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Abstract— Modern processor designs are extremely complex
and difficult to validate during development, causing a growing
portion of the verification effort to shift to post-silicon, after

the first few hardware prototypes become available. Extremely
slow simulation speeds during pre-silicon verification result
in functional errors escaping into silicon, a problem that is
further exacerbated by the growing complexity of the memory
subsystem in multi-core platforms. In this work we present
CoSMa, a novel technology offering high coverage functional
post-silicon validation of cache coherence protocols in multi-
core systems. It enables the detection and diagnosis of functional
errors in the memory subsystem by recording at runtime a
compact encoding of the operations occurring at each cache line
and checking their correctness at regular intervals. We leverage
the system’s existing memory resources to store the required
activity, thus minimizing area overhead. When the system is
finally ready for customer shipment, CoSMa can be completely
disabled, eliminating any performance or memory overhead.
We reproduce in our experiments a set of coherence protocol
bugs based on published errata documents of commercial multi-
core designs, and show that CoSMa is highly effective in
detecting them.

I. INTRODUCTION

As chip multi-processor (CMP) systems grow more com-

mon, errors in cache coherence have become leading sources

of bugs found in the post-silicon debugging phase. Errata

from multi-core designs, such as the Core 2 Duo [1], indicate

that at least 10% of escaped bugs were due to such errors.

Increasing design complexity limits the design space that can

be effectively verified before tapeout, requiring more effort

to be invested in the post-silicon phase. As a result, post-

silicon debugging has been a growing component of a chip’s

time-to-market, up to 35% at the 90nm technology node [2].

In this landscape, verification engineers are faced with the

challenge of identifying errors, determining their root causes,

and then correcting them. Finding the source of an error is

especially difficult in post-silicon validation due to the lack

of observability of internal circuit nodes which, in contrast, is

widely available when debugging in pre-silicon simulation-

based methodologies.

This situation is further exacerbated by modern multi-core

processor systems, where multiple processor nodes share one

or more memory blocks through an interconnect network.

The communication between these nodes and the central

memory is regulated by cache coherence and consistency

protocols. While cache coherence protocols may appear

simple at the abstract level, described by a simple finite

state machine (FSM), the implementation of a protocol in

hardware is complex, requiring many additional intermediate

states to be taken into account. For example, a conceptual

5-state MOESI protocol is implemented in the GEMS sim-

ulation framework [3] with a 15-state FSM in the level 1

(L1) cache controllers and a 60-state FSM in the level 2

(L2) controller. The problem is worsened by the complex

interactions that may occur when several of these controllers

are instantiated in the same system. Due to the complexity of

even basic cache coherence models and the slow simulation

speed of pre-silicon verification, large portions of the design

space go unverified at the pre-silicon stage and an increasing

number of functional errors escape to silicon. The focus

of our work is to leverage early silicon to speed up the

verification process, thereby providing the level of coverage

necessary to ensure the correctness of coherence protocols

in multi-core systems.

A. Our Contribution

CoSMa is a novel solution that focuses on the post-silicon

verification of cache coherence protocols for multi-core

designs, enabling high coverage verification while incurring

a near-zero area impact. The novelty offered by our contri-

bution is a distributed cache activity history storage mecha-

nism, and an accompanying online validation algorithm that

determines the correctness of observed events. The history

storage mechanism monitors the shared memory operations

at each local cache during regular system operation, logging

activity in a compact form for a period of time. Then, at

regular intervals, the systems stops normal execution and

enters a special interrupt mode, during which we rely on the

cores to check that shared memory management mechanisms

have maintained correct coherence. Memory coherence is a

property of memory management which ensures that any

access to a given location returns the latest value to that

location. Memory coherence checks are achieved through

a variant of a string matching algorithm (hence the name

CoSMa, Coherence String Matching). To store the activity

history, we temporarily reallocate some of the system’s native

resources (typically half of the L1 and L2 caches) to be

controlled by CoSMa, allowing us to keep the area overhead

at a bare minimum (Figure 1). These resources store a

footprint of the coherence protocol activity, and possibly

processor and timing information. CoSMa offers two variants

of this mechanism, one optimized for minimal performance

overhead, the other for high coverage. Furthermore, we

provide the ability to completely disable CoSMa, so that

when the system is ready for production, all cache storage

is released and made available for mainstream computation.

Our experimental results show that CoSMa is effective

in detecting bugs of the memory subsystem in multi-core

designs, and that the performance overhead when CoSMa is

active ranges from 1% to 23%. Moreover, when CoSMa is

disabled there is no performance impact on the system. From

an area cost standpoint, CoSMa requires the addition of a few



hardware logging mechanisms, devised to require minimal

design effort and to be mostly decoupled from the underlying

system. In our evaluation on an OpenSPARC T1 processor,

these checkers would constitute only a small fraction of a

percent of the overall design area.

II. BACKGROUND AND RELATED WORK

The cache coherence protocol in a multi-processor system

defines the behavior of read and write operations to and from

individual processors and a shared memory subsystem, so

that each processor can access the latest value written to

a memory location. Different protocols usually define the

states in which an individual cache line can be at any point

in time. Much research has been dedicated to the correctness

of cache coherence protocols, ranging from abstract model

analysis, to simulation techniques, to runtime solutions.

At an abstract level, the state of a local cache line can

be described by a relatively simple FSM; verifying the

correctness of the abstract model is a well-explored area of

research [4, 5, 6, 7, 8]. The implementation of the model into

a concrete system, on the other hand, can be problematic,

requiring many additional intermediate states. As a result,

the representation of the corresponding FSM for the whole

system quickly becomes impractical, since it corresponds to

the product of all the local FSMs. Pre-silicon verification

of the implementation-level is undertaken in [9], where

the authors use a constrained-random testing approach to

increase coverage of a simulated design. The slow simulation

speed and large state space precludes this approach from

covering many of the possible cases, thus significant portions

of the design go unverified.

Runtime solutions have emerged in response to the inade-

quacies of pre-silicon verification. Cantin et al. [10] propose

the addition of a simple cache controller to each processor,

as well as an extra communication bus connecting the

controllers. This supplementary system runs in parallel with

the existing cache coherence system, verifying its operation.

Another recent solution [11, 12] uses signatures to represent

the state of the cache lines, periodically aggregating the data

to check that a number of global invariants are satisfied.

These solutions have the advantage of tracking faults through

the entire lifespan of a system at a minimal performance

degradation, but at the expense of conspicuous hardware

overhead. In the domain of post-silicon validation, solutions

must have extremely limited hardware impact, so as not

to affect the cost and power envelope of the system after

customer release. On the other hand, the performance impact

can be more noticeable, as long as it can be completely

eliminated after product release.

The novelty of our solution lies in a high coverage, near-

zero area impact solution which exploits the high perfor-

mance of hardware prototypes to overcome the limitations

of pre-silicon validation. Compared to runtime solutions,

CoSMa has much lower area overhead (orders of magnitude)

and can detect functional design errors.
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Fig. 1. CoSMa is a distributed solution with small checkers residing
on each cache controller, the master on the L2 and a slave on each L1.
This configuration is agnostic to the interconnect network type, and relies
on it for communication between master and slave checkers. Storage for
the coherence history is temporarily allocated only during verification and
is shown with hashed lines.

III. COSMA COMPONENTS

In a CoSMa design, a multi-core processor is augmented

with a special mode of operation, called CoSMa mode, to

be activated only during post-silicon validation. While in

CoSMa mode, time is organized into epochs: each epoch

includes a phase of normal execution, while CoSMa logs

activity in the background, followed by a checking phase,

during which coherence is checked (Figure 2) between local

caches and the central memory. For simplicity, from now on

we make the assumption that only the L1 caches are local

and that the L2 cache is centralized and used to enforce

coherence. However, CoSMa could be also be deployed in

situations where coherence is enforced at other levels of the

memory hierarchy.
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Fig. 2. Checks are performed periodically; the system executes normally
until log storage resources have been exhausted, at which point cores are
stalled and the checking phase begins.

At the beginning of the checking phase, all cores are

stalled and pending memory requests are completed. Then

the master checker, situated alongside the L2 controller

(Figure 1), broadcasts the coherence history of each valid

line over the existing interconnect network. Slave checkers

at each L1 cache look up the address of the broadcasted

line and verify that their local history is compatible with

the global history by executing a checking algorithm on the

local core. If the check passes, the local coherence history

in the L1 cache is cleared; otherwise, the system stops so

that the fault can be debugged. After all valid lines in the

L2 have been broadcasted, the L1 slave checkers examine

their own caches, ensuring that all valid lines have been

checked. Finally, the master checker synchronizes the slaves

and normal operation resumes.
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Fig. 3. A slave checker is connected to each L1 cache, and operates in two
phases: first checking valid lines against messages from the master checker
and then ensuring that no valid line has been missed in the check.

A. Operation

During each epoch, normal execution (Figure 3) extends

until history storage has been exhausted. When the checking

phase begins, first, a pre-check stage allows buffers and

queues to empty and completes outstanding memory opera-

tions, ensuring consistent L1 and L2 cache states. Checking

is organized into two phases: a valid line check that matches

valid L2 lines against their L1 counterparts, and a sweep

check, where each slave ensures that all of its valid lines have

been checked during the previous phase. During a valid line

check, the master checker broadcasts a message for each

valid line in the L2. Each slave checker does a lookup in

its L1 upon receiving each message and checks its contents

against the message. This check ensures that the coherence

history in the L1 cache is compatible with the history from

the L2. The cache line is marked as checked and the next

lookup takes place. When all the valid lines in the L2 have

been exhausted, the system proceeds to sweep check: each

slave checks that any line not checked in the previous phase

is marked invalid. Assuming an inclusive L2 cache, all lines

in the L1 cache must also reside in the L2 cache. Thus, if the

sweep check discovers an unchecked and valid line, CoSMa

determines that it is an errant line. If an error is detected at

any time during the check, an exception is raised and debug

information is readily available for the verification team in

the log storage. Finally, the synchronize stage, synchronizes

the slaves, waiting for all to complete. At this point, the next

epoch begins.

IV. CHECKING ALGORITHMS

CoSMa is equipped with two variants of the checking

algorithm responsible for reconciling coherence operations.

They are always executed in-situ on the processor cores

themselves and operate on corresponding L1 and L2 cache

lines. The first algorithm (called Low-overhead) is optimized

for low overhead and minimal perturbation to the system

under test; its corresponding histories are compact, encoded

sequences of cache coherence states. However, this low over-

head algorithm may have an impact on coverage. The second

algorithm targets high coverage and has a higher performance

impact. Here, cache line histories also include timing and

processor ID information. Note that both algorithms are free

of false positives.

The algorithms operate on two cache line histories corre-

sponding to the address under consideration, one from the L2

and the other from the local L1. A history is a sequence of

coherence states representing changes to the cache line over

a period of time, also including timestamp and processor

ID information in the case of the high coverage algorithm.

By comparing them, CoSMa’s algorithm determines whether

they are compatible with coherence shared memory manage-

ment; incompatible histories indicate a bug.

The check procedures analyze two histories corresponding

to the same cache line, the global history from the L2 and

the local history from the L1. These two state histories are

compatible if there exists at least one valid sequence of

memory operations that could have generated both histories.

The basis of our algorithms is that in a correctly functioning

cache coherence scheme, the state of each valid L1 line must

agree with the corresponding L2 line. Below, we discuss the

algorithms in detail using the MESI protocol as a running

example. With minor modifications, the algorithms can be

applied to any other protocol. The MESI states are: M

indicating a dirty (modified) version of the data is present,

E representing exclusive access, i.e., the line is clean and

not shared by any other L1, S meaning the line is clean but

shared between two or more L1 caches, and I indicating that

the line is invalid or not present in the cache.

A. Low-overhead Algorithm

The low-overhead algorithm is optimized for maximal

runtime between checks and minimal system perturbation.

It is capable of determining compatibility with a minimal

amount of information, as it relies only on the observed

sequence of high-level MESI states, (M, E, S, I). The

algorithm is divided into three sections: sequence compres-

sion, partitioning and matching.

1. Sequence Compression. Repeated sequences of states M

or E alternating with the Invalid state are reduced to one

occurrence of M or E. For example, the sequences MIM,

MIMIM, etc., would all reduce to M. This accounts for the

case where an L2 line remains unmodified while different

L1 caches contend for it. Note that it would be possible to

perform this step on the fly during normal execution.

2. Partitioning accounts for the observation that activity in

an L1 cache will be reflected in the L2 history, but may

not always appear in other L1 histories. Specifically, invalid

states seen in the L1 history may correspond to any type

of activity in the L2: while one L1 cache is invalid for a

particular address, another L1 may be operating on that data.

On the other hand, each sequence of non-invalid L1 states

must have a corresponding segment somewhere in the L2

history. Thus, we partition the L1 history at each occurrence

of an I state.

3. Matching between the partitioned L1 history and the L2

history can now take place. Each sequence partition must be

found within the L2 history, with all partitions matching in

the same order as they appear in the L1 history. As soon



as a match for each partition is found, the algorithm returns

successfully; failure to find a match indicates an error in the

cache coherence protocol.

Example. Consider two cache line histories, one correspond-

ing to the L1 and the other to the L2.

L2 history: IMISMIM initial
L1 history: IMIMIMISMI initial
L1 history: IMISMI after sequence compression
L1 history: | M | SM | after partitioning (|)
L2 history: I M I SM I M match found, matched
L1 history: | M | SM | partitions are in italics

Initially, these two histories reflect a period of contention

among L1 caches for write access to the address, reflected by

the sequence of MIMIM states in the L1 history. The sequence

compression step reduces this sequence to M, which allows

for the match against the single M state in the L2 cache. This

is followed by shared reads before going into another period

of write access, reflected by the SM section of the L1 and

L2 histories. The L1 history is partitioned, (shown with “|”),

and then matched. A match between the L1 and L2 histories

is found, thus no bug is flagged in this example.

B. High Coverage Algorithm

Designed to maximize coverage, this algorithm is capable

of detecting any errant activity related to a cache line’s

coherence state. When the coverage algorithm is in operation,

the history storage mechanism logs timestamp and processor

ID information in addition to the MESI state. This informa-

tion is in the form: <cycles in intermediate state, processor

ID, MESI state, cycles in MESI state>. Timestamps are

maintained by a counter in each cache controller, which

are periodically synchronized. The coverage algorithm is

significantly simpler than the low-overhead algorithm since

it has concrete timestamps to work with. This algorithm

processes a pair of L1 and L2 histories linearly, aligning

the two histories by their timestamps. Recorded MESI states

in the L2 history that match the processor ID of the current

L1 history are then matched; M, E and S states must exhibit

a one-to-one correspondence between the two histories. An

I in the L2 history must match an I in the L1 history, but

not the reverse. When the L1 history is in the invalid state,

the L2 history is simply checked to ensure that no recorded

states within the time period are marked with the current

processor ID.

C. Implementation and Complexity

CoSMa’s history checking algorithms take two coherence

histories as input, one from an L1 cache and the other

from the L2 cache. The coverage algorithm processes each

history linearly, while the low-overhead algorithm performs

its check recursively. When the histories have been checked

for compatibility, both algorithms return a judgment free of

false positives.

Coverage Algorithm. The coverage algorithm aligns L1

an L2 histories using timestamps. Comparisons are made

through matching processor IDs. Since the histories are

traversed once from beginning to end, the complexity of

the coverage algorithm is linear with the number of history

entries.

Low-overhead Algorithm. The low-overhead algorithm

considers a subset of an L1 and an L2 history, attempting

to match the first partition found in the L1 against the

remaining portion of the L2 history. When the algorithm is

called with only one L1 history partition, it reduces to simple

substring matching: the sequence must be found within the

L2 history in order for them to be compatible. If no matches

are found, CoSMa has found a coherence error. The worst-

case complexity of the proposed algorithm is dependent on

the characteristics of its inputs. To describe the inputs of the

algorithm, let us define the following parameters: d is the

length of the L2 history, p is the number of partitions in

the L1 history, and b is a constant expressing the amount

of activity within the L2 history (the average number of

states traversed in the L2 history before finding each L1

history partition). To estimate complexity, we construct a

tree to model the execution of the algorithm. The branching

factor, i.e., the average number of recursive calls made

at each step, is d
b
. The search depth, or the maximum

depth of the recursion tree, is p. The worst-case number

of recursive calls can then be approximated by the number

of nodes in this tree, given by the expression
(

d
b

)p+1
. This

complexity is the worst-case bound and can only occur when

the algorithm detects a bug, that is, when the entire tree

must be traversed to conclude that no valid match exists. We

note that the algorithm’s complexity is exponential, growing

particularly fast with the number of partitions in the L1

history. As a result, we must be careful to handle those rare

worst-case situations that could have a significant impact

on overall performance. Worst-case complexity in CoSMa

is managed by performing a runtime estimate before calling

the compatibility algorithm. If it exceeds a certain threshold,

the corresponding cache line goes unchecked. In practice,

we found that the performance of the algorithm is always

much better than its theoretical bound, leading to an overall

solution where history checks have very little impact on

performance overhead.

D. Strengths and Limitations

CoSMa’s checking algorithms allow the trade off of cover-

age and performance overheads. The high coverage algorithm

and accompanying history storage mechanism are capable of

catching all coherence errors encountered by a workload that

result in incompatible MESI states. Even bugs that result in

subtle timing variations can be caught by this method, since

timing information is retained in the history.

On the other hand, the low-overhead algorithm is capable

of running for much longer before a check is initiated,

decreasing perturbation of the system under test. Because

it does not retain timing information, this history storage

mechanism is not guaranteed to catch every possible co-

herence failure. In practice, many cache coherence bugs

will manifest as an incorrect sequence of cache line states,

and therefore can be caught. For example, errors in cache

controller logic may cause a line to transition into an

incorrect state. Worse yet, messages on the interconnect



may be lost or corrupted, preventing a request or response

from reaching its destination. Silent corruption of cache

state bits may also occur, unexpectedly changing state even

when a line is not accessed. However, the low-overhead

algorithm cannot catch bugs that result only in subtle timing

variations because it does not store timing information. For

example, consider a RAW (read-after-write) scenario in a

CMP system. A faulty L1 cache controller could exhibit

a delayed response to an invalidate request, allowing stale

data to be read by the processor when the line should have

been invalidated. The cache line eventually transitions to the

invalid state, so a correct history is present when the next

check is performed. Despite its evasion of the low-overhead

algorithm, this example is caught by the coverage algorithm.

While CoSMa is effective in detecting many types of

coherence errors, some may still escape. Data corruption is

one class of errors not covered, as this is often addressed

through checksums or error correction codes. Additionally,

the system is assumed to make forward progress; deadlocks

or system hangs are not detected. Another type of bug

that cannot be detected with CoSMa is one where an L1

cache controller ignores the current state of a cache line,

illegally services a processor’s request, and silently fails

to change MESI state. This would preclude the history

from being logged, thus when the check is performed, no

mismatch would be detected. The class of bugs that results

in performance degradation and yet provides correct results

also dodges CoSMa’s detection mechanism: incorrect behav-

ior causing communication saturation or resource starvation

while maintaining correct cache coherence states will not

cause a mismatch.

V. SYSTEM INTEGRATION

We integrated CoSMa in a CMP system using MESI by,

adding a master checker to the L2 cache controller and slave

checkers to each L1 controller. CoSMa is designed to be in-

tegrated with minimal design effort, as we discuss in Section

VI-E. Communication between master and slave checkers is

achieved through the existing interconnect infrastructure. The

area overhead for our solution is reported in Section VI-D,

showing that reuse of existing hardware resources allows us

to maintain a near-zero impact.

L2 Cache. The master checker is placed next to the shared

L2 cache. Half of the cache lines are used as a coherence

history buffer, thus any active line in the first half of the

cache will use the corresponding line in the second half

as a memory spool to hold coherence state changes. Note

that different partitions are also possible. Each MESI state is

encoded using two bits so, for the low-overhead algorithm,

at most 256 history items can be stored in a typical 64-

byte cache line. For the coverage algorithm, each history

item occupies approximately 4 – 6 bytes (depending on

workload); thus, a typical line can store 10 – 15 items. In

this algorithm, 8 bits are allocated to the processor ID and

10 bits to the time spent in an intermediate state. In our

experience, we found that a 10 bit (1024 cycle) timestamp

was adequate 99% of the time. For the time spent in a

MESI state, 14 bits were necessary to achieve the same

accuracy for random stimulus tests, and 29 bits were needed

for SPLASH2 benchmarks. When overflow occurs (1% of the

time), a duplicate history item is appended and the counter

restarted. To write into the history buffer, we augment the

logic in the L2 so that history is logged in parallel with

data; CoSMa leverages banked caches to avoid adding extra

ports to the cache memory. A pointer stored in the cache

tag register indicates where the next history entry should be

stored. Finally, when any history line exceeds a specified

maximum number of history items, a check is initiated.

L1 Caches. Each L1 cache controller is augmented with a

slave checker and half of the cache storage is used for history

logging. History items are appended in the same fashion as

for the L2. In order to deal with evicted cache lines, CoSMa

can be configured to perform individual cache line checks

before any eviction. CoSMa can also be configured to allow

evictions without checks, enabling decreased performance

impact and decreased perturbation to the system. In this case,

the L1 checker will clear the history when a line is replaced

due to eviction, but not when a line is invalidated due to

external invalidate requests, i.e., when another processor has

written newer data to the same cache line. As a result, history

can be maintained even across periods when a cache line

state is invalid.

Processor cores. Each processor core is augmented with a

simple stall mechanism to prevent any new memory requests

from being initiated while a coherence check is in progress.

This requires minimal modifications, since the core is already

required to stall under a number of conditions (e.g., when

waiting for a memory operation). Additionally, to minimize

hardware overhead, the coherence history checking algorithm

is executed on the existing CPU cores.

VI. EXPERIMENTAL EVALUATION

To evaluate the performance and correctness of CoSMa,

we implemented it using the GEMS simulation framework

[3]. The core of the GEMS tool set is Ruby, a memory system

simulator that can model a variety of coherence protocols

connected through a network topology. We modeled a chip

multi-processor system as described in Table I.

Processors 4-core CMP

Interconnect Point-to-point switched (unordered)

L1 caches 1KB per core, write-back, 4-way

L2 cache 8KB shared, banked, inclusive

Line size 64 B

Memory size 4 GB

Coherence Directory, MOESI protocol

L1/L2 hit latency 1 cycle / 18 cycles

Mem latency 92 cycles

TABLE I. System model parameters used to evaluate CoSMa.

For our coherence protocol, we chose the MOESI directory

protocol. Note that MOESI can be treated exactly the same

as MESI by our algorithm, since the Owner state is simply a

variant of Shared: thus, when the history is being stored, an S

is stored in place of an O. Other coherence protocols can also



be handled by using a minimal number of states to represent

the history. Because of the limited speed of GEMS, cache

sizes were selected to be relatively small to maximize stress

on the coherence mechanism. Additionally, we employed

SimpleScalar [13] to obtain a cycle-accurate estimation of

the runtime overhead due to CPU time spent executing the

checking algorithm. The number of history items we could

store was dictated by the cache line size, 64B in our case.

This allowed us to fit 256 history items for the low-overhead

algorithm and 16 items for the high coverage algorithm.

A. Workloads

We evaluated the performance impact of CoSMa on two

types of workloads: directed random stimulus and SPLASH2

[14] benchmarks. Three directed random testers were gener-

ated using Ruby’s built-in microbenchmarks with the intent

of maximizing sharing and stress on the cache coherence

mechanism. The random-128k, random-256k and random-

512k workloads are based on the comparison and swapping

of atomic operations, similar to the behavior exhibited by

software locks. Each of these workloads was configured to

use different cache sizes, indicated by the name.

We also ran our experiments with a set of 10 SPLASH2

benchmarks, which helped us in characterizing the perfor-

mance impact of CoSMa under more typical conditions.

Since CoSMa affects only the performance of the memory

system, we simulated the memory accesses corresponding to

10 million instructions on each core (a total of 40 million

instructions were executed) in the heart of the benchmark.

We generated a trace of these memory operations for each

benchmark using the Simics simulator [15], then executed

the trace using our Ruby and SimpleScalar setup.

B. Performance Results

The performance overhead observed when CoSMa is

active ranged from less than 1% to 23%, averaging to 7% for

the SPLASH2 benchmarks and to 10% for the random work-

loads. Figure 4 plots the overheads of running CoSMa. We

observe that the low-overhead algorithm consistently resulted

in a lower runtime impact than the coverage algorithm.
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Fig. 4. Performance impact of CoSMa mode. 100% indicates no
performance degradation.

This performance overhead has two major contributors:

network delay to transfer the history logs from the L2 to

the L1, and CPU time to execute the matching algorithm.
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Fig. 5. Low-overhead algorithm: network and CPU overhead. Overall
performance impact is determined by the greater of the two.

1

10

100

1000

10000

100000

ra
nd

om
-1

28
k

ra
nd

om
-2

56
k

ra
nd

om
-5

12
k

ba
rn

es

ch
ol
es

ky fft lu

oc
ea

n
ra

di
x

ra
yt
ra

ce

vo
lre

nd

w
at

er
ns

q

w
at

er
sp

C
o

S
M

a
 c

h
e

c
k

 -
 a

v
g

. 
c

y
c

le
s

Network

CPU

SPLASH2 Benchmarks

Random 

Testers

Fig. 6. Coverage algorithm: network and CPU overhead. Overall
performance impact is determined by the greater of the two.

Network delivery and computation are pipelined; as the

computation for one set of histories progresses, a new set

is in flight on the network. Moreover, all processors execute

the matching algorithm in parallel, further streamlining the

process. Figures 5 and 6 show the average latency due to

network and CPU computation for one check period. Since

these occur in parallel, in each case the higher of the two bars

represents the total performance impact. Both coverage and

low-overhead algorithms are evaluated, and we found that

the cycles required to transfer histories through the network

was the dominant factor most of the time. All SPLASH2

benchmarks were network bounded, this was due to their

large working sets: more histories had to be sent across

the network for a check. We observed CPU-dominated per-

formance impact when running the low-overhead algorithm

on random stimulus workloads. In this case, many long

complex histories are generated due to high contention for a

concentrated set of addresses, leading to many partitions. A

key insight gained from these results is that the exponential

complexity of the low-overhead algorithm rarely affects the

runtime of the system. In fact, in our experiments, we limited

the runtime of the low-overhead algorithm to 10,000 cycles

to avoid an exponential escalation for those cases close

to the worst-case complexity bound. However, we found

experimentally that none of the testbenches reached this.

We also investigated the relation between performance

overhead and storage space (see Figures 7 and 8) for varying

proportions of CoSMa vs. computation storage. With more

history storage, the system can leverage longer epochs, and
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Both the low-overhead and coverage algorithms are shown. A variant of the
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shown.
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hence, as we validate experimentally, more history storage

space leads to lower performance overhead. An exception

to this is the variant of the low-overhead algorithm where a

cache line is checked upon each eviction (Figure 7). In this

case, more storage caused a performance decrease due to the

large number of eviction checks. Overall, the low-overhead

algorithm leads to longer epochs and better performance.

C. Exposing Bugs

We evaluated CoSMa’s ability to find cache coherence

bugs using a set a injected functional bugs in our simulation

platform. seven bugs, inspired by published escaped bug

reports of the Intel Core 2 Duo [1] (see Table II), were

injected into the Ruby cache controllers.

concurrent-writes
Concurrent writes to the same non-dirty cache
line causes dropped messages.

write-unaligned
Writing two bytes across a cache line boundary
causes message misordering.

dropped-message Messages are randomly dropped.

delayed-message Messages are randomly delayed.

two-stores
Two consecutive stores to different addresses
cause the first to be delayed.

stores-dropped Two stores cause one to be dropped.

delayed-writes Some messages for stores are delayed

TABLE II. Cache coherence bugs injected in our CMP model.

Each bug was injected individually and the Ruby tester

was run with a variety of workloads, including a random

tester and the SPLASH2 benchmarks. When an error was

detected by the coherence checker, the simulation was

terminated. Each of the bugs was eventually detected by

CoSMa. In Table III we show the number of cycles required

to expose them on the random tester with both the low-

overhead and coverage algorithms. On average, the low-

overhead algorithm required approximately 1 million cycles

to discover injected bugs, while the coverage algorithm

took approximately 100,000 cycles. Table IV shows similar

information for the SPLASH2 benchmarks. The coverage

algorithm was able to find all 7 bugs with all workloads,

while the low-overhead algorithm was unable to expose 2

of them. The bugs evading the low-overhead algorithm were

delayed-message and delayed-writes, both the result of subtle

timing perturbations.

Bug Low-overhead Algorithm Coverage Algorithm

concurrent-writes 1,823k 48k

write-unaligned 1,047k 48k

dropped-message 778k 213k

delayed-message not detected 46k

two-stores 1,682k 355k

stores-dropped 780k 124k

delayed-writes not detected 46k

TABLE III. Execution cycles required to expose bugs with random
stimulus. The coverage algorithm could expose all bugs in about 126k
cycles on average. Low-overhead could not detect two of the bugs.

When SPLASH2 benchmarks were run on systems includ-

ing cache coherence bugs, we noticed that a significantly

higher number of cycles was required compared to the ran-

dom tests. As with the random tester, the coverage algorithm

was able to discover every bug, while the low-overhead algo-

rithm was unable to expose the two bugs involving delayed

messages. It is interesting to note that with the coverage

algorithm, these timing bugs were exposed by a large number

of the benchmarks (6 out of 10), the highest of rate in our

experiment. This indicates that application workloads are

sensitive to coherence errors involving timing perturbations.

We also noted that in several cases the coverage algorithm

took more cycles to uncover a bug than the low-overhead

algorithm. Upon closer investigation we found that this was

due to a higher number of benchmarks uncovering the bug

compared to low-overhead, but at a later time.

D. Area Overhead

To estimate the area cost of CoSMa, we implemented the

design in Verilog, then performed synthesis using Synopsys

Design Compiler with a 90nm TSMC target library. The

resulting area for the master checker was 7508µm2, while

each slave occupied 165µm2. For comparison, the Sun

OpenSPARC T1 processor [16] has a total area of 378mm2,

with its 8 cores each contributing 11mm2. The combined area

impact on this processor by adding 1 master checker and 8

slaves is 8828µm2, only 0.002% of the total OpenSPARC

chip area.



Bug

Low-overhead Algorithm Coverage Algorithm

cycles to # tests cycles to # tests
expose bug exposing expose bug exposing

concurrent-writes 20M 2 14M 2

write-unaligned 20M 2 14M 2

dropped-message 39M 3 149M 4

delayed-message missed 0 373M 6

two-stores 39M 3 237M 4

stores-dropped 20M 2 362M 5

delayed-writes missed 0 339M 6

TABLE IV. Execution cycles required to expose bugs with SPLASH2

benchmarks. The same two bugs of Table III could be exposed only by
the coverage algorithm even with the SPLASH2 workload.

E. Case Study: CoSMa Integration

CoSMa is designed for easy integration into an existing

cache coherence system with minimal design effort. This

held true in our experience with a student team imple-

menting CoSMa as part of a class project. The project

involved a quad-core alpha processor with L1 and L2 caches

maintaining coherence with the MESI protocol. The team

began by implementing basic MESI cache controllers, and

added CoSMa capabilities once the basic controllers were

operational.

L1 Cache Controller. Modifications to the L1 cache con-

troller included the addition of two states to read and write

the history log. Transitions were added to facilitate entry

addition to this history: a MESI operation proceeds by

reading the requested cache line and history, modifying the

MESI state if the cache line tag matches, appending a log

entry to the history, and finally storing the new MESI state

and history. By taking advantage of banked caches, it was

straight-forward to implement the concurrent writing of data

and history log.

L2 Cache Controller. The L2 cache controller was aug-

mented to update cache line histories when servicing requests

from L1 caches, as well as to orchestrate a coherence check.

Similar to the L1 cache, the L2 controller required two

additional states to facilitate writing history entries to the

cache portion allocated for history storage. Additionally,

when a check request comes from an L1 cache controller, the

L2 controller was modified to send a message back to each

L1, signaling the system to pause normal operation. Once all

the L1 controllers have acknowledged, a second broadcast

goes out from the L2 controller to initiate the check process.

VII. CONCLUSIONS

CoSMa introduces a new framework optimized for the

unique challenges of post-silicon cache coherence validation

of complex multi-processors. It offers a specialized mode of

operation, called CoSMa mode. While in CoSMa mode, the

processor stores a compact encoding of a cache line’s state

history and periodically checks that the history observed at

local cache is compatible with that of the second level cache.

We developed two variants of the compatibility checking

algorithm, one optimized for high coverage, the other for

minimal system perturbation. We found these algorithms

to be very successful at detecting a set of realistic cache

coherence bugs with a performance degradation ranging from

1% to 23%. By leveraging existing hardware, we were able

to implement our solution with minimal area overhead, only

0.002%. While related work in runtime verification [11]

offers low performance overhead (5-10% communication

bandwidth), the area overhead is significant. CoSMa operates

under a new set of design constraints, offering observation at

full speed, high coverage and minimal system perturbation.

It is a distributed solution that does not require pervasive

communication during data collection. It can be disabled

upon product release, thus exhibiting zero performance

degradation to the end user.
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