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S U M M A R Y

The M w
>∼ 9.0 2004 December 26 Sumatra-Andaman and M w = 8.7 2005 March 28 Nias

earthquakes, which collectively ruptured approximately 1800 km of the Andaman and Sunda

subduction zones, are expected to be followed by vigorous viscoelastic relaxation involving

both the upper and lower mantle. Because of these large spatial dimensions it is desirable to

fully account for gravitational coupling effects in the relaxation process. We present a stable

method of computing relaxation of a spherically-stratified, compressible and self-gravitating

viscoelastic Earth following an impulsive moment release event. The solution is cast in terms of

a spherical harmonic expansion of viscoelastic normal modes. For simple layered viscoelastic

models, which include a low-viscosity oceanic asthenosphere, we predict substantial post-

seismic effects over a region several 100s of km wide surrounding the eastern Indian Ocean. We

compare observed GPS time-series from ten regional sites (mostly in Thailand and Indonesia),

beginning in 2004 December, with synthetic time-series that include the coseismic and post-

seismic effects of the 2004 December 26 and 2005 March 28 earthquakes. A viscosity structure

involving a biviscous (Burgers body) rheology in the asthenosphere explains the pattern and

amplitude of post-seismic offsets remarkably well.

Key words: asthenosphere, normal modes, viscoelasticity.

1 I N T RO D U C T I O N

The great 2004 December 26 Sumatra-Andaman earthquake (Fig. 1)

ruptured about 1300 km of the Sunda and Andaman subduction

zones with combined dip-slip and right-lateral strike-slip motion

averaging about 10 m (Stein & Okal 2005; Ammon et al. 2005;

Banerjee et al. 2005). Its magnitude is estimated at M w = 9.3 (Stein

& Okal 2005) or M w = 9.1 to 9.2 (Ammon et al. 2005; Banerjee

et al. 2005) depending on the dip of the coseismic fault surfaces

thought to have accommodated significant slip. Three months later

the M w = 8.7 March 28 Nias earthquake occurred just to the south

of the 2004 December rupture. These earthquakes generated large

coseismic stress changes in the surrounding volume of the Earth of

dimensions ∼1000 km both laterally and vertically. Those regions

below the elastic lithosphere cannot sustain these shear stresses and

must relax. Because of the size and dimensions of this earthquake,

not only the upper mantle but also the lower mantle are expected to

flow in response to the earthquake. In order to predict post-seismic

relaxation over such large spatial scales and a wide range of tempo-

ral scales, it is necessary to account for relaxation of shear stress,

including the effects of compressibility and self-gravitation.

Relaxation in shear stress coupled with the perturbations associ-

ated with compressibility and self-gravitation has been well inves-

tigated for the problem of post-glacial rebound (e.g. Wu & Peltier

1982; Wolf 1991; Han & Wahr 1995; Vermeersen et al. 1996). In

the framework of viscoelastic normal modes, the construction of

Love numbers for the case of surface loads represents the complete

solution in the post-glacial case. The solution for post-earthquake

relaxation is closely related since it involves simply a different set

of boundary conditions to describe the source. Yet applications of

post-seismic relaxation analysis have not addressed the entire prob-

lem. Restricting attention to a spherical geometry, Pollitz (1992)

presented the viscoelastic normal mode solution for the case of

earthquake excitation in the absence of gravitation. Piersanti et al.

(1995) presented a solution to the post-earthquake problem for an

incompressible, self-gravitating Earth. Pollitz (1997) presented a

solution for the case of a compressible, self-gravitating Earth un-

der the approximation that coupling of body stress perturbations

with perturbations in the Earth’s gravitational potential could be ne-

glected. This approximation is sometimes referred to as Cowling’s

approximation in the seismological literature (e.g. Dahlen & Tromp

1998). It is equivalent to explicitly including terms proportional

to the Earth’s gravitational acceleration g, but neglecting terms

proportional to the gravitational constant G when evaluating the

set of coupled differential equations for the displacement-stress

vector in the normal mode approach (e.g. Wu & Peltier 1982).
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Figure 1. Rupture areas associated with known megathrust earthquakes along the Sumatra-Sunda trench. Black planes are the coseismic rupture of the 2004

December 26 earthquake from Model C of Banerjee et al. (2006). Indicated are the 0 and 50 km slab depth contours of Gudmundsson & Sambridge (1998).

Epicentres of M ≥ 4.0 earthquakes from 2005 March 29 to 2005 August 1 from the NEIC catalogue are superimposed. Selected GPS sites from four regional

networks are indicated.

Using a scaling analysis Pollitz (1997) found that on a typical

viscoelastic earth model this approximation is adequate for wave-

lengths less than about 400 km. At greater wavelength it is neces-

sary to include coupling with changes in the Earth’s gravitational

potential.

Here we construct a viscoelastic normal mode solution for post-

earthquake relaxation on a spherically symmetric, compressible,

self-gravitating earth model. The equations of quasi-static equilib-

rium and a stable method of integrating them to obtain the viscoelas-

tic normal modes are presented in Appendices A and B, respectively.

We investigate the viscoelastic normal modes associated with two

basic models of the viscoelastic asthenosphere, one using a Maxwell

rheology and the other a Burgers body rheology. We apply these so-

lutions to the Sumatra-Andaman and Nias earthquake sources in

order to investigate the patterns of global post-seismic relaxation

to be expected from this earthquake. We shall employ models of

earth structure that accurately specify density as a function of depth

but which use only a few layers to describe the variation of shear

modulus and viscosity with depth. This is done in order to avoid the

‘continuous spectrum’ of viscous relaxation times that would char-

acterize an earth model with smooth variations of shear modulus

and viscosity with depth (e.g. Fang & Hager 1995).
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Figure 2. Elastic structure assumed in this study. Discontinuities are present at depth 220, 670, and 2891 km. The steady state and transient viscosity and

transient shear modulus in the asthenosphere are η1, η2, and μ2, respectively. The upper mantle and lower mantle viscosity are ηUM and ηLM , respectively.

2 V I S C O E L A S T I C N O R M A L M O D E S

O F A S T H E N O S P H E R E R E L A X AT I O N

M O D E L S

2.1 Viscoelastic model structure

The elastic stratification of the models considered here is shown

in Fig. 2. It has the density structure of PREM (Dziewonski &

Anderson 1981), which possesses major discontinuities at depth

220 km (bottom of asthenosphere), 670 km (upper mantle–lower

mantle boundary) and 2891 km (core–mantle boundary). We intro-

duce an additional discontinuity at 62 km depth which is meant to

represent the top of the oceanic asthenosphere. This is the approx-

imate depth to sharp boundary marking a low-velocity zone in the

mid-Pacific (Gaherty et al. 1996). In the spherical volumes between

these discontinuities we prescribe constant shear modulus and bulk

modulus using average values of these parameters from PREM. In

viscoelastic models we further prescribe constant viscosity values

between these discontinuities. This is done in order to avoid the con-

tinuous spectrum of relaxation times that results from a continuous

distribution of shear modulus or viscosity with depth (Fang & Hager

1995).

Viscoelastic models are defined with a Burgers body rheology

(e.g. Yuen & Peltier 1982) in the asthenosphere and Maxwell rheol-

ogy in the remaining upper and lower mantle. The viscosity structure

is parametrized with η1 and η2 between 62 km and 220 km depth,

ηUM between 220 km and 670 km depth, and ηLM between 670 km

and 2891 km depth (Fig. 2). These are the steady state and transient

viscosity in the asthenosphere, the upper mantle viscosity, and lower

mantle viscosity, respectively. Two other parameters to describe the

Burgers body rheology are the steady state shear modulus μ1, which

is just the elastic shear modulus, and the transient shear modulus

μ2. The Burgers body rheology in the asthenosphere reduces to a

Maxwell rheology if η2 = ∞. Following Pollitz (2003a) we assume

μ2 = μ1. We consider two viscosity structures:

Rheology 1: η1 = 5 × 1017 Pa s, η2 = ∞, ηUM = 1020 Pa s, ηLM =
1021 Pa s.

Rheology 2: η1 = 1019 Pa s, η2 = 5 × 1017 Pa s, ηUM = 1020 Pa s,

ηLM = 1021 Pa s.
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Figure 3. Relaxation time of viscoelastic normal modes on rheology 1 as

a function of spherical harmonic degree. There are altogether 6672 modes

identified with relaxation times less than 3.189 × 105 yr. Dashed lines in-

dicate the l-value associated with a depth of three wavelengths equal to the

given depth. This is where the given depth is used as the radius of an inviscid

sphere where the radial integration is begun. Because of the discrete layering

of the Earth model, the true l-value associated with a given starting depth is

slightly larger than that indicated on the figure.

Each viscosity structure has a low viscosity value of 5 ×
1017 Pa s in the asthenosphere based on Pollitz et al. (1998). In

rheology 1 it is the steady state viscosity, and in rheology 2 it is the

transient viscosity.

2.2 Response with Maxwell rheology

Fig. 3 presents a dispersion diagram of relaxation times as a func-

tion of spherical harmonic degree for rheology 1. The complicated

appearance of this diagram arises from several factors:

(1) the use of three distinct viscoelastic layers and an elastic

lithosphere,

(2) the presence of an inviscid fluid core,

(3) the presence of a continuously varying density profile (in

practice, represented with more than 100 layers),

(4) compressibility effects and

(5) a degree-dependent position of the ‘core–mantle’ boundary.

The last factor refers to the practical implementation of the in-

tegration of eqs (A13) and (A22) in which we start the radial in-

tegration at a depth of three wavelengths, where one wavelength

equals

2πa

l + 1
2

If this depth is greater than the actual depth of the core mantle bound-

ary, then starting conditions (A15) and (A24) are specified at r = b,

A

Figure 4. Mode eigenfunctions y1(r , s j ) and l × y3(r , s j ) normalized by√
ǫ j s j on rheology 1. (a) Stable relaxation modes of l = 545 for 1/s j <

3.189 × 105 yr. (b) Stable relaxation modes of l = 545 for a few modes with

1/s j > 3.189 × 105 yr. (c) Unstable (RT) relaxation modes of l = 545 for

the five fastest growing modes.

otherwise they are specified at a depth of three wavelengths. This

starting depth is rounded off to the top or bottom of the nearest layer,

hence the staggered appearance of a few dispersion branches as l

increases through certain ranges. The starting radius of integration

is r = b, that is, a depth of 2891 km, for l ≤ 40 and shallows to a

depth of 160 km for l = 750 This is accurate for seismic sources

in the lithosphere and evaluation of deformation in the lithosphere,

avoiding the need to consider deep relaxation effects for shorter

wavelengths.

The vertical and horizontal mode eigenfunctions are shown in

Fig. 4(a) for l = 545 on rheology 1 and τ = 1/s j < 3.169 × 105 yr. As

defined in eq. (A26), positive s j represent an exponentially-decaying

mode associated with a pole s = −s j in the Laplace transform do-

main. The dominant mode in the lithosphere is that with relaxation

time 0.683537 yr. Other modes are either of smaller amplitude in

the lithosphere and/or confined to the region near the boundary at

220 km, which is at a depth of three wavelengths and thus repre-

sents the depth to the top of a spherical shell below which an inviscid

sphere is specified as a boundary condition. Fig. 5 shows the eigen-

functions for l = 180 on rheology 1 and τ = 1/s j < 3.169 × 105

yr. The depth to the inviscid sphere in this case is 670 km. The

dominant mode is that with relaxation time 1.41856 yr. Its eigen-

function values in the lithosphere are 10 times larger than that of

any other mode. This shows that even at fairly long wavelength, that

is, 223 km in this case, the relaxation response in the lithosphere is

C© 2006 The Authors, GJI, 167, 397–420
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Post-seismic relaxation following the 2004 Sumatra-Andaman earthquake 401

B

C

Figure 4. (Continued.)

Figure 5. Mode eigenfunctions y1(r , s j ) and l × y3(r , s j ) normalized by√
ǫ j s j on rheology 1. Stable relaxation modes of l = 180 for 1/s j < 3.189

× 105 yr.

sensitive primarily to relaxation in the low-viscosity asthenosphere

rather than the higher-viscosity upper mantle below 220 km.

In Fig. 3 we excluded from the dispersion set those modes cor-

responding to τ ≥ 3.169 × 105 yr. That is because at fixed l, we

find a very large number of modes associated with these longer re-

laxation times. These are presumably a mixture of compressible

modes and buoyancy modes, of which there are expected to be

theoretically infinitely many (Han & Wahr 1995) because of the

use of a compressible rheology and the presence of a continuously

C© 2006 The Authors, GJI, 167, 397–420
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402 F. F. Pollitz, R. Bürgmann and P. Banerjee

varying density profile. Five such modes are shown in Fig. 4(b). All

of them have peak energy at depths just below the base of the litho-

sphere. They are, in fact, similar to the unstable RT modes discussed

by Plag & Jüttner (1995), Hanyk et al. (1999) and Vermeersen &

Mitrovica (2000). The unstable modes are associated with negative

s j , that is, poles of the displacement response on the positive real

s-axis, and are termed Rayleigh-Taylor unstable modes by Plag &

Jüttner (1995) because they arise fundamentally from the failure of

the PREM earth model to satisfy the Adams–Williamson equation.

In our model, a substantial departure from the Adams–Williamson

equation occurs between 62 and 220 km depth in the relatively

low-density asthenosphere. This produces admissible solutions to

the equations governing viscoelastic normal modes for negative s j ,

that is, modes that grow with time according to eq. (A26). The five

fastest-growing unstable modes for l = 545 are shown in Fig. 4(c).

We find that both the stable modes at large τ > ∼3 × 105 yr and the

unstable modes are associated with surface eigenfunctions of ampli-

tude generally 2 to 5 orders of magnitude smaller the small-τ stable

modes. However, a few unstable modes are found with displace-

ment amplitudes of the same order as the dominant stable mode.

Plag & Jüttner (1995) hypothesize that other processes (effects of

stress-dependent rheology; coupling with thermal stresses) not in-

cluded in the linear viscoelastic theory should operate in order to

neutralize the unstable mode excitation. Vermeersen & Mitrovica

(2000) argue that in the event that unstable modes were ever excited

in the past, the Earth should have re-adjusted to a stable density

and compressibility configuration over geologic time. We adopt this

viewpoint and hypothesize that the actual density and compress-

ibility structure should satisfy the Adams–Williamson equation and

that the stable modes identified here would closely correspond to the

viscoelastic modes of the hypothetical stable structure. With this re-

striction to the stable modes, we find that calculated post-seismic

deformation for the long 2004 Sumatra-Andaman rupture differs

only slightly from that calculated using the approximate treatment

of Pollitz (1997), for which no unstable modes are admissible.

2.3 Response with Burgers body rheology

Fig. 6 shows the dispersion diagram obtained on rheology 2 for

τ < 3.189 × 105 yr. Comparison with Fig. 3 reveals some details of

the influence of asthenosphere relaxation on the model responses.

The effect of the Burgers body rheology is to increase the total

number of stable modes, with several new dispersion branches ap-

pearing with τ near the material relaxation time associated with the

steady state asthenosphere viscosity—η1/μ1 = 4.7 yr. The eigen-

functions associated with the ten identified stable modes on rheology

2 for l = 545 are shown in Fig. 7. The modes associated with the

largest lithosphere amplitudes are those associated with relaxation

times 18.4659 and 0.175124 yr. These are clearly associated with

upper asthenosphere relaxation governed by relaxation times that

are proportional to the steady state and transient viscosities of the

asthenosphere, respectively.

As with rheology 1, modes sensitive to primarily asthenosphere

relaxation are identified as doublets with nearly identical τ (Fig. 4a).

On rheology 1, one of the doublets has τ values of 0.255361 and

0.277168 yr that are close to the material relaxation time of the

asthenosphere—0.235490 yr. The other doublet has τ values of

0.683537 and 0.732536 yr. Fig. 4(a) shows that the relaxation pattern

in the modes of the first doublet are completely different, whereas

they are similar for the second doublet. On rheology 2 there are three

sets of doublets, the first with τ values of 0.121358 and 0.126251

Figure 6. Relaxation time of viscoelastic normal modes on rheology 2 as a

function of spherical harmonic degree. There are altogether 10 794 modes

identified with relaxation times less than 3.189 × 105 yr. As in Fig. 3 dashed

lines indicate the l-value associated with a depth of three wavelengths equal

to the given depth.

yr, the second with τ values of 0.175124 and 0.178232 yr, and the

third with τ values of 9.95189 and 10.3831 yr. The modes in first

doublet of rheology 2 have very similar mode eigenfunctions with

energy concentrated near the base of the asthenosphere and very

small energy in the lithosphere (Fig. 7). The second doublet of rhe-

ology 2 behaves like the second doublet of rheology 1, with all mode

eigenfunctions having energy concentrated near the top of the as-

thenosphere and relatively large amplitudes in the lithosphere. The

third doublet of rheology 2 behaves like the first doublet of Model

1, with one mode sensitive to lower asthenosphere relaxation and

the other to upper asthenosphere relaxation.

3 A P P L I C AT I O N T O T H E 2 0 0 4

S U M AT R A - A N DA M A N A N D 2 0 0 5 N I A S

E A RT H Q UA K E S

Post-seismic effects from past great megathrust earthquakes are evi-

dent even several decades after the event as demonstrated using GPS

velocity observations in the regions of the M w = 9.5 1960 Chile

earthquake (Hu et al. 2004) and M w = 9.2 1964 Alaska earthquake

(Freymueller et al. 2000). These authors attribute most of the signal

in the velocity measurements to viscoelastic relaxation of the man-

tle. The signal is especially large because of the great length and

width of such ruptures.

As a first order approach, we use slip models for the M 2 = 9.2

2004 December 26 and M = 8.7 2005 March 28 earthquakes (Fig. 1)

constrained by far-field static offsets and seismic waves, respec-

tively. For the 2004 event this carries the advantage of capturing

essentially all of the moment release associated with the earthquake

C© 2006 The Authors, GJI, 167, 397–420
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Figure 7. Mode eigenfunctions y1(r , s j ) and l × y3(r , s j ) normalized by
√

ǫ j s j on rheology 2. Stable relaxation modes of l = 545 for 1/s j < 3.189 ×
105 yr.

sequence, which may have included very slow rupture of the north-

ern half of the rupture based on free oscillations (Stein & Okal 2005);

Banerjee et al. (2005) argue that much of the slow rupture was not

detected even at the longest seismic periods (up to ∼1 hr). For

this purpose we use the preferred coseismic slip model of Banerjee

et al. (2006), which was derived from a set of 142 horizontal GPS

displacement vectors and 30 vertical GPS displacement vectors.

The models derived in Banerjee et al. (2006) are refinements of

those derived in Banerjee et al. (2005), which were derived with

a smaller set of coseismic offsets; the larger data set fills in many

gaps in Thailand and Indonesia. An example is shown for Model C

of Banerjee et al. (2006) in Fig. 8(a). This model demonstrates that

coseismic static displacement computed on the PREM model with

an average ∼10 m slip on a 1300-km-long, 100–140-km-wide set of

faults yields an excellent fit to the observed static offsets. Banerjee

et al. (2005) found that slip models without the Andaman segment,

that is, the northern ∼650 km of the rupture, fit the observations

significantly worse than models that include the Andaman segment.

We also use the 2005 March 28 Nias earthquake the source model

derived by Banerjee et al. (2006) using 32 regional GPS sites. The

fit obtained by the simple five-plane model is excellent (Fig. 9).

This model, obtained with a dip of 15◦, corresponds to magnitude

M w = 8.66. This is larger than the magnitude M w = 8.5 obtained

by Ji (2005) from seismic wave analysis using the same dip. This

suggests a substantial difference between the moment at seismic

periods and that determined geodetically, which may imply an ad-

ditional contribution from afterslip occurring within a short time

after the earthquake. Together, the 2004 December and 2005 March

slip models provide the source models for calculating coseismic

and post-seismic displacements at selected sites, resulting in model

time-series for a given rheology model. Similarly to the post-seismic

displacements, coseismic displacements are calculated in a layered

spherical geometry (Pollitz 1996).

As an example using on the 2004 December source, Figs 10(a) and

11 shows snapshots of the post-seismic velocity field at the Earth’s

surface on rheology models 1 and 2, respectively. The velocity

fields produced on the two rheology models have a similar pattern,

and the amplitudes are similar for the earliest time period (0.25 yr

after the earthquake), but the amplitudes on rheology 2 are much

smaller than those on rheology 1 at later times. This reflects the

influence of the relatively large steady state asthenosphere viscosity

of 1019 Pa s on rheology 2, which dominates the relaxation pat-

tern at timescales greater than τ 2 in the asthenosphere, which is

0.23 yr.
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Figure 8. Coseismic horizontal displacement field of the 2004 December 26 earthquake shown by black vectors with 95 per cent error ellipses, together with

the ‘corrected’ coseismic offsets derived from Tables 1 and 2 of Vigny et al. (2005), shown by the blue vectors, and coseismic offsets derived from campaign

GPS from Table S1 of (Subarya et al. 2006), shown by the green vectors. Superimposed red vectors are the predicted static displacements on the PREM model

using slip Model C of Banerjee et al. (2006). Grey lines indicate the fault planes used to obtain Model C.

The inclusion of gravity in the formulation of post-seismic relax-

ation is important because it affects the relaxation times and eigen-

functions of all modes. Post-seismic velocities in the gravitational

case are generally very close to the corresponding non-gravitational

velocities during the early phase of relaxation but become relatively

small at times greater than about 8–10 material relaxation times

(Pollitz 1997). We examine the effect of gravity on post-Sumatra

relaxation by comparing the post-seismic velocity fields calcu-

lated with and without gravitational effects. Fig. 10(b) shows the

rheology model 1 post-seismic displacement field in the non-

gravitational case. The gravitational response in Fig. 10(a) is very

close to the non-gravitational response at the earliest two time pe-

riods, but is systematically smaller at greater elapsed times. These

differences are plotted directly in Fig. 10(c), which indicates gen-

erally about 3 per cent smaller gravitational response in the earliest

time period (0.25 yr after the earthquake) increasing to about 15 per

cent smaller response in the later time period (4 yr after the earth-

quake). Fig. 10(d) shows the first 10 yr post-seismic response at

6.90◦N, 98.62◦E generated by the 2004 December 26 source for the

westward and downward components. It shows that rheology models

1 and 2 (both with gravity) have almost identical post-seismic veloc-

ity immediately after the earthquake, but diverge quickly thereafter.

The retarding effect of gravity on post-seismic relaxation increases

gradually with time, reaching about −20 per cent for the horizon-

tal component and about −75 per cent for the vertical component

after 10 yr. An set of additional rheology-1 curves in Fig. 10(d) la-

belled ‘approximate gravity’ refers to the application of Cowling’s

approximation to the inclusion of the Earth’s self-gravitation. In
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Figure 9. Coseismic displacement field of the 2005 March 28 Nias earthquake at 32 regional GPS sites with 95 per cent errors (Banerjee et al. 2006).

Superimposed red vectors are the predicted static displacements on the PREM model using a five-plane slip model derived in Banerjee et al. (2006). Grey

planes indicate the fault planes. Dark blue curves are the 0 and 50 km slab depth contours of Gudmundsson & Sambridge (1998).

this approximation, coupling of changes in the Earth’s gravitational

potential with the deformation field are neglected, equivalent to in-

cluding the g-terms but neglecting the G-terms in the equations of

quasi-static equilibrium. Except on the vertical component at very

early times, there is negligible difference between the full-gravity

and approximate-gravity cases during the time period examined.

Time-series at selected regional GPS sites with strong post-

seismic signals are shown in Fig. 12. They were obtained by pro-

cessing of raw time-series from four regional networks (Fig. 1) in

the ITRF2000 reference frame; further details are provided in Pollitz

et al. (2006). These time-series exhibit clear coseismic offsets at the

times of the 2004 December and 2005 March earthquakes, occurring

on days 360 and 452, respectively. Most time-series also exhibit a

post-seismic transient of up to ≈50 cm yr−1 during the three months

between the two earthquakes. The magnitude and direction of the

post-seismic transients agree with the predictions of the viscoelastic

models (Figs 10 and 11). This is verified in detail by comparison

with predicted time-series on rheology models 1 and 2, shown in

Figs 12 and 13, respectively.

4 D I S C U S S I O N

Between the two candidate rheologies, rheology 2 better captures

the evolution of regional post-seismic movements during the three

months between the 2004 December and 2005 March earthquakes.
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Figure 10. (a) Post-seismic velocity field at Earth’s surface (gravitational case) at selected times following the 2004 December 26 Sumatra earthquake. We

use rheology model 1 (Fig. 3), which has a Maxwell rheology in the asthenosphere, and coseismic fault Model C of Banerjee et al. (2006). (b) Rheology

model 1 post-seismic velocity field in the non-gravitational case. (c) Differences between non-gravitational (b) and gravitational (a) post-seismic velocity fields.

(d) Westward and downward components of post-seismic velocity fields on rheology 1 (with or without gravity) and rheology 2, at 6.14◦N, 100.14◦E as a

function of time after the 2004 December 26 earthquake. The ‘approximate gravity’ case for rheology 1 is calculated using the method of Pollitz (1997), which

includes the g-terms but neglects the G-terms in the equations of quasi-static equilibrium. Lower plots are close-ups of the upper plots during the first year.

For the various velocity components shown in Fig. 13, the rheology-

2 displacement curves well match the initial post-seismic velocity

and curvature during the first three months post-seismic period. This

is particularly evident at PHKT and CPN, but it is true for the other

time-series as well.

It is useful to obtain simple quantitative measures of the post-

seismic time-series in order to better compare the observed time-

series with the model predictions. We choose the initial post-seismic

velocity and curvature as our measures. For a given time-series we

seek to obtain the best-fitting quadratic function

u(t) = u0 + vt + ς t2, (1)

where u (t) is the synthetic time-series beginning at time t = 0 (corre-

sponding to the time just after the 2004 December 26 event), v is the

initial post-seismic velocity, and ς is the curvature. The three quan-

tities u0, v, and ς may be calculated exactly for a model time-series;
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Figure 10. (Continued.)

v and ς are the slope evaluated at time t = 0 and curvature averaged

over the three months between the two events, respectively. The three

quantities are estimated from the observed time-series by fitting the

observed time-series to u (t) between the times of the 2004 Decem-

ber 26 and 2005 March 28 events. The three unknown parameters are

obtained through least-squares inversion, and propagation of data

errors yields corresponding standard deviations in these parameters.

Fig. 14 shows estimated v and ς for the 20 time-series, together with

the corresponding model predictions on rheology models 1 and 2.

Fig. 15 presents the same comparisons among data and rheology-

model predictions in terms of the horizontal vector representations

of v and ς . Both models yield calculated v in excellent agreement

with observed v. However, rheology 2 better matches the curva-

tures of virtually all observed time-series. The improvement is most

visible at PHKT and CPN, but it is also significant at SAMP and

KMI. This is verified by quantitative evaluation of misfit. For a Burg-

ers body model with variable parameters η1, η2, and μ2, we define

the reduced χ2 fits of calculated to observed velocity and curvature

at the GPS sites through

χ2
v =

1

2I − 3

I
∑

i

(

vi
obs − vi

cal(η1, η2, μ2)

σ i
v

)2

χ2
ς =

1

2I − 3

I
∑

i

(

ς i
obs − ς i

cal(η1, η2, μ2)

σ i
ς

)2

, (2)

where I is the number of sites, the index i spans East and North

components of site i, and σ i
v and σ i

ς are the associated standard

deviations in vi
obs and ς i

obs, respectively. Rheology model 1 yields
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Figure 10. (Continued.)

χ2
v = 2.09 and χ 2

ς = 5.92, and rheology model 2 yields χ 2
v = 2.11

and χ 2
ς = 1.54.

The almost identical initial post-seismic velocity predictions of

the two rheology models are expected on theoretical grounds. Using

the notation of eq. (A4), eq. (2) of Pollitz (2003a) shows that for

a constant stress step applied at time t = 0, the initial velocity on

a Maxwell rheology is inversely proportional to τ 1, and the initial

velocity on a Burgers body rheology is inversely proportional to

τ 2 when τ 1 ≫ τ 2. The near-equality of predicted initial velocities

follows from the fact that τ 1 of rheology 1 equals τ 2 of rheology 2

(Section 4.1).

The essential information contained in the post-seismic time-

series is embodied in the parameters two v and ς . The behaviour

of the Burgers-body rheology model is similarly embodied by three

parameters: η1, η2, and μ2 (assuming that the elastic shear modulus

μ1 is known). Sets of observed {v} and {ς} effectively constrain

two of the three parameters, making it an underdetermined problem.

The two better-constrained parameters are the transient viscosity η2

and transient shear modulus μ2. There is little sensitivity of either

v or ς to steady-state viscosity η1, as seen in misfit patterns con-

ducted over various parameter ranges (Figs 16a and b). Fig. 16(a)

confirms that initial post-seismic velocity v is primarily sensitive

to τ 2 (or to η2 for a fixed μ2). With fixed η2 = 5 × 1017 Pa s,

Fig. 16(b) shows that a good match to ς is obtained with a wide

range of η1. This is because the ∼3 months time span of the measure-

ments is too short to constrain this parameter, suggesting that longer
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Figure 10. (Continued.)

post-seismic time-series are needed to adequately constrain the

steady state viscosity. We find negligible sensitivity of initial ve-

locity v but substantial sensitivity of ς to μ2 (Fig. 16). Fig. 16

suggests that for the chosen values of η1 and η2, a value μ2 near

40 GPa provides the best fit to the post-seismic curvature data, only

slightly smaller than the value 33.5 GPa used in rheology model 2.

It is difficult to exploit the signal in vertical GPS measurements

because the standard deviation in most daily solutions is of order

20 mm, and strong non-tectonic (i.e. seasonal) signals may also be

present. At PHKT, however, the tectonic signal is predicted to be on

the order of several cm yr−1 subsidence for the early post-seismic

period, and the site is positioned in an area of predicted maximal

post-seismic subsidence regardless of rheology (Fig. 17). Observed

v and ς for the vertical component at PHKT between the 2004

December 26 and 2005 March 28 events is: v = −11.4 ± 8.1 cm

yr−1 and ς = 26.9 ± 31.6 cm yr−2. These quantities are v = −22.7

cm yr−1 and ς = 9.8 cm yr−2 on rheology 1 and v = −21.8 cm yr−1

and ς = 33.5 cm yr−2 on rheology 2. Although the estimated signal

is marginally significant, this comparison again favours rheology 2.

Our analysis has assumed a laterally homogeneous viscoelastic

structure most appropriate for an oceanic environment. It neglects

the influence of the downgoing Indo-Australian slab as well as the

presence of continental structure east of the subduction zone. The

results presented here would be substantially modified if the down-

going slab acted as a strong boundary to viscous mantle flow or if

the continental asthenosphere behaved much differently from the

oceanic asthenosphere. The predictive power of the viscoelastic

model would be strengthened if it could be tested against ocean-

ward observations of post-seismic relaxation, for example, through

ocean-bottom GPS.

Afterslip models designed to explain the rapid GPS-constrained

post-seismic movements are certainly possible but not required to

explain regional post-seismic movements. Hashimoto et al. (2006)

have constructed a time-dependent afterslip distribution involving

continued slip along the Sumatra-Andaman rupture zone during the

three months between the 2004 December 26 and 2005 March 28

earthquakes, amounting to about 1 to 3 m total afterslip. It fits a sub-

set of the presented time-series very well. At this stage it is difficult

to discriminate between the afterslip and viscoelastic relaxation pro-

cesses. Detailed observations of post-seismic GPS time-series from

the Andaman and Nicobar Islands, to be considered in the future,

will greatly help resolve this issue.

Poroelasticity has been convincingly proposed as an important

post-seismic mechanism within 3 to 4 km of a strike-slip fault

(Jónsson et al. 2003), in accordance with expectations based on per-

meability as a function of depth. At greater distance from the source

fault, its effects are expected to diminish rapidly not only because

of increasing permeability with depth but also because dilatational

strain changes diminish rapidly with distance r (i.e. with a theo-

retically 1/r 3 dependence). Forward calculations of post-seismic

deformation following a large dip-slip event show that poroelastic

rebound is very localized near the source and of much smaller mag-

nitude than viscoelastic relaxation at greater than ∼20 km distance

(Masterlark et al. 2001).
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Figure 11. Post-seismic velocity field at Earth’s surface (gravitational case) at selected times following the 2004 December 26 Sumatra earthquake. We use

rheology model 2 (Fig. 6), which has a Burgers body rheology in the asthenosphere, and coseismic fault Model C of Banerjee et al. (2006).

Continued observations of regional displacements may poten-

tially provide greater insight into asthenosphere and deeper mantle

rheology. The time-series extrapolated to 10 yr beyond the 2004

Sumatra earthquake in Figs 12 and 13 emphasize the large depar-

ture of one rheology from the other after just a few months. It also

raises the possibility that with longer post-seismic time-series at

hand, one may be able to discriminate additional relaxation times.

The characterization of the asthenosphere as a Burgers body with

two material time constants is likely an oversimplification. The as-

thenosphere, as well as the rest of the mantle, may have a contin-

uous spectrum of relaxation times as proposed by Yuen & Peltier

(1982) Their composite rheology model combines the behaviour of

the absorption band model, which explains seismic wave attenua-

tion, with steady state relaxation which is needed to allow long-term

mantle convection. Viscosities of ≈1020 to 1021 Pa s are thought to

characterize most of the upper and lower mantle (King 1995), and

post-seismic time-series extending several years into the future may

detect relaxation of material at corresponding depths.

5 C O N C L U S I O N S

The large dimensions of the 2004 Sumatra-Andaman earthquake

have motivated the present treatment of post-seismic relaxation,

which is based on viscoelastic relaxation on a self-gravitating,
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Post-seismic relaxation following the 2004 Sumatra-Andaman earthquake 411

Figure 12. Left-hand side panels: Observed GPS time-series following the 2004 December 26 earthquake with 1-σ errors at selected continuous GPS sites;

site locations are shown in Fig. 1. u E and u N refer to east- and northward displacement, respectively. Day numbers refer to the year 2004. Superimposed are

the predicted displacement curves on rheology 1 that include the effects of coseismic and post-seismic offsets due to the 2004 December 26 and 2005 March

28 Sumatra earthquakes. Right-hand side panels: Predicted time-series extended out to 10 yr beyond the 2004 December 26 earthquake.
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Figure 13. Same comparison as in Fig. 12, but with model time-series calculated on rheology 2.
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−

−
1

Figure 14. Initial post-seismic velocity v and curvature ς of observed time-

series from just after the 2004 December 26 event to just before the 2005

March 28 event, shown with ±1 standard deviation. Results for the East and

North components are shown together for every site label (as indicated for

SAMP, for example). Superimposed are the predicted v and ς of the same

time-series components from rheology models 1 and 2.

compressible earth model. 20 post-seismic GPS time-series begin-

ning before 2004 December 26 and spanning several months fol-

lowing the 2004 December earthquake exhibit rapid post-seismic

velocities of order 10 to 50 cm yr−1. They are interpreted in terms

of a combination of coseismic offsets associated with the 2004 De-

cember 26 and 2005 March 28 earthquakes and viscoelastic relax-

ation of the asthenosphere. We consider two candidate rheologies,

one involving a low-viscosity asthenosphere with Maxwell rheol-

ogy, the other involving a Burgers body rheology with low transient

viscosity in the asthenosphere. The Burgers body rheology satisfac-

torily explains both the initial post-seismic velocity and curvature

of practically all time-series between the times of the two events.

This lends support to the notion that flow of high-temperature rock

is characterized by more than one material relaxation time.
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Figure 15. Initial post-seismic velocity v(a) and curvature ς (b) of observed time-series, shown with 95 per cent error ellipses, and predicted v and ς on

rheology models 1 and 2, all corresponding to the time from just after the 2004 December 26 event to just before the 2005 March 28 event.

Pollitz, F.F., 1992. Postseismic relaxation theory on a layered spherical earth,

Bull. seism. Soc. Am., 82, 422–453.

Pollitz, F.F., 1996. Coseismic deformation from earthquake faulting on a

layered spherical earth, Geophys. J. Int., 125, 1–14.

Pollitz, F.F., 1997. Gravitational viscoelastic postseismic relaxation on a

layered spherical earth, J. geophys. Res., 102, 17 921–17 941.

Pollitz, F.F., 2003a. Transient rheology of the uppermost mantle beneath the

Mojave Desert, California, Earth planet. Sci. Lett., 215, 89–104.

Pollitz, F.F., 2003b. Postseismic relaxation theory on a laterally heteroge-

neous viscoelastic model, Geophys. J. Int., 155, 57–78.

Pollitz, F.F., Bürgmann, R. & Romanowicz, B., 1998. Viscosity of oceanic

asthenosphere inferred from remote triggering of earthquakes, Science,

280, 26 975–26 992.

Pollitz, F.F., Banerjee, P. & Bürgmann, R., 2006. Stress evolution along

the Sunda trench following the 26 December 2004 Sumatra-Andaman

and 28 March 2005 Nias earthquakes, Geophys. Res. Lett., 33, L06309,

doi: 10.1029/2005gl024558.

Press, W., Teukolsky, S., Vetterling, W. & Flannery, B., 1996. Numerical

Recipes in Fortran 90, Volume 2, Cambridge University Press.

Riva, R. & Vermeersen, L., 2002. Approximation method for high-degree

harmonics in normal mode modelling, Geophys. J. Int., 151, 309–

313.

Saito, M., 1974. Some problems of static deformation of the earth, J. Phys.

Earth, 22, 123–140.

Stein, S. & Okal, E., 2005. Speed and size of the Sumatran earthquake,

Nature, 434, 581–582.

Subarya, C. et al., 2006. Plate-boundary deformation of the great Aceh-

Andaman earthquake, Nature, 440, 46–51.

Takeuchi, H. & Saito, M., 1972. Seismic surface waves, in Methods in Com-

putational Physics, Vol. 11, pp. 217–295, Academic Press, New York.

Vermeersen, L. & Mitrovica, J., 2000. Gravitational instability of spher-

ical self-gravitating relaxation models, Geophys. J. Int., 142, 351–

360.

Vermeersen, L. & Sabadini, R., 1997. A new class of stratified viscoelastic

models by analytical techniques, Geophys. J. Int., 129, 531–570.

Vermeersen, L., Sabadini, R. & Spada, G., 1996. Compressible rotational

deformation, Geophys. J. Int., 126, 735–761.

Vigny, C. et al., 2005. GPS in SE Asia provides unforseen insights on the

2004 megathrust earthquake, Nature, 436, 201–206.

Wolf, D., 1991. Viscoelastodynamics of a stratified compressible planet: in-

cremental field equations and short- and long-time asymptotes, Geophys.

J. Int., 104, 401–417.

Woodhouse, J., 1988. The calculation of eigenfrequencies and eigenfunc-

tions of the free oscillations of the earth and the sun, in Seismological

Algorithms, pp. 321–370, ed. Doornbos, D., Academic Press.

Wu, P. & Ni, Z., 1996. Some solutions for the viscoelastic gravitational

relaxation of a two-layer non-self-gravitating incompressible spherical

earth, Geophys. J. Int., 126, 413–436.

Wu, P. & Peltier, W., 1982. Viscous gravitational relaxation, Geophys. J. R.

astr. Soc., 70, 435–485.

Yuen, D. & Peltier, W., 1982. Normal modes of the viscoelastic Earth, Geo-

phys. J. R. astr. Soc., 69, 495–526.

C© 2006 The Authors, GJI, 167, 397–420

Journal compilation C© 2006 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
6
7
/1

/3
9
7
/2

0
8
5
2
3
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Post-seismic relaxation following the 2004 Sumatra-Andaman earthquake 415

Figure 16. (a) χ2
v and (b and c) χ2

ς resulting from viscoelastic models with

various combinations of η1, η2, and μ2. Note that there is little sensitivity

of either v or ς to η1. Filled circles indicate the fit of rheology model 2.

−1 

−1 

Figure 17. Post-seismic vertical velocity (positive upward) at time 0.25 yr

after the 2004 December 26 event at Earth’s surface on rheology models 1

and 2. Contour interval for negative velocity (i.e. subsidence) is 5 cm yr−1

for rheology model 1 and 2 cm yr−1 for rheology model 2.

A P P E N D I X A : V I S C O E L A S T I C N O R M A L M O D E R E P R E S E N TAT I O N O F

P O S T - E A RT H Q UA K E R E L A X AT I O N

The theory presented here follows the derivation of Earth’s free oscillations presented in many works (e.g. Takeuchi & Saito 1972;

Ben-Menahem & Singh 1981; Dahlen & Tromp 1998) and differs mainly in the assumption of zero frequency for the quasi-static problem

and the application of the correspondence principle (e.g. Cathles 1975). It is similar to that presented by Peltier (1974), and it is repeated here
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416 F. F. Pollitz, R. Bürgmann and P. Banerjee

in order to emphasize the application to seismic source excitation rather than surface loading. In addition, we intend application of this theory

to a Burgers body rheology (Pollitz 2003a), for which the early post-earthquake evolution is very rapid and hence compressibility effects,

which are included here, are expected to be important.

Let elastic parameters {μ(r ), κ (r )}, density ρ 0(r ), and viscosity η(r) define a spherically-symmetric, isotropic, non-rotating Earth model

in a spherical r − θ − φ geometry, where μ, κ , ρ 0, and η are the depth-dependent shear modulus, bulk modulus, density, and viscosity,

respectively. Let φ0(r ) and p0(r ) be the initial gravitational potential and pressure fields, respectively. These are prescribed by

∇ p(r) = −ρ0(r )∇φ0(r) = −ρ0(r )g(r )r̂, (A1)

together with Poisson’s equation

∇2φ0 = 4πGρ0, (A2)

where G is the gravitational constant and g is the gravitational acceleration. After an earthquake the Earth moves from its initial state of

equilibrium. To describe the time dependence it is convenient to work in the Laplace transform domain. The Laplace transform of a function

with dependent variable s is

L[ f (t)] =
∫ ∞

0

f (t) exp(−st) dt. (A3)

It is assumed that constitutive relation relating tensor strain rate and stress is linear, as is the case for the well-known Maxwell viscoelastic

solid, standard linear solid, and Burgers body (e.g. Yuen & Peltier 1982). Viscoelasticity is realized by application of the correspondence

principle, through which the elastic parameters are replaced with s-dependent elastic parameters, for example,

μ(r ; s) = μ1s
s + τ−1

2
(

s + τ−1
2

)(

s + τ−1
1

)

+ μ1s

η2

, (A4)

for a Burgers body. In eq. (A4), the relaxation time τ1 = η1

μ1
, where η1 = η(r ) and μ1 = μ(r ) are the steady state viscosity and steady state

shear modulus, respectively; the relaxation time τ2 = η2(r )

μ2(r )
, where η2(r ) and μ2(r ) are the transient viscosity and transient shear modulus,

respectively. We define the transformed perturbed density and gravitational potential at r = (r , θ , φ)

ρ(r, s) = ρ0(r ) + ρ1(r, s)

φ(r, s) = φ0(r ) + φ1(r, s).
(A5)

Let a source with impulsive moment tensor M(t) = MH (t) be located at rs . Denoting the transformed displacement field with u(r, s) and

the corresponding elastic stress tensor with T(r. s), the linearized equations of quasi-static equilibrium are

−ρ0∇φ1 − ρ1∇φ0 − ∇[ρ0u · ∇φ0] + ∇ · T =
1

s
M : ∇δ(r − rs), (A6)

ρ1 = −∇ · (ρ0u), (A7)

∇2φ1 = 4πGρ1, (A8)

T = κ(∇ · u)I + 2μ

[

ǫ −
1

3
(∇ · u)I

]

. (A9)

In eq. (A9) ǫ is the strain tensor

ǫ =
1

2
[(∇u) + (∇u)T ], (A10)

and I is the identity matrix. Eqs (A6) to (A8) are the transformed eqs (11) and (12) of Dahlen (1972) without the inertial, rotational, or initial

stress deviator terms. Eq. (A9) is the stress–strain relation for an isotropic material.

In the normal mode method, eqs (A6) to (A10) are first solved without the forcing term, and the solutions of the forced system are represented

in terms of a sum of modes with excitation coefficients which depend on M and the source depth (e.g. Pollitz 1997). The normal modes are

found by representing the solution to the unforced system as a superposition of spherical harmonics. The equations decouple into separate

systems of equations for toroidal and spheroidal motion solutions and are separable in spherical harmonic degree. In the case of toroidal

motion, displacement and traction are represented as

u(r, s) = −y1(r, s) [r̂×∇1] Yl (r̂), (A11)

r̂ · T(r, s) = −y2(r, s) [r̂×∇1] Yl (r̂), (A12)

where ∇1 = ( ∂

∂θ
+ (sin θ )−1 ∂

∂φ
) is the surface gradient operator and Y l represents a spherical harmonic of degree l. The components y1 and y2

of the displacement-stress vector are the horizontal displacement and shear traction on a spherical shell of radius r, respectively. Substitution

of eqs (A11) and (A12) into eqs (A6) to (A10) yields
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Post-seismic relaxation following the 2004 Sumatra-Andaman earthquake 417

y = [ y1 y2 ]T

dy

dr
= A· y

A =

(

r−1 μ−1

r−2μ(L − 2) −3r−1

)

,

(A13)

where

μ = μ(r, s)

L = l(l + 1).
(A14)

The system of coupled first-order differential equations A12 is to be integrated from the Earth’s interior to the surface subject to continuity

of the two functions y1 and y2. If the starting radius of integration is taken to be the core–mantle boundary at radius b, then there is one

independent solution at that radius given by

yI (b, s) =

(

1

0

)

. (A15)

Admissible solutions must satisfy vanishing traction at Earth’s surface at radius a:

r̂ · T(a, s) = 0, (A16)

or equivalently

y I
2 (a, s) = 0. (A17)

In the case of spheroidal motion, displacement, traction, and perturbed gravitational potential are represented as

u(r, s) = [y1(r, s)r̂ + y3(r, s)∇1] Yl (r̂), (A18)

r̂· T(r) = [y2(r, s)r̂ + y4(r, s)∇1] Yl (r̂), (A19)

φ1 = y5(r, s)Yl (r̂). (A20)

The components y1, . . . , y4 of the displacement-stress vector are: vertical displacement, normal traction on a spherical shell of given radius r,

horizontal displacement, and shear traction on the spherical shell, respectively. Following Saito (1974) we further define an auxiliary function

y6 by

dφ1

dr
− 4πGρr̂ · u +

l + 1

r
= y6(r, s)Yl (r̂). (A21)

Substitution of eqs (A18) to (A21) into eqs (A6) to (A10) yields

y =
[

y1 y2 y3 y4 y5 y6

]T

dy

dr
= A· y

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2λσ−1r−1 σ−1 λσ−1 Lr−1 0 0 0

−4ρ0gr−1 + 4γ r−2 2(λσ−1 − 1)r−1 (−2γ r−2 Lr−1 (l + 1)r−1 −ρ0

+ρ0gr−1)L

−r−1 0 r−1 μ−1 0 0

ρ0gr−1 − 2γ r−2 −λσ−1r−1 −2μr−2 −3r−1 −ρ0r−1 0

+(γ + μ)Lr−2

4πGρ0 0 0 0 −(l + 1)r−1 1

4πGρ0 0 −4πGρ0 Lr−1 0 0 (l − 1)r−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A22)

where

λ = κ(r ) −
2

3
μ(r, s)

σ = λ(r, s) + 2μ(r, s)

γ = λ(r, s) + μ(r, s) − λ2(r, s)σ−1. (A23)

The system of coupled first-order differential equations A22 is to be integrated from Earth’s interior to the surface subject to regu-

larity at the center of the Earth and continuity of the six functions y1, . . . , y6. However, if the surface of discontinuity is a solid-fluid interface,
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418 F. F. Pollitz, R. Bürgmann and P. Banerjee

then only y1, y2, y4, y5, and y6 are continuous. In intended applications we assume a homogeneous fluid core of density ρ c and the starting

radius of integration is taken to be the core–mantle boundary. There are three independent solutions at r = b given by

yI (b, s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, yI I (b, s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

l

0

1

0

l 4πρc G

3
b

l(l − 1) 8πρc G

3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, yI I I (b, s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

ρcg(b)

− 1
2

0

0

−4πρcG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A24)

These are the the solutions for quasi-static deformation of a self-gravitating homogeneous solid sphere in the limit of vanishing shear modulus

μ, and they were obtained by evaluating the solutions in eqs (27), (28), and (29) of Vermeersen et al. (1996) in the limit s → 0. Note that one

should split the C (s) function in eq. (33) of Vermeersen et al. (1996) into two cases in order to prescribe their displacement-stress vectors

correctly (Vermeersen & Sabadini 1997). The first solution corresponds to a discontinuity in horizontal displacement across the solid-fluid

boundary. The boundary conditions given by eq. (48) of Wu & Peltier (1982) and eq. (20) of Saito (1974) are linear combinations of those

given in eq. (A24) and therefore equivalent.

Vanishing traction and upward continuation of the gravity field at Earth’s surface give the required boundary conditions at r = a:

y2(r, a) = a1 y
(I )
2 (r, a) + a2 y

(I I )
2 (r, a) + a3 y

(I I I )
2 (r, a) = 0

y4(r, a) = a1 y
(I )
4 (r, a) + a4 y

(I I )
2 (r, a) + a3 y

(I I I )
4 (r, a) = 0

y6(r, a) = a1 y
(I )
6 (r, a) + a6 y

(I I )
2 (r, a) + a3 y

(I I I )
6 (r, a) = 0

for appropriate constants a i . This requires the vanishing of the determinant

∣

∣

∣

∣

∣

∣

∣

y I
2 (a, s) y I I

2 (a, s) y I I I
2 (a, s)

y I
4 (a, s) y I I

4 (a, s) y I I I
4 (a, s)

y I
6 (a, s) y I I

6 (a, s) y I I I
6 (a, s)

∣

∣

∣

∣

∣

∣

∣

= 0. (A25)

The boundary conditions in eq. (A17) for toroidal motion or eq. (A25) for spheroidal motion are satisfied for a dispersion set of values

s = {−s j}. For a fixed l there are an infinite number of decay times if the Earth model contains a continuous spectrum of material relaxation

times τ = μ0

η0
. However, when the Earth model contains only a finite number of τ (e.g. in a case with a finite number of layers with different

material properties), then the toroidal motion dispersion set for a fixed l contains a finite number of s j , and similarly for the spheroidal motion

dispersion in the absence of gravitation (Piersanti et al. 1995; Pollitz 1997) or for incompressible, gravitational Earth models with a finite

number of layers (e.g. Piersanti et al. 1995; Wu & Ni 1996). However, relaxation of a compressible self-gravitating Earth model generally

involves an infinite dispersion set (Vermeersen et al. 1996).

The transformed displacement field is inversely proportional to the determinant evaluated with eqs (A17) or (A25). Thus the dispersion

sets contain the poles of the transformed displacement field. Assuming that these poles are simple poles, the time domain response is

u(r, t) =
∑

j

M : E j (rs, r̂)ǫ−1
j

1 − exp(−s j t)

s j

, (A26)

where E j is an excitation function for the response to a moment tensor source (e.g. Appendix A of Pollitz 2003b) and

ǫ j = L

∫ a

0

(

[r∂r y1(r, −s j ) − y1(r, −s j )]
2 + (L − 2)(y1(r, −s j ))

2
)

×
∂μ(r, s)

∂s

∣

∣

∣

∣

s=−s j

r 2 dr,

(A27)

for toroidal motion and

ǫ j =
∫ a

0

([

1

3
2∂r y1(r, −s j ) − F

]

+ Lr−2[r∂r y3(r, −s j ) − y3(r, −s j ) + y1(r, −s j )]
2

+r−2(y3(r, −s j ))
2
[

2(L − 1)L − L2
]) ∂μ(r, s)

∂s

∣

∣

∣

∣

s=−s j

r 2 dr

F = r−1[2y1(r, −s j ) − Ly3(r, −s j )],

(A28)

for spheroidal motion.
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Post-seismic relaxation following the 2004 Sumatra-Andaman earthquake 419

A P P E N D I X B : S TA B L E I N T E G R AT I O N O F S P H E RO I DA L M O T I O N S O L U T I O N

The Bulirsch–Stoer integration method (Press et al. 1996) is used to integrate both the toroidal and spheroidal systems of equations to high

accuracy. For toroidal motion, it is straightforward to integrate eq. (A13) for the one independent solution y I from the starting radius to Earth’s

surface and stably evaluate the determinant in eq. (A17) as a function of s. For spheroidal motion, however, one must integrate three solutions

and evaluate the determinant in eq. (A25). In practice, the three solutions which are independent at the starting radius r = b tend to be nearly

linearly dependent at r = a when the spherical harmonic degree is sufficiently large, even for wavelengths as long as ∼1000 km (l = 40).

This results in an unstable evaluation of the determinant and large inaccuracies in the determination of y i and possibly misidentification of

poles s j . Methods to address this problem include large l approximations of the solutions (e.g. Riva & Vermeersen 2002) and integration of

systems of minors of the displacement-stress vector (Woodhouse 1988). We use a simple scheme that removes the linear dependence of the

solutions by iterative adjustment of the solutions at the starting radius. The steps of this procedure are as follows:

(1) Define �0 = I (the 3 × 3 identity matrix) and assign iteration number i = 0.

(2) Prescribe initial solutions at r = b

( y1 y2 y3 ) = ( yI (b, s) yI I (b, s) yI I I (b, s) )· �i , (B1)

(3) Integrate the solutions {y(k) |k = 1, 2, 3} to r = a. Exponentially increasing solutions are re-scaled where necessary to keep the y(k)

bounded and the scaling factors stored.

(4) Choose a solution y(k) to use as a pivot to eliminate either y2(a, s) or y4(a, s) from the other two solutions. For this purpose we evaluate

the second order minors
∣

∣

∣

∣

∣

∣

y
(k′)
2 (a, s) y

(k′′)
2 (a, s)

y
(k′)
4 (a, s) y

(k′′)
4 (a, s)

∣

∣

∣

∣

∣

∣

, (B2)

divided by a measure of the size of the displacement-stress vectors, denoted by the product |y(k′) (a, s)| × |y(k′′) (a, s)|, for pairs (k ′, k ′′) = (1,

2), (1, 3), (2, 3). The pair with the smallest second order minor determines k, that is, the index not equal to k′ or k′′. The relative sizes of y
(k)
2

(a, s) and y
(k)
4 (a, s) determines whether y2 or y4 is eliminated from the other two solutions.

(5) For the sake of illustration, assume that y(1) is chosen to eliminate y
(2)
2 (a, s) and y

(3)
2 (a, s). We define

�1 =

⎛

⎜

⎜

⎜

⎝

1 − y
(2)
2 (a,s)

y
(1)
2 (a,s)

− y
(3)
2 (a,s)

y
(1)
2 (a,s)

0 1 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (B3)

(6) Repeat steps 2 and 3 for iteration i = 1. This yields a new set of solutions with theoretically

⎛

⎜

⎜

⎝

y
(1)
2 (a, s) y

(2)
2 (a, s) y

(3)
2 (a, s)

y
(1)
4 (a, s) y

(2)
4 (a, s) y

(3)
4 (a, s)

y
(1)
6 (a, s) y

(2)
6 (a, s) y

(3)
6 (a, s)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

y
(1)
2 (a, s) 0 0

y
(1)
4 (a, s) y

(2)
4 (a, s) y

(3)
4 (a, s)

y
(1)
6 (a, s) y

(2)
6 (a, s) y

(3)
6 (a, s)

⎞

⎟

⎟

⎠

, (B4)

(7) Between those two displacement-stress vectors, which just had a component eliminated (y(2) and y(3) in this example), choose one

of them to be a pivot to eliminate y6 from the other two displacement-stress vectors. For this purpose we choose y(k) with the largest y
(k)
6 (a,

s)/|y(k) (a, s)|. Assume that y(3) is chosen.

(8) Define

�2 = �1·

⎛

⎜

⎜

⎜

⎝

1 0 0

0 1 0

− y
(1)
6 (a,s)

y
(3)
6 (a,s)

− y
(2)
6 (a,s)

y
(3)
6 (a,s)

1

⎞

⎟

⎟

⎟

⎠

, (B5)

(9) Repeat steps 2 and 3 for iteration i = 2. This yields a new solution with theoretically

⎛

⎜

⎜

⎝

y
(1)
2 (a, s) y

(2)
2 (a, s) y

(3)
2 (a, s)

y
(1)
4 (a, s) y

(2)
4 (a, s) y

(3)
4 (a, s)

y
(1)
6 (a, s) y

(2)
6 (a, s) y

(3)
6 (a, s)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

y
(1)
2 (a, s) 0 0

y
(1)
4 (a, s) y

(2)
4 (a, s) y

(3)
4 (a, s)

0 0 y
(3)
6 (a, s)

⎞

⎟

⎟

⎠

, (B6)

(10) Evaluate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

y
(1)
2 (a, s) y

(2)
2 (a, s) y

(3)
2 (a, s)

y
(1)
4 (a, s) y

(2)
4 (a, s) y

(3)
4 (a, s)

y
(1)
6 (a, s) y

(2)
6 (a, s) y

(3)
6 (a, s)

∣

∣

∣

∣

∣

∣

∣

∣

. (B7)
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This method is found to be very effective in removing the linear dependence of the three starting solutions. The determinant evaluated in

step 10 is extremely close to that evaluated in iteration 0 when the trial value of s is far from a pole. However, as s approaches a pole, the

determinant evaluated in step 10 is typically several orders of magnitude smaller than that evaluated in iteration 0. The former is a smooth

function of s, whereas numerical round-off error produces a highly discontinuous value of the latter.

The negative real s− axis is divided into a large number of intervals, and successive bisection is used to find where the determinant vanishes

and estimate the pole locations s = −s j . Once the three starting solutions are integrated upward in iteration 2 at such a pole, it is straightforward

to reconstruct the displacement-stress vector components y1, . . . , y6 as a function of radius.
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