Post-quantum security models for authenticated encryption

Vladimir Soukharev

David R. Cheriton School of Computer Science

WATERLOO

February 24, 2016

Introduction

- Bellare and Namprempre in 2008, have shown that in order to obtain a secure (IND-CCA) Authenticated Encryption construction, we only need:
 - IND-CPA encryption scheme.
 - SUF-CMA signature or MAC scheme.
 - ▶ Use *Encrypt-then-MAC* technique.
- The question arises how to do this for quantum-resistant schemes.
- We will adopt the definitions for the scenario with a quantum adversary and will show how to obtain quantum-resistant authenticated encryption schemes.

Definition: IND-qCPA (Boneh and Zhandry, 2013)

A symmetric key encryption scheme $\mathcal{E} = (\text{Encrypt}, \text{Decrypt})$ is indistinguishable under a quantum chosen message attack (IND-qCPA secure) if no efficient adversary A can win in the following game, except with probability at most $1/2 + \epsilon$: **Key Gen:** The challenger picks a random key k and bit b.

Queries: A is allowed to make two types of queries:

- ▶ Challenge queries: A sends messages m_0, m_1 , and challenger responds with $c* = \text{Encrypt}(k, m_b)$.
- ► **Encryption queries:** For each such query, the challenger chooses randomness r, and using it encrypts each message in the superposition:

$$\sum_{m,c} \psi_{m,c} | m,c \rangle \longrightarrow \sum_{m,c} \psi_{m,c} | m,c \oplus \mathsf{Encrypt}(k,m;r) \rangle$$

Guess: A produces a bit b', and wins if b = b'.

IND-qCPA - Definition Notes

- Can not use natural extension of IND-CPA definition.
- ► Allowing full unrestricted quantum queries, makes the definition too powerful.

Definition: IND-qCCA (Boneh and Zhandry, 2013)

Same definition as for IND-gCPA, except that we also allow the decryption queries for messages that do not contain the challenge messages.

▶ **Decryption queries:** For each such query, the challenger decrypts all ciphertexts in the superposition, except those that were the result of a challenge query:

$$\sum_{c,m} \psi_{c,m} | c, m \rangle \longrightarrow \sum_{c,m} \psi_{c,m} | c, m \oplus f(c) \rangle$$

where

$$f(c) = egin{cases} ot & ext{if } c \in \mathcal{C} \ ext{Decrypt}(k,c) & ext{otherwise}. \end{cases}$$

Guess: A produces a bit b', and wins if b = b'.

Definition: SUF-qCMA (Boneh and Zhandry, 2013)

A signature scheme $\mathcal{S}=(G,Sign,Ver)$ is strongly unforgeable under a quantum chosen message attack (SUF-qCMA secure) if, for any efficient quantum algorithm A and any polynomial q, A's probability of success in the following game is negligible in λ :

KeyGen: The challenger runs $(sk, pk) \leftarrow G(\lambda)$, and gives pk to A.

Signing Queries: The adversary makes a polynomial q chosen message queries. For each query, the challenger chooses randomness r, and responds by signing each message in the query:

$$\sum_{m,s} \psi_{m,s} | m,s \rangle \longrightarrow \sum_{m,s} \psi_{m,s} | m,s \oplus Sign(sk,m;r) \rangle$$

Forgeries: The adversary is required to produce q+1 message/signature pairs.

SUF-qCMA - Definition Notes

- ► Can not use the classical definition directly, as the adversary can feed the queries in superposition.
- ▶ Instead of asking to produce 'new' valid pair, we ask to produce 'q + 1' valid pairs after q queries.

Definition: WUF-qCMA (Boneh and Zhandry, 2013)

A signature scheme $\mathcal S$ is weakly unforgeable under a quantum chosen message attack (WUF-qCMA secure), if it satisfies the same definition as SUF-qCMA, except that we require the q+1 message-signature pairs to have distinct messages.

About Definitions

- Bellare and Namprempre make use of the definitions for the classical cryptographic notions.
- Boneh and Zhandry show that we need to "upgrade" the definitions to be able to talk about quantum adversary scenario.
- In order to be able to prove the main result, following the approach analogous to Bellare and Namprempre's, we need more definitions.
- ▶ Using the same ideas as Boneh and Zhandry, we define the missing definitions (or "upgrade" them).

Definition: INT-qCTXT

An encryption scheme $\mathcal{E}=$ (Encrypt, Decrypt) satisfies integrity of ciphertext under a quantum attack (INT-qCTXT security) if, for any efficient quantum algorithm A and any polynomial q (queries), the probability of success of A in the following game is negligible in λ :

Key Gen: The challenger picks a random key k.

Encryption queries: The adversary makes a polynomial q such queries. For each such query, the challenger chooses and randomness r, and encrypts each message in the superposition:

$$\sum_{m,c} \psi_{m,c} | m,c \rangle \longrightarrow \sum_{m,c} \psi_{m,c} | m,c \oplus \mathsf{Encrypt}(k,m;r) \rangle$$

Definition: INT-qCTXT

Decryption queries: For each such query, the challenger decrypts all ciphertexts in the superposition, except those that were the result of a challenge query:

$$\sum_{c,m} \psi_{c,m} | c, m \rangle \longrightarrow \sum_{c,m} \psi_{c,m} | c, m \oplus f(c) \rangle$$

where

$$f(c) = egin{cases} ot & ext{if } c \in \mathcal{C} \ Dec(k,c) & ext{otherwise.} \end{cases}$$

Forgeries: The adversary is required to produce q+1 message/ciphertext pairs. The challenger then checks that all the ciphertexts are valid, and that all message/ciphertexts pairs are distinct. If so, the challenger reports that the adversary wins.

Definition: INT-qPTXT

An encryption scheme $\mathcal{E}=$ (Encrypt, Decrypt) satisfies the integrity of plaintext under a quantum attack (INT-qPTXT secure), if it satisfies the same definition as INT-qCTXT, except that we require the q+1 message-ciphertext pairs to have distinct messages.

Bellare and Namprempre Results

- ightharpoonup WUF-CMA (MAC) \Longrightarrow INT-PTXT (AE).
- ► SUF-CMA (MAC) ⇒ INT-CTXT (AE).
- ► IND-CPA (Enc) ⇒ IND-CPA (AE).
- ▶ INT-CTXT and IND-CPA \implies IND-CCA.

Main Theorem

IND-CPA (Enc) and SUF-CMA (MAC) \implies IND-CCA (AE).

Our Results

- ▶ WUF-qCMA (MAC) \implies INT-qPTXT (AE).
- ► SUF-qCMA (MAC) \implies INT-qCTXT (AE).
- ► IND-qCPA (Enc) ⇒ IND-qCPA (AE).
- ► INT-qCTXT and IND-qCPA ⇒ IND-qCCA.

Main Theorem

IND-qCPA (Enc) and SUF-qCMA (MAC) \implies IND-qCCA (AE).

Theorem: SUF-qCMA (MAC) \implies INT-qCTXT (AE)

Let $\mathcal{SE} = (\mathcal{K}_e, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme, let $\mathcal{MA} = (\mathcal{K}_m, \mathcal{T}, \mathcal{V})$ be a message authentication scheme, and let $\overline{\mathcal{SE}} = (\bar{\mathcal{K}}, \bar{\mathcal{E}}, \bar{\mathcal{D}})$ be the authenticated encryption scheme obtained from \mathcal{SE} and \mathcal{MA} via encrypt-then-MAC composition method. Given any adversary I against $\overline{\mathcal{SE}}$, we can construct and adversary F such that

$$Adv_{SE}^{INT-qCTXT}(I) \leq Adv_{SE}^{SUF-qCMA}(F).$$

Theorem: INT-qCTXT and IND-qCPA \implies IND-qCCA

Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme. Let A be an IND-qCCA adversary against \mathcal{SE} running in time t and making q_e Enc queries and q_d Dec queries. Then, we can construct an INT-qCTXT adversary A_c and IND-qCPA adversary A_p such that

$$Adv_{\mathcal{S}\mathcal{E}}^{IND-qCCA}(A) \leq 2 \cdot Adv_{\mathcal{S}\mathcal{E}}^{INT-qCTXT}(A_c) + Adv_{\mathcal{S}\mathcal{E}}^{IND-qCPA}(A_p).$$

Furthermore, A_c runs in time O(t) and makes q_e Enc queries and q_d Verification queries, while A_p runs in time O(t) and makes q_e queries of target messages M_i .

Main Theorem

Theorem

IND-qCPA (Enc) and SUF-qCMA (MAC) \implies IND-qCCA (AE).

Proof.

- ▶ Since \mathcal{MA} is SUF-qCMA, we get that $\overline{\mathcal{SE}}$ is INT-qCTXT.
- ▶ Since SE is IND-qCPA, we get that \overline{SE} is also IND-qCPA.
- ▶ Finally, because $\overline{\mathcal{SE}}$ is INT-qCTXT and IND-qCPA, we get that it is IND-qCCA.

Constructing Quantum-Resistant Signatures

- Most classical signature schemes are insecure in the quantum model.
- ▶ We can apply a transformation (Boneh and Zhandry, 2013) to some of the existing signature schemes.
- ▶ In order to be able to make a classical signature scheme quantum resistant, we need it to be:
 - ► Secure classically.
 - Classically reduce to a quantum-resistant problem.

Signature Construction (Boneh and Zhandry, 2013)

Let $S_c = (G_c, Sign_c, Ver_c)$ be a signature scheme, H be a hash function, and $\mathcal Q$ be a family of pairwise independent functions mapping messages to the randomness used by $Sign_c$, and k some polynomial in λ . Define S = (G, Sign, Ver) where:

- $G(\lambda) = G_c(\lambda)$
- ► *Sign*(*sk*, *m*) :
 - ▶ Select $Q \in \mathcal{Q}$, $r \in \{0,1\}^k$ at random.
 - ▶ Set s = Q(m), h = H(m, r), $\sigma = Sign_c(sk, h; s)$. Output (r, σ) .
- $\blacktriangleright Ver(pk, m, (r, \sigma))$:
 - ▶ Set h = H(m, r). Output $Ver_c(pk, h, \sigma)$.

If the original signature scheme S_c is SUF-CMA against a classical chosen message attack performed by a quantum adversary, then the transformed scheme S is SUF-qCMA.

Quantum-resistant authenticated encryption schemes

Setup:

- Choose parameters for the underlying encryption and signature schemes.
- 2. Let $H: \{0,1\}^* \to \{0,1\}^k$ be a secure hash function (with security parameter k).
- 3. Let Q be a family of pairwise independent functions mapping messages to the randomness used in the signature scheme.

Key Generation:

- Alice chooses her private parameters for the encryption and signature schemes. If required, she produces and publishes the corresponding public keys.
- 2. Bob chooses his private parameters for the encryption and signature schemes. If required, he produces and published the corresponding public keys.

Quantum-resistant authenticated encryption schemes

Encryption: Suppose Bob wants to send a message $m \in \{0, 1\}^*$ to Alice.

- 1. Using the common encryption key e that he shares with Alice, encrypt the message using the underlying symmetric-key encryption scheme to obtain $c = \mathcal{E}(e, m)$.
- 2. Select $Q \in \mathcal{Q}$, $r \in \{0,1\}^k$ at random.
- 3. Compute t = Q(m).
- 4. Computes the value h = H(c, r).
- 5. Using h and his private signing key s, Bob computes the authentication tag $\sigma = Sign(s, h; t)$.
- 6. The ciphertext is (c, r, σ) .

Quantum-resistant authenticated encryption schemes

Decryption: Suppose Alice receives ciphertext (c, r, σ) from Bob.

- 1. Compute the value h = H(c, r).
- 2. Using h and Bob's public signing key p, compute the verification function $Ver(s, h, r, \sigma)$, if it returns true, continue; if not, stop.
- 3. Using the common encryption key e that she shares with Bob, decrypt the message and obtain $m = \mathcal{D}(e, c)$.

Elliptic curves

We assume F is a *finite field* of characteristic *greater than* 3. "Finite field" is essential, because cryptography uses finite fields. "Characteristic greater than 3" is not essential, but it simplifies matters greatly.

Definition

An *elliptic curve* over F is the set of solutions $(x,y) \in F^2$ to an equation

$$y^2 = x^3 + ax + b, \quad a, b \in F,$$

plus an additional point ∞ (at infinity).

Group law

Elliptic curves admit an abelian group operation with identity element ∞ . Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$. Then

$$P + Q = \left(\left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2, \right.$$

$$\left. - \left(\frac{y_2 - y_1}{x_2 - x_1} \right) \left(\left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - 2x_1 - x_2 \right) - y_1 \right)$$
Centre for applied cryptograph

Isogenies

Definition

Let E and E' be elliptic curves over F.

▶ An isogeny ϕ : $E \to E'$ is a non-constant algebraic morphism

$$\phi(x,y) = \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)}\right)$$

satisfying $\phi(\infty) = \infty$ (equivalently, $\phi(P+Q) = \phi(P) + \phi(Q)$).

- ▶ The *degree* of an isogeny is its degree as an algebraic map.
- ▶ The endomorphism ring End(E) is the set of isogenies from $E(\bar{F})$ to itself, together with the constant homomorphism. This set forms a ring under pointwise addition and composition.

Examples

Example (Scalar multiplication)

- ▶ Let $E: v^2 = x^3 + ax + b$.
- ▶ For $n \in \mathbb{Z}$, define $[n]: E \to E$ by [n](P) = nP. Then [n] is an isogeny of degree n^2 .
- ▶ When n=2.

$$[2](x,y) = \left(\frac{x^4 - 2ax^2 - 8bx + a^2}{4(x^3 + ax + b)}, \frac{(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b - a)y}{8(x^3 + ax + b)^2}\right)$$

- \triangleright An explicit formula for [n] is given recursively by the so-called division polynomials.
- ▶ The map $\mathbb{Z} \to \text{End}(E)$ given by $n \mapsto [n]$ is an injective ring homomorphism.

Why Isogenies?

- Finding isogeny between given supersingular elliptic curves over a finite field is believed to be computationally infeasible problem for quantum computers.
- Childs, Jao and Soukharev in 2011 have shown that isogenies over ordinary elliptic curves cannot be used as cryptographic primitives for quantum-resistant protocols.
- Jao and De Feo in 2011 have constructed quantum-resistant key exchange protocol based on isogenies between supersingular elliptic curves.
- ► Jao and Soukharev in 2014 have constructed quantum-resistant undeniable signature protocol based on isogenies between supersingular elliptic curves.

- ► We present an example of the quantum-resistant authenticated encryption scheme, which is based on elliptic curve isogenies.
- ► For the signature/MAC component, we make use of the idea presented in work by Sun, Tian and Wang 2012, together with the work on signature construction by Boneh and Zhandry 2013.
- ► Key exchange component is based on De Feo and Jao's protocol presented in 2011.

4日 → 4周 → 4 目 → 4 目 → 9 Q P

Setup:

- 1. Choose primes $\ell_A, \ell_B, \ell_{A'}, \ell_{B'}, p, p'$ and exponents $e_A, e_B, e_{A'}, e_{B'}$ such that $p = \ell_A^{e_A} \ell_B^{e_B} \cdot f \pm 1$ and $p' = \ell_{A'}^{e_{A'}} \ell_{B'}^{e_{B'}} \cdot f' \pm 1$ give us supersingular elliptic curves E/\mathbb{F}_{p^2} (which denote simply by E) and $E/\mathbb{F}_{p'^2}$ (which denote simply by E').
- 2. Choose bases $\{P_A, Q_A\}$ and $\{P_B, Q_B\}$, which generate $E[\ell_A^{e_A}]$ and $E[\ell_B^{e_B}]$, respectively.
- 3. Choose bases $\{P_{A'}, Q_{A'}\}$ and $\{P_{B'}, Q_{B'}\}$, which generate $E'[\ell_{A'}^{e_{A'}}]$ and $E'[\ell_{B'}^{e_{B'}}]$, respectively.
- 4. Let $H_1, H_2 : \{0, 1\}^* \to \{0, 1\}^k$ be independent secure hash functions (with parameter k).

Key Generation:

- 1. Alice chooses random integers m_A , $n_A \in \mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$ not divisible by ℓ_A and m_A' , $n_A' \in \mathbb{Z}/\ell_{A'}^{e_{A'}}\mathbb{Z}$ not divisible by $\ell_{A'}$. Then, using these values, computes $\phi_A \colon E \to E_A = E/\langle [m_A]P_A + [n_A]Q_A\rangle$ and $\phi_A' \colon E' \to E_A' = E'/\langle [m_A']P_{A'} + [n_A']Q_{A'}\rangle$. Then, she computes $\phi_A(P_B)$, $\phi_A(Q_B)$, $\phi_A'(P_{B'})$, $\phi_A'(Q_{B'})$ and publishes her public key as $\{E_A, E_A', \phi_A(P_B), \phi_A(Q_B), \phi_A'(P_{B'}), \phi_A'(Q_{B'})\}$. Her private key is $\{m_A, n_A, m_A', n_A'\}$.
- 2. Bob chooses random integers $m_B, n_B \in \mathbb{Z}/\ell_B^{e_B}\mathbb{Z}$ not divisible by ℓ_B and $m_B', n_B' \in \mathbb{Z}/\ell_{B'}^{e_{B'}}\mathbb{Z}$ not divisible by $\ell_{B'}$. Then, similarly to Alice, publishes his public key as $\{E_B, E_B', \phi_B(P_A), \phi_B(Q_A), \phi_B'(P_{A'}), \phi_B'(Q_{A'})\}$. His private key is $\{m_B, n_B, m_B', n_B'\}$.

Encryption: Suppose Bob wants to send a message $m \in \{0,1\}^*$ to Alice.

- 1. Compute ciphertext $c = \mathcal{E}(j(E_{AB}), m)$.
- 2. Select $r \in \{0,1\}^k$ at random.
- 3. Bob computes the value $h = H_1(c, r)$.
- 4. Using h and $j(E'_{AB})$, Bob computes the authentication tag $\sigma = H_2(h||j(E'_{AB}))$.
- **5**. The ciphertext is (c, r, σ) .

Decryption: Suppose Alice receives ciphertext (c, r, σ) from Bob.

- 1. Alice computes the value $h = H_1(c, r)$.
- 2. Using h and $j(E'_{AB})$, Alice computes $H_2(h||j(E'_{AB}))$ and compares it to the authentication tag σ . If it matches, she continues, if not, stops.
- 3. Obtains $m = \mathcal{D}(j(E_{AB}), c)$.

Communication Overhead

- ▶ The ciphertext which Bob sends to Alice consists of the triplet (c, r, σ) , where c is the underlying ciphertext content, r is a k-bit nonce, and σ is the signature tag.
- In the case where the verification function in the signature scheme involves independently deriving the value of σ , we can hash σ down to k bits as well.
- For a security level of ℓ bits, the minimum value of k required for collision resistance is 2ℓ bits in the quantum setting.
- ▶ The per-message communication overhead of the scheme is thus 4ℓ bits in the case where the signature tag can be hashed, and $2\ell + |\sigma|$ bits otherwise.
- ▶ Note that in the former case the per-message communications overhead is always the same, independent of which component schemes are chosen.

Public Key Overhead

- ► The public key sizes that apply to the AE setting, come from the key-exchange section.
- We aim for 128-bit quantum security.
- Note that SDVS schemes require two-way transmission of public keys even if the encrypted communication is one-way, whereas standard signature schemes require two-way transmission of public keys only for two-way communication.

Table: Key transmission overhead

Signature scheme	e Bits
Ring-LWE	11600
NTRU	5544
Code-based	52320
Multi-variate	7672000
Isogeny-based	3073

Conclusion and Future Work

- We propose a security model for authenticated encryption against fully quantum adversaries, based on the classical security model of Bellare and Namprempre.
- We apply the Boneh and Zhandry framework for modeling quantum adversaries.
- We provide concrete examples of authenticated encryption schemes satisfying our security model along with estimates of overhead costs for such schemes.
- Next step would be to come up with a quantum-resistant protocol, that does not require authenticated public keys (using ideas of ESSR).
- ▶ We proposed a composed AE scheme, but the next step would be to come up with atomic (i.e. "one-step") protocols (using ideas of Signcryption, AES-GCM).