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Behavioural deficits in stroke reflect both structural damage at the site of injury, and widespread network dysfunction caused by struc-

tural, functional, and metabolic disconnection. Two recent methods allow for the estimation of structural and functional

disconnection from clinical structural imaging. This is achieved by embedding a patient’s lesion into an atlas of functional and struc-

tural connections in healthy subjects, and deriving the ensemble of structural and functional connections that pass through the lesion,

thus indirectly estimating its impact on the whole brain connectome. This indirect assessment of network dysfunction is more readily

available than direct measures of functional and structural connectivity obtained with functional and diffusion MRI, respectively, and

it is in theory applicable to a wide variety of disorders. To validate the clinical relevance of these methods, we quantified the predic-

tion of behavioural deficits in a prospective cohort of 132 first-time stroke patients studied at 2 weeks post-injury (mean age 52.8

years, range 22–77; 63 females; 64 right hemispheres). Specifically, we used multivariate ridge regression to relate deficits in multiple

functional domains (left and right visual, left and right motor, language, spatial attention, spatial and verbal memory) with the pattern

of lesion and indirect structural or functional disconnection. In a subgroup of patients, we also measured direct alterations of function-

al connectivity with resting-state functional MRI. Both lesion and indirect structural disconnection maps were predictive of behaviour-

al impairment in all domains (0.165R2
5 0.58) except for verbal memory (0.055R2

5 0.06). Prediction from indirect functional

disconnection was scarce or negligible (0.015R2
5 0.18) except for the right visual field deficits (R2 = 0.38), even though multivari-

ate maps were anatomically plausible in all domains. Prediction from direct measures of functional MRI functional connectivity in a

subset of patients was clearly superior to indirect functional disconnection. In conclusion, the indirect estimation of structural connect-

ivity damage successfully predicted behavioural deficits post-stroke to a level comparable to lesion information. However, indirect esti-

mation of functional disconnection did not predict behavioural deficits, nor was a substitute for direct functional connectivity measure-

ments, especially for cognitive disorders.
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Introduction
Behavioural deficits in stroke reflect both structural damage

at the site of injury (Harlow, 1848; Broca, 1861; Wernicke,

1874), and widespread network dysfunction caused by struc-

tural, functional, and metabolic disconnection (von

Monakow, 1914; Baron et al., 1986, 1992; Perani et al.,

1988; Corbetta et al., 2005; Carrera and Tononi, 2014).

Recently, we have shown that stroke causes alterations of

functional connectivity (FC) measured with functional MRI

(fMRI) in widespread parts of cortex that appear structural-

ly normal (He et al., 2007; Carter et al., 2010, 2012).

Notably, FC alterations accurately predict behavioural defi-

cits, explaining �40–60% of the variability of behavioural

scores across subjects at the acute stage (Siegel et al., 2016).

They also distinguish patients with good and poor recovery

of function, especially for cognitive deficits (Siegel et al.,

2018; for a review see Corbetta et al., 2018). There is also

evidence that changes in macroscale structural connectivity

are associated with behavioural deficits, and their recovery

(Stinear et al., 2007; Schaechter et al., 2009; Schlaug et al.,

2009; Ivanova et al., 2016; Hope et al., 2017; Umarova

et al., 2017).

However, measuring behaviour and MRI signals to meas-

ure network-level dysfunction in patients is hardly simple, it is

expensive, and it is not easily implemented in clinical practice.

A possible solution to this problem has come in the last few

years from the development of large databases of functional

and diffusionMRI data, and pipelines of analysis for the gener-

ation of so-called ‘connectomes’, i.e. the ensemble of functional

or structural connections among brain regions that are com-

mon in a large group of healthy subjects (Yeo et al., 2011;

Catani and Thiebaut de Schotten, 2012; Glasser et al., 2013).

One method, known as ‘lesion network mapping’ (Boes
et al., 2015; Fox, 2018), computes whole-brain FC to or
from the lesion, i.e. the temporal correlation of the fMRI
signal between the lesion and the rest of the brain. This
method highlights the ensemble of functional connections
that connect the site of damage with the rest of the brain
either through direct or indirect anatomical connections.
This functional map may thus correspond to the network-
level FC abnormalities caused by the lesion (functional
disconnection, FDC). This method has been applied in
many studies to investigate network dysfunction in a
whole host of neurological and psychiatric conditions
(Fischer et al., 2016; Laganiere et al., 2016; Darby et al.,
2017, 2018a, b, 2019; Fasano et al., 2017; Fox, 2018;
Joutsa et al., 2018, 2019; Cohen et al., 2019; Corp et al.,
2019; Ferguson et al., 2019; Kim et al., 2019;
Padmanabhan et al., 2019) that are either rare or when
functional MRI data are lacking (Fox, 2018).

A similar method, known as the ‘dys-connectome’, esti-

mates structural disconnection from clinical structural MRI

lesions (Foulon et al., 2018). The method estimates in a

population of healthy subjects, the probability of normal

white matter tracts, measured with diffusion imaging, that

pass through the lesion. In a structural disconnection (SDC)

map, each voxel in the brain indicates the probability of

structural disconnection caused by the lesion to healthy

white matter tracts (Forkel and Catani, 2018; Ivanova

et al., 2018). The specificity of disconnection in both meth-

ods is typically assessed by comparing the disconnection pat-

terns produced by a ‘target’ syndrome with that produced

by a ‘control’ syndrome/s (Darby et al., 2017, 2018a, b,

2019; Fasano et al., 2017; Joutsa et al., 2018; Corp et al.,

2019).

However, the sensitivity of indirect disconnection methods

in predicting behavioural deficits is unknown. This is an es-

sential requirement for studying network-behaviour relation-

ships, stratifying patients’ severity, predicting long-term

outcome, or as a potential marker of response to novel

therapeutic interventions.

In this study we take advantage of the Washington

University Stroke project, which has carefully characterized a

prospective sample of first-time stroke patients with an in-

depth behavioural battery and multi-modal imaging (struc-

tural, diffusion MRI, functional, perfusion MRI). Neurological

impairment was quantified in different domains (motor, vision,

language, attention, and memory) through a set of deficit com-

ponents that capture the bulk of the inter-subject covariance

across test scores (Corbetta et al., 2015). The study had three

goals. First, we tested how well indirect measures of structural

and functional disconnection predict behavioural deficits post-

stroke using lesion-based predictions as a baseline. Previous

work on this cohort showed that lesion location accurately

predicts motor and visual deficits, and much less accurately

cognitive deficits (Corbetta et al., 2015; Siegel et al. 2016). In

contrast, cognitive deficits are better explained by widespread

patterns of abnormal FC (Siegel et al., 2016, 2018), as well as

macroscale structural plasticity (Hope et al., 2017; Umarova

et al., 2017). Second, we compared predictions for lesions and

indirect disconnection, in isolation or combined, to see if they

explain different sources of variance. In fact, as an example,

SDC maps contain information about the inter-subject vari-

ability of structural connections to or from a lesion, and may

capture different variability than lesion location. Third, in a

subgroup of patients, we also obtained direct fMRI-FC meas-

ures in addition to FDC maps. This allowed us to compare in-

direct with direct functional abnormalities measures (He et al.,

2007; Carter et al., 2010; Baldassarre et al., 2014; Siegel et al.,

2016, 2018; Ramsey et al., 2017).
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Materials and methods

Subject enrolment

The patient cohort is the same as in Corbetta et al. (2015).
All participants provided informed consent following the
Declaration of Helsinki and procedures established by the
Washington University in Saint Louis Institutional Review
Board. First-time stroke patients (n = 132) were recruited
through the in-patient service at Barnes-Jewish Hospital and
the Rehabilitation Institute of St. Louis (mean age 52.8 years
with range 22–77; 119 right-handed; 63 females; 64 right
hemispheres). Corbetta et al. (2015) ran control analyses to
ensure that this sample was representative of the clinical
stroke population of a tertiary stroke centre in the US
Midwest. Inclusion and exclusion criteria are provided in the
Supplementary material.

Neuropsychological and behavioural
assessment

All participants underwent a behavioural battery (Corbetta
et al., 2015). The battery includes 42 different measures, and
was run typically on the same day as the imaging session and
lasted �2.5 h. The battery is ‘broad’ as it covers many domains
of function and ‘deep’ since, in each domain, it measures differ-
ent processes that are potentially dissociable based on physio-
logical or neuropsychological work. For instance, the language
battery measures auditory comprehension, speech production,
and reading both at the single word and sentence level; it also
tests aspects of semantic fluency and phonological processing
(see Supplementary material for a description of tasks).

In the present study the following domains were considered:
language (including lesions of both hemispheres), motor left
(including right lesions), motor right (left lesion), visual left
(right lesions), visual right (left lesions), verbal memory (lesions
from both hemispheres), spatial memory (lesions from both
hemispheres), and attention (visual field bias, with lesions from
both hemispheres). Not all participants completed all neuro-
psychological tasks; therefore, scores in different domains have
different numbers of subjects.

We ran a principal component analysis (PCA) on the behav-
ioural scores of the different tests within each domain (e.g.
motor, visual, language, etc.) for dimensionality reduction
(Corbetta et al., 2015; Ramsey et al., 2017). For each domain
we obtained one or two components that accounted for the ma-
jority of variance (Supplementary material). For example, one
language component accounted for 77.3% of the variance and
was related to both comprehension, production, and reading
deficits. The component scores in each domain were continuous
and were normalized to have a mean of 0 and standard devi-
ation (SD) of 1; lower scores indicate a more severe impairment
in that functional domain. The Factorial scores for each domain
are reported in Supplementary Table 1.

MRI procedure and scanning

The full MRI protocol is described in Corbetta et al. (2015).
Scanning was performed with a Siemens 3 T Tim-Trio scanner
at the School of Medicine of the Washington University in St.
Louis, including: structural, functional, and diffusion imaging.
Structural scans consisted of: (i) a sagittal MP-RAGE T1-

weighted image (repetition time = 1950 ms, echo time = 2.26
ms, flip angle = 9�, voxel size = 1.0 � 1.0 � 1.0 mm); (ii) a
transverse turbo spin-echo T2-weighted image (repetition time =
2500 ms, echo time = 435 ms, voxel-size = 1.0 � 1.0 � 1.0
mm); and (iii) a sagittal FLAIR (fluid-attenuated inversion recov-
ery) (repetition time = 7500 ms, echo time = 326 ms, voxel size
= 1.5 � 1.5 � 1.5 mm).

MRI and lesion analysis

Lesion segmentation was performed as described in Siegel et al.
(2016). Lesions were manually segmented on individual struc-
tural MRI images (T1-weighted MP-RAGE, T2-weighted spin-
echo images, and FLAIR images) using the Analyze biomedical
imaging software system (www.mayoclinic.org; Robb and
Hanson, 1991). Two board-certified neurologists (Drs Maurizio
Corbetta and Alex Carter) reviewed all segmentations.
Supplementary Table 1 provides the volume of segmented
lesions in atlas space.

Data preprocessing

Registrations of the T1 MRI images were performed using
BCBtoolkit (Foulon et al., 2018; http://toolkit.bcblab.com).
Since spatial normalization can be affected by the presence
of a brain lesion, each lesion or signal abnormalities due to
the lesion (manually segmented) can be used as a mask dur-
ing the normalization procedure to optimize the brain nor-
malization (Ripollés et al., 2012; Volle et al., 2013). Here
we used an enantiomorphic approach (Nachev et al., 2008)
to replace the lesioned tissue with healthy tissue of the
contralateral hemisphere. T1 images are registered to the
template (MNI152) using affine and diffeomorphic deforma-
tions (Klein et al., 2009; Avants et al., 2011). The volume-
based procedure is different from the surface-based registra-
tion used in previous work on the same dataset (Siegel et al.,
2016). This variation and related success or failure of the
registration in different subjects explains slight differences in
the number of subjects included in the two studies.

Structural disconnection maps

SDC maps were calculated using the BCB-toolkit (Foulon et al.,
2018). We used a set of 176 healthy controls from the ‘Human
Connectome Project’ 7 T diffusion-weighted imaging datasets to
track fibres passing through each lesion (age 29.5±3.6 years,
72 male subjects; HCP7T; http://www.humanconnectome.org/
study/hcp-young-adult/; Vu et al., 2015). Each patient’s lesion
traced in the MNI152 space was used as seed for the tractogra-
phy in Trackvis (http://trackvis.org/). In an SDC map, the value
in each voxel takes into account the interindividual variability
of tract reconstructions in controls and indicates at each voxel
probability of disconnection from 0 to 1 for a given lesion
(Thiebaut de Schotten et al., 2011, 2015). Therefore, this
approach indirectly estimates the degree of structural
disconnection.

Functional disconnection maps

Following the methods described in Boes et al. (2015), we gener-
ated an FDC map for each lesion. This approach indirectly esti-
mates the degree of functional disconnection produced by a
lesion. We used the same n = 176 7 T ‘Human Connectome

Symptom mapping from lesion and disconnection BRAIN 2020: 143; 2173–2188 | 2175
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project’ healthy subjects to estimate the average Pearson correl-
ation between the time course of a region of interest correspond-
ing to the lesion and the rest of the brain. Each patient’s lesion
in MNI152 space was a seed region of interest for a whole-
brain resting-state functional connectivity in each of the control
subjects. The resulting n = 176 functional connectivity maps
were averaged in MNI space to produce an FDC map (Foulon
et al., 2018). In the resulting FDC map, the value in each voxel
indicates an average strength of correlation between –1 and +1
between the time course of region of interest corresponding to
the lesion and the rest of the brain. Therefore, both SDC and
FDC maps estimate, based on the structural and functional con-
nectivity variability of the same healthy subjects, the putative ef-
fect of a lesion in causing structural or functional network
disconnection.

Resting state functional MRI
functional connectivity maps

One subgroup of subjects, in which both structural (T1, T2,
FLAIR) and resting state-functional MRI (R-fMRI) data were
available, participated in an analysis comparing direct versus
indirect estimates of FDC (demographic data for this sub-
group are provided in Supplementary Table 1). The detailed
experimental procedures are in Siegel et al. (2016). Resting-
state functional scans acquired with a gradient echo EPI se-
quence (repetition time = 2000 ms, echo time = 27 ms, 32
contiguous 4-mm slices, 4 � 4 mm in-plane resolution)
required participants to fixate on a small cross in a low lumi-
nance environment. Six to eight resting-state scans, each
including 128 volumes (30 min total), were acquired. The
fMRI preprocessing steps are described in the Supplementary
material. The cortical surface parcellation generated by
Gordon et al. (2016) was used. The parcellation is based on
R-fMRI boundary mapping and achieves full cortical cover-
age and optimal region homogeneity. The parcellation
includes 324 regions of interest (159 in the left hemisphere,
165 in the right hemisphere). The original parcellation
includes 333 regions, but all regions with less than 20 vertices
(�50 mm2) were excluded.

Lesion, structural disconnection,
functional disconnection and
functional connectivity symptom
mapping

For each method (lesion, SDC, FDC, and FC), and for each
behavioural score (language, motor left, motor right, verbal
memory, spatial memory, attention, visual left, visual right),
multivariate analyses were carried out as follows: Features of
the lesion/SDC/FDC/FC images extracted by PCA were used
as multivariate predictors for a ridge regression model trained
to predict patients’ behavioural outcomes (Corbetta et al.,
2015; Siegel et al., 2016). Ridge regression differs from mul-
tiple linear regression because it uses L2-normalization to
regularize model coefficients, so that unimportant features
are automatically down-weighted or eliminated, thereby pre-
venting overfitting and improving generalization on test data

(Le Cessie and Van Houwelingen, 1992). The model weights
W are computed as:

W ¼ XTX þ kIð Þ�1
XTY (1)

where X is the set of predictors and Y is the outcome vari-
able. The regularization term provides a constraint on the
size of weights and it is controlled by parameter k ðlambdaÞ.
A tuning procedure is necessary to find the appropriate value
of k. Importantly, this approach also allows to project pre-
dictive weights back to brain anatomy in a simple way (Phan
et al., 2010). Moreover, its predictive performance in lesion-
behaviour mapping is relatively unaffected by sample size in
comparison to other machine learning techniques (Chauhan
et al., 2019).

Before applying ridge regression, PCA was performed on each
dataset (lesion, SDC, FDC and FC) to reduce the dimensionality
of the input. For lesion, FDC and SDC maps the PCA was per-
formed on 902229 2-mm3 brain voxels (whole-brain images);
for FC it was carried out on the full matrix of 52326 edges
resulting from 324 nodes/parcels. Regardless of the size and na-
ture (e.g. binary versus continuous) of the input images, PCA
returns a set of (continuous) principal component (PC) scores.
Components that explained 95% of the variance were retained
and used as input for the ridge regression model. All predictors
(PC scores) and the outcome variable (behavioural score) were
z-normalized before applying ridge regression. All ridge regres-
sion models were trained and tested using a leave-one-(patient)-
out cross validation (LOOCV) loop (Golland and Fischl, 2003).
In each loop, the regularization coefficient k was optimized by
identifying a value between k = 10–5 and 105 (logarithmic steps)
that minimized leave-one-out prediction error over the training
set. Optimal weights were solved across the entire training set
using gradient descent to minimize error for the ridge regression
equation by varying lambda. These model weights were then
applied to the left-out patient to predict the behavioural score.
A prediction was generated for all patients in this way.

Model accuracy was assessed using the coefficient of
determination

R2 ¼ 1�

P

Y � Y 0ð Þ2

P

Y � Y0
� �2

(2)

where Y are the measured behaviour scores, Y 0 are the predicted
behaviour scores and Y0 is the mean of predicted behaviour
scores. The statistical significance of all LOOCV results was
assessed using permutation test. For each dataset and domain,
the behavioural scores were randomly permuted across subjects
10000 times, and ridge regression models were fit to the sets of
randomized labels. A P-value was calculated as the probability
of observing the reported R2 values by chance (number of per-
mutations with R2

4 observed R2) / (number of permutations).
Only models with P-values 5 0.05 were considered reliable.
Moreover, we statistically compared reliable models within the
same domain (e.g. lesion versus SDC for language scores) in
terms of prediction errors, computed as squared difference be-
tween measured and predicted behaviour scores (i.e. squared
residuals). These were compared across models using the
Wilcoxon signed rank test (non-parametric test for paired data).
Z-score and corresponding P-value [false discovery rate (FDR)

2176 | BRAIN 2020: 143; 2173–2188 A. Salvalaggio et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
4
3
/7

/2
1
7
3
/5

8
6
1
0
2
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa156#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa156#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa156#supplementary-data


corrected for multiple comparisons] are reported for each pair
of models (see results in Supplementary Table 2).

Finally, the ridge regression weight matrix was averaged
across all n LOOCV loops to generate a single set of consensus
weights. Statistical reliability of each consensus weight was
assessed by comparing its distribution of values (throughout the
LOOCV loops) to a null distribution (obtained from the null
models generated for permutation testing) using an FDR cor-
rected t-test. The final set of (statistically reliable) consensus
weights was back projected to the brain (using the transpose
matrix of PC coefficients) to display a map of the most predict-
ive voxels (lesion, SDC, FDC) or functional connections (FC
matrices) (Fig. 1). Gaussian smoothing (sigma = 1) and linear
normalization [range (–1,1)] was applied on the maps for better
visualization.

We also performed an additional analysis using lesion and
SDC in combination to assess whether the joint information can
increase predictive accuracy.

In addition, we ran univariate analyses (see results in the
Supplementary material) to ensure that our results are robust
across different methodologies.

Data availability

All the data reported in the present study are available to the
authors and all the software and algorithms used in the present
study are cited in the material and methods.

Results
We used a cohort of first-time stroke subjects (Corbetta

et al., 2015), studied within 2 weeks post-stroke with an in-

depth behavioural battery of motor, visual, language, mem-

ory, and attention functions. We examined the accuracy of

prediction of post-stroke deficits based on four kinds of

brain signals: structural damage, indirect estimates of struc-

tural and functional disconnection, and direct fMRI-FC

measures.

Supplementary Table 1 shows demographic information

of the cohort. The number of subjects was different for the

different domains because scores for language, memory, and

attention were pooled across left and right hemisphere

lesions, whereas scores for visual and motor deficits were in-

dependently considered for each side (e.g. left or right visual

field). Since analyses were performed separately for each do-

main, the demographic data are reported for each domain.

The mean age across the different domains varied between

49.8±9.0 years (visual left) and 54.9± 11.9 years (motor

right limbs). The mean education years varied between

13.1±2.3 years (motor: left limbs) and 13.8± 2.7 years (vis-

ual left). Lesion volume was, on average, between 3.9± 5.1

(verbal memory and motor right limbs) and 7.3± 10.3 (vis-

ual left) cm3 across the different domains. This sample is

representative of the clinical stroke population of a tertiary

US medical centre (Corbetta et al., 2015).

Figure 1 Schematic flowchart of analysis. Individual lesion, SDC, and FDC maps are used as dependent variables for predicting behavioural

scores using ridge regression with leave-one-out cross validation. The output of the ridge regression is a map of the projected weights for each

input, and an estimate of the best possible predicted variance between real and predicted scores (R2 and scatter plot).
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Figure 1 shows a schematic workflow of the analysis. For

each behavioural score (e.g. motor left) we compute a set of

ridge regression models, with leave-one-out cross validation,

to predict behavioural deficits based on lesion or disconnec-

tion (SDC, FDC) maps computed from healthy participants’

atlases (see ‘Materials and methods’ section). The model

optimizes the prediction of behavioural variability (as the

difference between real versus predicted scores, see scatter

plot in Fig. 1).

A similar set of analyses used univariate voxel-wise regres-

sion using as the dependent variable, respectively, the lesion,

SDC, and FDC maps. This process generates a set of t-maps

that show damaged voxels significantly related to behaviour-

al impairment. We report univariate regression methods and

results in the Supplementary material.

Multivariate ridge regression

The ridge regression approach optimizes the prediction of

behavioural deficits through a minimization procedure of

the error between real and predicted scores. This method

provides an estimate of the highest possible explainable vari-

ance and allows one to visualize back onto the brain the

weights contributing to the prediction.

Visual deficits

Visual impairment was assessed in each patient, separately

for the left and right visual field, with a visual field pattern

score, derived from the computerized perimetry. These

scores were modelled to find the most predictive lesion,

SDC, or FDC patterns. The lesion map for right visual field

deficits (Fig. 2, top row) shows the most predictive positive

(red-yellow scale indicates more severe deficits) weights in

the left occipital cortex, both medially and laterally, extend-

ing in the geniculo-calcarine radiation. Interestingly, there

was also contribution of the left frontal eye field. This map

explains 58% of the variability of the right visual field pat-

tern scores. The left visual field deficit lesion map is similar

(Supplementary Fig. 1, top row), and explains 40% of the

variability. The corresponding SDC maps (Fig. 2 and

Supplementary Fig. 1, middle row) are more extensive, and

involve the splenium, the geniculo-calcarine radiation on

both sides, the bilateral frontal eye field, and the inferior

frontal-occipital fasciculus (IFOF) homolateral to the lesion.

Damage to the internal capsule and cingulate bundle are

negatively predictive of visual deficits (negative weights are

very small compared to positive weights, as can be seen

from the blue-teal colour scale in the images). The SDC

model explains 23–33% of the variance. The FDC maps

(Fig. 2 and Supplementary Fig. 1, bottom row) show a com-

plete map of the bilateral visual occipital network, and tem-

poroparietal junction and inferior frontal gyrus (for right

visual field deficits), overlapping with the ventral attention/

salience network. Negative predictive weights occur in front-

al and parietal regions and thalamus. The FDC maps ex-

plain 18% (left visual field) and 38% (right visual field) of

the variability. Though the lesion model seems to explain a

larger proportion of variance than the other models, statis-

tical comparisons show no significant differences among the

models (Wilcoxon test, all P4 0.05; Supplementary Table

2), likely due to the small sample size.

Motor deficits

We assessed motor deficits with a combination of tests of

strength, dexterity, speed, and function that strongly corre-

lated across subjects, yielding for each side of the body a

‘motor deficit component score.’ The lesion model explained

35% of the variability of left-side motor deficit scores with

the most positive predictive weights in the homolateral cor-

ona radiata, internal capsule, and putamen (Fig. 3, top row).

The lesion distribution for right-side motor deficits was simi-

lar with 28% of the variability accounted for

(Supplementary Fig. 2, top row). The SDC model explained

37% of the variability of left-side motor deficit scores with

localization in the bilateral corona radiata, bilateral cerebral

peduncle, and corpus callosum (Fig. 3, middle row).

Anatomically similar SDC maps in the opposite hemisphere

explained 42% of the variability of right-side motor deficits

(Supplementary Fig. 2, middle row).

The FDC model weights correspond to a beautiful map of

the motor network, including bilateral motor, premotor, pre-

frontal, supplementary motor, and anterior cingulate, basal

ganglia, and motor cerebellum. However, this anatomically

sound functional anatomy explained only 8% of left-side

motor deficits (Fig. 3, bottom row), and 12% of right motor

deficits (Supplementary Fig. 2, bottom row). Statistical com-

parisons showed no difference between lesion and SDC

models. However, SDC models were significantly superior

to FDC models for both left (z = –2.896, P = 0.004) and

right (z = –3.031, P = 0.002) motor deficits. Lesion were su-

perior to FDC models for left motor deficits (z = –2.596,

P = 0.009; Supplementary Table 2).

Language and verbal memory deficits

The group of subjects tested on the language battery was the

largest (n = 116). The language battery from the Boston

Diagnostic Aphasia Examination measured auditory compre-

hension, speech production, and reading both at the single

word and sentence level. A single language deficit score

accounted for470% of behavioural variability across subjects.

The lesion model, including left and right hemisphere

lesions, explained 48% of the language score variability

with the most predictive weights in the left frontal, insula,

temporal, parietal, and peri-sylvian white matter; basal gan-

glia, and thalamus. Interestingly, the right inferior frontal

cortex and bilateral frontal eye field are also significantly

involved in the prediction of language impairment (Fig. 4,

top row). The SDC map showed severe disconnection of

most left hemisphere white matter tracts (IFOF, arcuate, in-

ferior and superior longitudinal, and cingulate) and corpus

callosum, and explained 41% of the variability (Fig. 4, mid-

dle row). The FDC map showed positive weights in bilateral

(left 4 right) frontal, temporal, parietal cortical regions, bi-

lateral basal ganglia, and posterolateral cerebellum (right 4
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left) in regions of the language and default networks (Fig. 4,

bottom row). However, once again, even though the FDC

map appears anatomically plausible, the variability of lan-

guage deficits accounted for is only 6%.

The statistical analysis showed that lesions predicted

language scores more accurately than SDC (z = –2.372,

P = 0.018) or FDC (z = –4.681, P5 0.001). In addition,

SDC models were significantly more accurate than

Figure 2 Ridge regression model for right visual pattern score (left hemisphere lesion, 31 subjects) for lesion, SDC and FDC.

Predictive weights projected back on the brain (left), and plot of the real score (x-axis) versus model predicted score (y-axis) (right) are reported.

R2-value is reported on the scatter plot. Red-yellow represent voxels predicting deficits while blue-green represent voxels predicting no deficit.

To optimize the visualization, the normalized projected values in the range (–0.1,0.1) are not displayed.

Figure 3 Ridge regression model for left motor scores (right hemisphere lesion, 51 subjects) for lesion, SDC and FDC.

Predictive weights projected back on the brain (left), and plot of the real score (x-axis) versus model predicted score (y-axis) (right) are reported.

R2-value is reported on the scatter plot. Red-yellow represent voxels predicting deficits while blue-green represent voxels predicting no deficit.

To optimize the visualization, the normalized projected values in the range (–0.1,0.1) are not displayed.
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FDC models (z = –3.212, P = 0.001; Supplementary

Table 2).

Verbal memory measured with the Hopkins Verbal

Learning Test-Revised (HVLT-R) (Brandt and Benedict,

2001) included tests of immediate, delayed recall, and recog-

nition. A single memory factor accounted for 460% of vari-

ability across participants. The lesion model localized left

basal ganglia and thalamus, left lateral temporal, bilateral

medial occipital-temporal lobe, and FEF bilaterally (Fig. 5,

top row). However, this map predicted only 6% of the vari-

ation of memory scores.

The SDC model shows extensive white matter disconnec-

tion of the left hemisphere white matter, resembling the lan-

guage SDC map. The SDC map, however, explains only 5%

of the variance (Fig. 5, middle row). The FDC model local-

izes to bilateral occipital lobes, bilateral basal ganglia-thal-

amus, and medial parietal-frontal cortices in correspondence

of the default mode network (Fig. 5, bottom row).

Interestingly, this map resembles a memory circuitry map re-

cently discovered with the same FDC method in a group of

patients with lesions causing amnesia (Ferguson et al.,

2019). A spatial correlation analysis of the unthresholded

FDC values between ours and Ferguson’s amnesia map at

the level of cortical and subcortical parcels (Catani and

Thiebaut de Schotten, 2012; Glasser et al., 2016) showed a

significant overlap (Pearson r = 0.485, P52.5031–23)

(Supplementary Fig. 3A–C). Moreover, lesion sites associ-

ated with worse memory scores in both datasets localized

to the left basal ganglia and left periventricular frontal white

matter. Conversely lesions associated with more normal

memory scores localized to the right frontal white matter

(Supplementary Fig. 3D and E). However, the FDC pattern

for memory explained only 1% of the variance of memory

scores, which was not significantly different from chance.

In summary, our analysis shows that neither lesion, SDC,

or FDC predict verbal memory deficits. This finding is con-

sistent with our previous work in which direct fMRI-FC

measures, but not lesion topography, predict memory per-

formance (Corbetta et al., 2015; Siegel et al., 2016, 2018).

Spatial memory and attention

Spatial memory included spatial span, and immediate and

delayed recall, and recognition, of visual figures on the Brief

Visuospatial Memory Test-Revised (BVMT-R) (Benedict,

1997). A single ‘spatial memory deficit,’ explained 460%

of the variance.

The lesion model accounted for 19% of the variability

and included bilateral basal ganglia, thalamus, frontal eye

field, and occipital cortex. The SDC model weighted on bi-

lateral white matter tracts, and predicted also 19% of the

variability. Finally, the FDC model mapped bilaterally on

the frontoparietal, and cingulo-opercular networks that are

involved in working memory and task maintenance

(Dosenbach et al., 2006; Seeley et al., 2007), but these maps

explained only 4% of the behavioural scores

(Supplementary Fig. 4). There was a significant difference

with SDC maps more predictive than FDC maps (z =

–2.883, P = 0.004). No other comparison was significant.

The spatial attention factor combined deficits of lateralized

attention with/without motor responses (visual field bias).

Figure 4 Ridge regression model for language factorial score (116 subjects) for lesion, SDC and FDC. Predictive weights projected

back on the brain (left), and plot of the real score (x-axis) versus model predicted score (y-axis) (right) are reported. R-value is reported on the

scatter plot. Red-yellow represent voxels predicting deficits while blue-green represent voxels predicting no deficit. To optimize the visualization,

the normalized projected values in the range (–0.1,0.1) are not displayed.
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The lesion model predicted 18% of impairment variability.

The SDC model accounted for 16% of variability. Finally,

the FDC map predicted only 10% of the variability

(Supplementary Fig. 5). No significant differences were

detected with the Wilcoxon test.

Overall, for spatial memory and attention, lesion and SDC

models predicted with moderate accuracy; FDC was signifi-

cantly less predictive than SDC for spatial memory, but not

for spatial attention.

Structural-functional disconnection
versus functional connectivity
prediction of language and memory

In a subgroup of subjects (n = 88) FC matrices from resting

state fMRI were available for a direct comparison on lan-

guage and memory scores. SDC and FDC maps for language

scores (Fig. 6, top and middle rows) were similar to those

previously obtained in the larger sample. SDC predicted well

language scores (R2 = 0.47), while FDC predicted weakly

(R2=0.16). Direct FC maps also predicted well language

scores (R2=0.42), with two kinds of connections being the

most predictive: inter-hemispheric and left4right intra-hemi-

sphere FC decreases (Fig. 6, bottom row). Statistical compar-

isons showed that SDC was more predictive than FDC (z =

–2.351, P = 0.019), and FC more predictive than FDC

(z = 2.908, P = 0.004; Supplementary Table 2).

The same analysis was carried out on spatial memory

(n = 71) (Fig. 7) and verbal memory (n = 71) scores

(Supplementary Fig. 6). For spatial memory, SDC

predicted 8% of the variability while FDC was not predict-

ive (R2 = 0.00). In contrast direct FC measures provided

moderate accuracy (R2 = 0.20) with strong inter-hemispher-

ic positive weights associated with strong memory perform-

ance, and strong intra-hemispheric weights associated with

poor memory performance (replicating Siegel et al., 2016).

The difference in predictive accuracy between SDC and FC

models was not statistically significant.

For verbal memory, SDC maps explained a small por-

tion of variability (R2 = 0.10), as in the whole sample.

FDC prediction was not different from chance (no map is

presented because the model weights were not statistically

reliable). Functional MRI-FC connectivity predicted sig-

nificantly memory scores (R2 = 0.15), with poor perform-

ance associated with abnormally high intra-hemispheric

FC. Further, in this case no significant difference was

detected between SDC and FC. Results for other condi-

tions are shown in Table 1 and Supplementary Table 2,

motor domains showed no prediction from FDC (R2 =

0.00), visual domains showed high prediction from fMRI-

FC (40%, left) and from FDC (52%, right) but affected

by low sample size (n = 20 and 28), attention showed low

prediction from all methods.

Summary of multivariate ridge
regression results

Table 1 shows a summary of the ridge regression analyses

across different domains.

Figure 5 Ridge regression model for verbal memory factorial score (88 subjects) for lesion, SDC and FDC. Predictive weights

projected back on the brain (left), and plot of the real score (x-axis) versus model predicted score (y-axis) (right) are reported. R2-value is

reported on the scatter plot. Red-yellow represent voxels predicting deficits while blue-green represent voxels predicting no deficit. To optimize

the visualization, the normalized projected values in the range (–0.1,0.1) are not displayed.
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Several notable results are apparent. First, lesion and SDC

explain comparable proportions of variance across behav-

ioural domains. In fact, models using both lesion and SDC

maps as input for the ridge regression (last column) never

performed better than the best model trained on a single

type of map, with the only exception of attention (lesion R2

= 0.18; SDC R2 = 0.16; lesion + SDC = R2 = 0.60). In

some domains, e.g. motor right, SDC prediction is higher

than for lesions (R2 = 0.42 versus 0.28), while in others, e.g.

visual deficits, the opposite is true. Second, FDC prediction

is always worse in all domains. Only for right visual field

deficits FDC performs comparably to lesion and SDC (lesion

R2 = 0.58; SDC R2 = 0.33; FDC R2 = 0.38). Third, critical-

ly, the variability of functional disconnection maps across

subjects can be expressed through a small number of compo-

nents, i.e. individual maps are low-dimensional. In contrast,

a larger number of components is necessary to explain the

spatial variability of lesions and individual SDC maps. The

lower dimensionality of FDC maps makes the discrimination

of patients with different levels of behavioural impairment

more challenging. Univariate maps (Supplementary material)

show that all three methods provide biologically plausible

localization. The SDC method shows a more widespread,

and bilateral, anatomical disconnection pattern than the le-

sion maps. The FDC approach shows surprisingly more

focal patterns of functional disconnection with an overall

lower statistical sensitivity, as for example in the motor do-

main where the critical lesions are subcortical.

Discussion
The present study aimed to predict the behavioural variabil-

ity of neurological deficits at 2 weeks post-stroke, based on

different types of information: the structural damage caused

by the stroke itself, the inferred network disconnection based

on structural connectivity (SDC) or functional connectivity

(FDC) maps, and the FC measured directly with fMRI.

The SDC and FDC maps estimate the putative network-level

disconnection induced by stroke lesions through estimation of

either the white matter tracts that go through the lesion (SDC)

or the temporal correlation of the fMRI signal between the le-

sion and the rest of the brain (FDC). The corresponding SDC

and FDC voxel-wise maps hence provide a probabilistic meas-

ure of the affected white matter pathways or the correlation of

different brain regions with the site of damage.

The indirect disconnection approach is beautifully simple. It

has been successfully applied for mapping functional network

dysfunction in a variety of neuropsychiatric disorders (Darby

et al., 2018a, b; Ferguson et al., 2019; Kim et al., 2019;

Padmanabhan et al., 2019) and to locate potential cortical

sites of non-invasive brain stimulation (Joutsa et al., 2019).

Figure 6 Ridge regression model on language score (88 subjects) for SDC, FDC and r-fMRI FC changes. Predictive weights pro-

jected back on the brain (left) and plot of the real score (x-axis) and model predicted score (y-axis) (right) are reported. R2-value is reported on

the scatter plot. In upper and central maps, red-yellow represent voxels predicting deficits while blue-green represent voxels predicting no def-

icit. To optimize the visualization, the projected values in range (–0.1,0.1) are not displayed. Maps of r-fMRI FC (bottom) changes represent most

predictive connections and nodes for FC-deficit model. The top 200 connections are shown: green connections indicate positive projected values

(better performance) and orange connections indicates negative projected values (worse performance). The subset of 324 parcels included in

the top 200 connections are displayed, the size of nodes is related to their contribution to the model (calculated as root-mean-square of all con-

nections for each node).
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The method, recognized as a significant innovation (e.g. short-

listed for the 2019 Nature Research Award for Driving

Global Impact), requires only clinical structural scans to infer

network abnormalities that would otherwise require expen-

sive, time-consuming, and complicated fMRI or tractography

analysis. The accuracy of the method relies on replication in

Figure 7 Ridge regression model for spatial memory score (71 subjects) for SDC, FDC and r-fMRI FC changes. Predictive

weights projected back on the brain (left) and plot of the real score (x-axis) and model predicted score (y-axis) (right) are reported. R2-value is

reported on the scatter plot. In upper and central maps, red-yellow represent voxels predicting deficits while blue-green represent voxels pre-

dicting no deficit. To optimize the visualization, the projected values in range (–0.1,0.1) are not displayed. Maps of r-fMRI FC (bottom) changes rep-

resent most predictive connections and nodes for FC-deficit model. The top 200 connections are shown: green connections indicate positive

projected values (better performance) and orange connections indicates negative projected values (worse performance). The subset of 324 par-

cels included in the top 200 connections are displayed, the size of nodes is related to their contribution to the model (calculated as root-mean-

square of all connections for each node).

Table 1 Ridge regression analysis: R2 values

Subjects, n Lesion SDC FDC Lesion+SDC

Language 116 R2 = 0.48; comp = 58 R2 = 0.41; comp = 29 R2 = 0.06; comp = 6 R2 = 0.46; comp = 87

Motor left (right lesion) 51 R2 = 0.35; comp = 26 R2 = 0.37; comp = 18 R2 = 0.12; comp = 5 R2 = 0.38; comp = 44

Motor right (left lesion) 57 R2 = 0.28; comp = 28 R2 = 0.42; comp = 21 R2 = 0.08; comp = 5 R2 = 0.42; comp = 49

Visual left (right lesion) 25 R2 = 0.40; comp = 12 R2 = 0.23; comp = 14 R2 = 0.18; comp = 5 Overfit; comp = 27

Visual right (left lesion) 31 R2 = 0.58; comp = 15 R2 = 0.33; comp = 16 R2 = 0.38; comp = 6 Overfit; comp = 31

Verbal memory 88 R2 = 0.06; comp = 43 R2 = 0.05; comp = 27 R2 = 0.01b; comp = 6 R2 = 0.05; comp = 70

Spatial memory 88 R2 = 0.19; comp = 43 R2 = 0.19; comp = 27 R2 = 0.04; comp = 6 R2 = 0.19; comp = 70

Attention (visual field bias) 94 R2 = 0.18; comp = 50 R2 = 0.16; comp = 29 R2 = 0.10; comp = 7 R2 = 0.60; comp = 79

Subgroup of patients who underwent both r-fMRI and indirect estimation of structural and functional disconnection

Subjects, n SDC FDC fMRI-FC

Language 88 R2 = 0.47; comp = 28 R2 = 0.16; comp = 6 R2 = 0.42; comp = 79

Motor left (right lesion) 34 R2 = 0.19; comp = 15 R2 = 0.00b; comp = 5 R2 = 0.14; comp = 31

Motor right (left lesion) 48 R2 = 0.34; comp = 20 R2 = 0.01; comp = 5 R2 = 0.08; comp = 43

Visual left (right lesion) 20 R2 = 0.15; comp = 12 R2 = 0.07; comp = 5 R2 = 0.40; comp = 18

Visual right (left lesion) 28 R2 = 0.46; comp = 16 R2 = 0.52; comp = 6 R2 = 0.00b; comp = 25

Verbal memory 71 R2 = 0.10; comp = 26 R2 = 0.00b; comp = 6 R2 = 0.15; comp = 64

Spatial memory 71 R2 = 0.08; comp = 26 R2 = 0.00b; comp = 6 R2 = 0.20; comp = 64

Attention (visual field bias) 73 R2 = 0.05; comp = 28 R2 = 0.03; comp = 7 R2 = 0.05; comp = 66

comp = number of PCA components; fMRI-FC = resting state MRI-functional connectivity; PCA = principal component analysis.
a93% PCA components (overfitting with 95%).
bModel not significant.
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independent samples, the anatomical specificity of the discon-

nection for the syndrome or condition of interest, the underly-

ing anatomical plausibility, and, more recently, the correlation

with behavioural scores (Ferguson et al., 2019).

Here we planned to examine the behavioural relevance of

these indirect disconnection methods towards predicting

neurological impairment post-stroke. Accurate behavioural

prediction is essential to use these methods for brain-behav-

iour correlation in neuropsychology, outcome prediction,

and as an assessment of potential responsiveness to novel

interventions. We applied multivariate machine learning to

predict the behavioural variance of multiple post-stroke defi-

cits using lesions (as a gold standard) versus SDC versus

FDC maps. In the second set of analyses, for domains that

are strongly predicted by fMRI-FC measures (e.g. memory,

attention), we compared behavioural prediction by indirect

versus direct measures of network disconnection.

The results were straightforward. SDC predicts behaviour-

al deficits similarly to lesion information. FDC always per-

forms worse or even at chance level for several domains,

such as language and memory. Direct fMRI-FC measures

are always superior to FDC.

Why is structural disconnection a
better measure than functional
disconnection?

SDC predicted behavioural scores to a level comparable to

lesion location. The behavioural variance predicted with

lesions ranged in the language, vision, and motor domains

between 28% and 58%. The corresponding range for SDC

was 23–42%. In contrast, the range for FDC was 0.06–

0.38%, with most scores in the low teens (Table 1).

The main reason for the superiority of lesions and SDC is

the more significant variability of spatial components neces-

sary to summarize patterns of structural damage or discon-

nection, as compared to patterns of functional disconnection

(FDC). The number of principal components was always

higher for lesion and SDC than FDC patterns (Table 1).

Higher spatial variability means that more components are

available to model the behavioural data.

Why are FDC patterns low dimensional? There are both

biological and methodological explanations. Biologically,

functional networks are low dimensional even in healthy sub-

jects. From any voxel in the brain at 3 T with a repetition

time of 2 s, most subjects show �7–13 networks (Power

et al., 2011; Yeo et al., 2011; Hacker et al., 2013). Moreover,

methodologically, networks that are segregated in healthy

subjects may mix in the FDC maps because the lesion, from

which the maps are derived, contain voxels belonging to dif-

ferent networks. An example of network mixing is illustrated

by the occipital lesions that cause visual field deficits. These

lesions yield FDC maps that include not only the visual net-

work but also the ventral attention network with predictive

voxels in anterior cingulate. Finally, most lesions are localized

in the subcortical nuclei and white matter. Functional

connectivity cortical maps from subcortical nuclei are not

very selective because of local spread of the blood oxygen-

ation level-dependent (BOLD) signal correlation (e.g. in the

caudate or thalamus). In the white matter, the BOLD signal is

low signal-to-noise, and lesions can damage neighbouring

white matter pathways common to multiple networks. Since

the inputs to the ridge regression are the principal components

of the different maps, empirically we noted that FDC maps

have lower dimensionality than SDC or lesion maps, thus

decreasing their sensitivity for modelling purposes.

The discovery that FDC patterns have low dimensionality

despite the relatively high heterogeneity of stroke lesion top-

ography is problematic for the sensitivity of the method.

Even though most FDC patterns were anatomically plaus-

ible, hence suggestive of true functional disconnection, the

behavioural analysis shows that these patterns do not dis-

criminate accurately between patients with more or less se-

vere deficits. Take for instance the FDC maps for language

or verbal memory (Figs 4 and 5). They include a left-lateral-

ized language network that includes a right postero-lateral

cerebellum component (Petersen et al., 1988; Guell et al.,

2018), and a medial parietal-frontal network for memory

deficits that significantly overlap with a circuit recently iden-

tified for amnesia (Ferguson et al., 2019). However, these

FDC maps account for only 4% and 1% of the variance in

language and memory scores, respectively.

What do functional disconnection
maps show?

FDC maps pick up anatomically plausible networks, and per-

form slightly better in terms of behavioural prediction when

the lesions are localized mainly in cortex, but their behavioural

accuracy is low when the lesions are in the white matter. A

good case example is the FDC map for visual deficits. The le-

sion map shows cortical damage in the occipital lobe; corres-

pondingly, FDC show gorgeous visual network disconnection

maps with a high behavioural prediction accuracy (R2 = 38%

for right visual deficits; R2 = 18% for left visual deficits)

(Fig. 2 and Supplementary Fig. 1). In contrast, consider the

motor deficit maps in which the most predictive lesioned vox-

els are in the white matter of the corona radiata and descend-

ing motor pathways. Notably, the FDC maps show motor

and premotor cortical regions, but with low behavioural ac-

curacy (right motor R2 = 12; left motor R2 = 8%) (Fig. 3 and

Supplementary Fig. 2). However, there are also counter-exam-

ples. In language, the predictive damage involves large swaths

of peri-sylvian grey matter; FDC maps are anatomically plaus-

ible, yet, the behavioural prediction is poor.

Are structural disconnection maps
better than lesions in predicting
behaviour?

The answer to this question is no. SDC maps are helpful for

localization of structural disconnection beyond the lesion,
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thus providing a view of the impact of stroke on the whole

brain. The behavioural prediction from SDC is comparable

to lesions; however, it does not account for independent

variance, except for attention, as shown from the joint mod-

els (Table 1).

The widespread pattern of estimated SDC poses a puzzle:

is there a true alteration of structural connectivity, or is this

an artefact of the method? This will have to wait for a direct

comparison of indirect versus direct methods for structural

disconnection. Griffis et al. (2019) recently showed a strong

relationship between empirically measured changes in FC

and SDC patterns, thus giving support to the idea that long-

range anatomical disconnection occurs and mediate the

functional disconnection effects of focal lesions. We also

know that fMRI-FC recovers in parallel with behaviour

(Park et al., 2011; Corbetta, 2012). In combination, these

findings suggest that SDC may occur acutely and recover

over time. Strong evidence for white matter remodelling is

still scarce in humans (Umarova et al., 2017) while animal

models show that transient structural connectivity changes

occur and are modulated by treatment (Ding et al., 2008;

Zijden et al., 2008; Li et al., 2009). White matter remodel-

ling after focal injury is a crucial topic for future

investigations.

Shall we acquire functional MRI to
measure functional connectivity
abnormalities?

The answer to this question is, in general, yes. As in our

published work, we found that fMRI-FC significantly pre-

dicts cognitive deficits, especially memory and visuospatial

attention (He et al., 2007; Baldassarre et al., 2014; Siegel

et al., 2016; and this study). A decrement of inter-hemispher-

ic correlation in homologous regions of different networks

and an increase of intra-hemispheric correlation between

regions of networks typically segregated best predict behav-

ioural deficits. In contrast, we found limited behavioural va-

lence in the FDC maps. Therefore, indirect functional

disconnection methods are no surrogate at this stage of dir-

ect fMRI measures if behavioural correlation is a goal.

Caveats and limitations

The FDC approach in this study slightly differs from the

FDC method already published. In previous reports (Boes

et al., 2015; Fasano et al., 2017; Darby et al., 2018a, b),

specificity of the network disconnection maps was examined

using a dichotomous split between two groups of subjects,

e.g. subjects with or without a specific symptom or syn-

drome. Here we predict continuous behavioural scores of a

specific type of deficit, e.g. language dysfunction. Also, we

did not apply a threshold to the functional connectivity

maps. Finally, the number of healthy controls was lower but

the quality of the functional MRI was higher. We do not

think that any of these factors influenced the results.

Another limitation is the possibility that our maps of

structural and functional disconnection over-estimated the

degree of disconnection due to the younger age of the

healthy subjects control group. For instance, Geerligs et al.

(2015) compared functional connectivity at the network

level in a group of young (mean age = 20.6 years) and older

adults (50–55 years old), and showed no difference in the

somatomotor and visual networks, but weaker connectivity

in the cognitive networks of older adults. However, the ana-

tomical details of the disconnection maps were not the pri-

mary concern, rather, their ability to explain behavioural

variance. Foulon et al. (2018) measured whether SDC maps

vary with age. They generated disconnection maps in cohort

of subjects with different ages, and quantified similarities of

SDC at the whole-brain level in young (21–30 years old)

versus older subjects (later decades). They found disconnec-

tion maps to be similar across decades. Therefore, we feel

that this limitation is minor, and does not affect our main

conclusions.

Conclusions
The indirect mapping of structural and functional disconnec-

tions after focal lesions may highlight widespread alterations

of network organization, but caution is necessary when

interpreting disconnection for behavioural correlation. The

‘dys-connectome’ (SDC) method predicts similarly to lesions

likely because the information provided by the pattern of

structural disconnection is essentially coincident with the

structural damage of the lesion. The FCD method includes

both direct and indirect connections, but it is not very sensi-

tive. The FDC method is not a proxy for direct fMRI meas-

ures of network dysfunction.
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et al. Distinct white matter alterations following severe stroke: longi-

tudinal DTI study in neglect. Neurology 2017; 88: 1546–55.

Volle E, Levy R, Burgess PW, A new era for lesion-behavior

mapping of prefrontal functions. In: DT Stuss, RT Knight, editors.

Principles of frontal lobe function. Oxford: Oxford University Press;

2013. p. 500–523.

von Monakow C. Die Lokalisation im Grosshirn: und der Abbau der

Funktion durch kortikale Herde [Localization in the Cerebrum and

the Degeneration of Functions Through Conical Sources].

Wiesbaden, Germany: Bergmann; 1914.

Vu AT, Auerbach E, Lenglet C, Moeller S, Sotiropoulos SN, Jbabdi S,

et al. High resolution whole brain diffusion imaging at 7T for the

Human Connectome Project. Neuroimage 2015; 122: 318–31.

Wernicke C. Der aphasische Symptomenkomplex. Breslau: Cohn &

Weigert; 1874.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,

Hollinshead M, et al. The organization of the human cerebral cortex

estimated by intrinsic functional connectivity. J Neurophysiol 2011;

106: 1125–65.

Zijden JP, Toorn A, Marel K, Dijkhuizen RM. Longitudinal in vivo

MRI of alterations in perilesional tissue after transient ischemic

stroke in rats. Exp Neurol 2008; 212: 207–12.

Zihl J, Heywood CA. The contribution of single case studies to the

neuroscience of vision. Psych J 2016; 5: 5–17.

2188 | BRAIN 2020: 143; 2173–2188 A. Salvalaggio et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
4
3
/7

/2
1
7
3
/5

8
6
1
0
2
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


	awaa156-TF1
	awaa156-TF2
	awaa156-TF3

