,m; r)〉

Forgeries: The adversary is required to produce q + 1
message/signature pairs.
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SUF-qCMA - Definition Notes

◮ Can not use the classical definition directly, as the adversary
can feed the queries in superposition.

◮ Instead of asking to produce ‘new’ valid pair, we ask to
produce ‘q + 1’ valid pairs after q queries.



CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

Definition: WUF-qCMA (Boneh and Zhandry, 2013)

A signature scheme S is weakly unforgeable under a quantum
chosen message attack (WUF-qCMA secure), if it satisfies the
same definition as SUF-qCMA, except that we require the q + 1
message-signature pairs to have distinct messages.
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About Definitions

◮ Bellare and Namprempre make use of the definitions for the
classical cryptographic notions.

◮ Boneh and Zhandry show that we need to “upgrade” the
definitions to be able to talk about quantum adversary
scenario.

◮ In order to be able to prove the main result, following the
approach analogous to Bellare and Namprempre’s, we need
more definitions.

◮ Using the same ideas as Boneh and Zhandry, we define the
missing definitions (or “upgrade” them).
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Definition: INT-qCTXT

An encryption scheme E = (Encrypt,Decrypt) satisfies integrity of
ciphertext under a quantum attack (INT-qCTXT security) if, for
any efficient quantum algorithm A and any polynomial q (queries),
the probability of success of A in the following game is negligible in
λ:

Key Gen: The challenger picks a random key k .

Encryption queries: The adversary makes a polynomial q such
queries. For each such query, the challenger chooses and
randomness r , and encrypts each message in the superposition:

∑

m,c

ψm,c |m, c〉 −→
∑

m,c

ψm,c |m, c ⊕ Encrypt(k ,m; r)〉
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Definition: INT-qCTXT

Decryption queries: For each such query, the challenger decrypts
all ciphertexts in the superposition, except those that were the
result of a challenge query:

∑

c,m

ψc,m|c ,m〉 −→
∑

c,m

ψc,m|c ,m ⊕ f (c)〉

where

f (c) =

{

⊥ if c ∈ C

Dec(k , c) otherwise.

Forgeries: The adversary is required to produce q + 1
message/ciphertext pairs. The challenger then checks that all the
ciphertexts are valid, and that all message/ciphertexts pairs are
distinct. If so, the challenger reports that the adversary wins.
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Definition: INT-qPTXT

An encryption scheme E = (Encrypt,Decrypt) satisfies the integrity
of plaintext under a quantum attack (INT-qPTXT secure), if it
satifies the same definition as INT-qCTXT, except that we require
the q + 1 message-ciphertext pairs to have distinct messages.
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Bellare and Namprempre Results

◮ WUF-CMA (MAC) =⇒ INT-PTXT (AE).

◮ SUF-CMA (MAC) =⇒ INT-CTXT (AE).

◮ IND-CPA (Enc) =⇒ IND-CPA (AE).

◮ INT-CTXT and IND-CPA =⇒ IND-CCA.

Main Theorem
IND-CPA (Enc) and SUF-CMA (MAC) =⇒ IND-CCA (AE).
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Our Results

◮ WUF-qCMA (MAC) =⇒ INT-qPTXT (AE).

◮ SUF-qCMA (MAC) =⇒ INT-qCTXT (AE).

◮ IND-qCPA (Enc) =⇒ IND-qCPA (AE).

◮ INT-qCTXT and IND-qCPA =⇒ IND-qCCA.

Main Theorem
IND-qCPA (Enc) and SUF-qCMA (MAC) =⇒ IND-qCCA (AE).
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Theorem: SUF-qCMA (MAC) =⇒ INT-qCTXT (AE)

Let SE = (Ke , E ,D) be a symmetric encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let
SE = (K̄, Ē , D̄) be the authenticated encryption scheme obtained
from SE andMA via encrypt-then-MAC composition method.
Given any adversary I against SE , we can construct and adversary
F such that

Adv
INT−qCTXT

SE
(I ) ≤ Adv

SUF−qCMA
SE

(F ).
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Theorem: INT-qCTXT and IND-qCPA =⇒ IND-qCCA

Let SE = (K, E ,D) be an encryption scheme. Let A be an
IND-qCCA adversary against SE running in time t and making qe
Enc queries and qd Dec queries. Then, we can construct an
INT-qCTXT adversary Ac and IND-qCPA adversary Ap such that

Adv
IND−qCCA
SE

(A) ≤ 2 · Adv INT−qCTXT
SE

(Ac) + Adv
IND−qCPA
SE

(Ap).

Furthermore, Ac runs in time O(t) and makes qe Enc queries and
qd Verification queries, while Ap runs in time O(t) and makes qe
queries of target messages Mi .
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Main Theorem

Theorem
IND-qCPA (Enc) and SUF-qCMA (MAC) =⇒ IND-qCCA (AE).

Proof.

◮ SinceMA is SUF-qCMA, we get that SE is INT-qCTXT.

◮ Since SE is IND-qCPA, we get that SE is also IND-qCPA.

◮ Finally, because SE is INT-qCTXT and IND-qCPA, we get
that it is IND-qCCA.
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Constructing Quantum-Resistant Signatures

◮ Most classical signature schemes are insecure in the quantum
model.

◮ We can apply a transformation (Boneh and Zhandry, 2013) to
some of the existing signature schemes.

◮ In order to be able to make a classical signature scheme
quantum resistant, we need it to be:

◮ Secure classically.
◮ Classically reduce to a quantum-resistant problem.
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Signature Construction (Boneh and Zhandry, 2013)

Let Sc = (Gc , Signc ,Verc) be a signature scheme, H be a hash
function, and Q be a family of pairwise independent functions
mapping messages to the randomness used by Signc , and k some
polynomial in λ. Define S = (G , Sign,Ver) where:

◮ G (λ) = Gc(λ)

◮ Sign(sk ,m) :
◮ Select Q ∈ Q, r ∈ {0, 1}k at random.
◮ Set s = Q(m), h = H(m, r), σ = Signc(sk , h; s). Output (r , σ).

◮ Ver(pk ,m, (r , σ)) :
◮ Set h = H(m, r). Output Verc(pk , h, σ).

If the original signature scheme Sc is SUF-CMA against a classical
chosen message attack performed by a quantum adversary, then
the transformed scheme S is SUF-qCMA.
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Quantum-resistant authenticated encryption schemes

Setup:

1. Choose parameters for the underlying encryption and
signature schemes.

2. Let H : {0, 1}∗ → {0, 1}k be a secure hash function (with
security parameter k).

3. Let Q be a family of pairwise independent functions mapping
messages to the randomness used in the signature scheme.

Key Generation:

1. Alice chooses her private parameters for the encryption and
signature schemes. If required, she produces and publishes the
corresponding public keys.

2. Bob chooses his private parameters for the encryption and
signature schemes. If required, he produces and published the
corresponding public keys.
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Quantum-resistant authenticated encryption schemes

Encryption: Suppose Bob wants to send a message m ∈ {0, 1}∗

to Alice.

1. Using the common encryption key e that he shares with Alice,
encrypt the message using the underlying symmetric-key
encryption scheme to obtain c = E(e,m).

2. Select Q ∈ Q, r ∈ {0, 1}k at random.

3. Compute t = Q(m).

4. Computes the value h = H(c , r).

5. Using h and his private signing key s, Bob computes the
authentication tag σ = Sign(s, h; t).

6. The ciphertext is (c , r , σ).



CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)

Quantum-resistant authenticated encryption schemes

Decryption: Suppose Alice receives ciphertext (c , r , σ) from Bob.

1. Compute the value h = H(c , r).

2. Using h and Bob’s public signing key p, compute the
verification function Ver(s, h, r , σ), if it returns true, continue;
if not, stop.

3. Using the common encryption key e that she shares with Bob,
decrypt the message and obtain m = D(e, c).
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Elliptic curves

We assume F is a finite field of characteristic greater than 3.
“Finite field” is essential, because cryptography uses finite fields.
“Characteristic greater than 3” is not essential, but it simplifies
matters greatly.

Definition
An elliptic curve over F is the set of solutions (x , y) ∈ F 2 to an
equation

y2 = x3 + ax + b, a, b ∈ F ,

plus an additional point ∞ (at infinity).
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Group law

x

y

P

Q

-HP+QL

P+Q

Elliptic curves admit an abelian group operation with identity
element ∞. Let P = (x1, y1) and Q = (x2, y2). Then

P + Q =

(

(

y2−y1
x2−x1

)2
− x1 − x2,

−
(

y2−y1
x2−x1

)

(

(

y2−y1
x2−x1

)2
− 2x1 − x2

)

− y1

)
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Isogenies

Definition
Let E and E ′ be elliptic curves over F .

◮ An isogeny φ : E → E ′ is a non-constant algebraic morphism

φ(x , y) =

(

f1(x , y)

g1(x , y)
,
f2(x , y)

g2(x , y)

)

satisfying φ(∞) =∞ (equivalently,
φ(P + Q) = φ(P) + φ(Q)).

◮ The degree of an isogeny is its degree as an algebraic map.

◮ The endomorphism ring End(E ) is the set of isogenies from
E (F ) to itself, together with the constant homomorphism.
This set forms a ring under pointwise addition and
composition.
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Examples

Example (Scalar multiplication)

◮ Let E : y2 = x3 + ax + b.

◮ For n ∈ Z, define [n] : E → E by [n](P) = nP . Then [n] is an
isogeny of degree n2.

◮ When n = 2,

[2](x , y) =

(

x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
,

(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b − a)y

8(x3 + ax + b)2

)

◮ An explicit formula for [n] is given recursively by the so-called
division polynomials.

◮ The map Z→ End(E ) given by n 7→ [n] is an injective ring
homomorphism.
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Why Isogenies?

◮ Finding isogeny between given supersingular elliptic curves
over a finite field is believed to be computationally infeasible
problem for quantum computers.

◮ Childs, Jao and Soukharev in 2011 have shown that isogenies
over ordinary elliptic curves cannot be used as cryptographic
primitives for quantum-resistant protocols.

◮ Jao and De Feo in 2011 have constructed quantum-resistant
key exchange protocol based on isogenies between
supersingular elliptic curves.

◮ Jao and Soukharev in 2014 have constructed
quantum-resistant undeniable signature protocol based on
isogenies between supersingular elliptic curves.
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Isogeny-based authenticated encryption schemes

◮ We present an example of the quantum-resistant
authenticated encryption scheme, which is based on elliptic
curve isogenies.

◮ For the signature/MAC component, we make use of the idea
presented in work by Sun, Tian and Wang 2012, together with
the work on signature construction by Boneh and Zhandry
2013.

◮ Key exchange component is based on De Feo and Jao’s
protocol presented in 2011.
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Isogeny-based authenticated encryption schemes

Setup:

1. Choose primes ℓA, ℓB , ℓA′ , ℓB′ , p, p′ and exponents
eA, eB , eA′ , eB′ such that p = ℓeAA ℓ

eB
B · f ± 1 and

p′ = ℓ
eA′
A′ ℓ

eB′

B′ · f ′ ± 1 give us supersingular elliptic curves E/Fp2

(which denote simply by E ) and E/Fp′2 (which denote simply
by E ′).

2. Choose bases {PA,QA} and {PB ,QB}, which generate E [ℓeAA ]
and E [ℓeBB ], respectively.

3. Choose bases {PA′ ,QA′} and {PB′ ,QB′}, which generate
E ′[ℓ

eA′
A′ ] and E ′[ℓ

eB′

B′ ], respectively.

4. Let H1,H2 : {0, 1}
∗ → {0, 1}k be independent secure hash

functions (with parameter k).
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Isogeny-based authenticated encryption schemes

Key Generation:

1. Alice chooses random integers mA, nA ∈ Z/ℓeAA Z not divisible
by ℓA and m′

A, n
′

A ∈ Z/ℓ
eA′
A′ Z not divisible by ℓA′ . Then, using

these values, computes φA : E → EA = E/〈[mA]PA + [nA]QA〉
and φ′A : E

′ → E ′

A = E ′/〈[m′

A]PA′ + [n′A]QA′〉. Then, she
computes φA(PB), φA(QB), φ

′

A(PB′), φ′A(QB′) and publishes
her public key as
{EA,E

′

A, φA(PB), φA(QB), φ
′

A(PB′), φ′A(QB′)}. Her private key
is {mA, nA,m

′

A, n
′

A}.

2. Bob chooses random integers mB , nB ∈ Z/ℓeBB Z not divisible
by ℓB and m′

B , n
′

B ∈ Z/ℓ
eB′

B′ Z not divisible by ℓB′ . Then,
similarly to Alice, publishes his public key as
{EB ,E

′

B , φB(PA), φB(QA), φ
′

B(PA′), φ′B(QA′)}. His private key
is {mB , nB ,m

′

B , n
′

B}.
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E

EA

ker(φA
)=〈[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B )=〈[m

B ]P
B +[n

B ]Q
B 〉

φ
B (P

A ),φ
B (Q

A )
EAB

〈[mA
]φB

(PA)
+[nA]

φB
(QA

)〉

EBA

〈[m
B ]φ

A (P
B )+[nB ]φ

A (Q
B )〉

‖

E ′

E ′

A

ker(φ
′
A
)=〈[m

′
A
]PA

′+
[n
′
A
]QA

′〉

φ
′
A
(PB

′),
φ
′
A
(QB

′)

E ′

B

ker(φ ′
B )=〈[m ′

B ]P
B ′+[n ′

B ]Q
B ′ 〉

φ ′
B (P

A′ ),φ ′
B (Q

A′ )
E ′

AB

〈[m
′
A
]φ
′
B
(PA′

)+[n
′
A
]φ
′
B
(QA′

)〉

E ′

BA

〈[m′
B ]φ′

A (P
B ′ )+[n′

B ]φ′
A (Q

B ′ )〉

‖
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Isogeny-based authenticated encryption schemes

Encryption: Suppose Bob wants to send a message m ∈ {0, 1}∗

to Alice.

1. Compute ciphertext c = E(j(EAB),m).

2. Select r ∈ {0, 1}k at random.

3. Bob computes the value h = H1(c , r).

4. Using h and j(E ′

AB), Bob computes the authentication tag
σ = H2(h||j(E

′

AB)).

5. The ciphertext is (c , r , σ).
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Isogeny-based authenticated encryption schemes

Decryption: Suppose Alice receives ciphertext (c , r , σ) from Bob.

1. Alice computes the value h = H1(c , r).

2. Using h and j(E ′

AB), Alice computes H2(h||j(E
′

AB)) and
compares it to the authentication tag σ. If it matches, she
continues, if not, stops.

3. Obtains m = D(j(EAB), c).
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Communication Overhead

◮ The ciphertext which Bob sends to Alice consists of the triplet
(c , r , σ), where c is the underlying ciphertext content, r is a
k-bit nonce, and σ is the signature tag.

◮ In the case where the verification function in the signature
scheme involves independently deriving the value of σ, we can
hash σ down to k bits as well.

◮ For a security level of ℓ bits, the minimum value of k required
for collision resistance is 2ℓ bits in the quantum setting.

◮ The per-message communication overhead of the scheme is
thus 4ℓ bits in the case where the signature tag can be
hashed, and 2ℓ+ |σ| bits otherwise.

◮ Note that in the former case the per-message communications
overhead is always the same, independent of which
component schemes are chosen.
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Public Key Overhead

◮ The public key sizes that apply to the AE setting, come from
the key-exchange section.

◮ We aim for 128-bit quantum security.

◮ Note that SDVS schemes require two-way transmission of
public keys even if the encrypted communication is one-way,
whereas standard signature schemes require two-way
transmission of public keys only for two-way communication.

Table: Key transmission overhead

Signature scheme Bits

Ring-LWE 11600
NTRU 5544

Code-based 52320
Multi-variate 7672000
Isogeny-based 3073
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Conclusion and Future Work

◮ We propose a security model for authenticated encryption
against fully quantum adversaries, based on the classical
security model of Bellare and Namprempre.

◮ We apply the Boneh and Zhandry framework for modeling
quantum adversaries.

◮ We provide concrete examples of authenticated encryption
schemes satisfying our security model along with estimates of
overhead costs for such schemes.

◮ Next step would be to come up with a quantum-resistant
protocol, that does not require authenticated public keys
(using ideas of ESSR).

◮ We proposed a composed AE scheme, but the next step would
be to come up with atomic (i.e. “one-step”) protocols (using
ideas of Signcryption, AES-GCM).


