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Abstract

Transcriptional and post-transcriptional regulation shape tissue-type-specific proteomes,

but their relative contributions remain contested. Estimates of the factors determining pro-

tein levels in human tissues do not distinguish between (i) the factors determining the vari-

ability between the abundances of different proteins, i.e., mean-level-variability and, (ii) the

factors determining the physiological variability of the same protein across different tissue

types, i.e., across-tissues variability. We sought to estimate the contribution of transcript lev-

els to these two orthogonal sources of variability, and found that scaled mRNA levels can

account for most of the mean-level-variability but not necessarily for across-tissues variabil-

ity. The reliable quantification of the latter estimate is limited by substantial measurement

noise. However, protein-to-mRNA ratios exhibit substantial across-tissues variability that is

functionally concerted and reproducible across different datasets, suggesting extensive

post-transcriptional regulation. These results caution against estimating protein fold-

changes frommRNA fold-changes between different cell-types, and highlight the contribu-

tion of post-transcriptional regulation to shaping tissue-type-specific proteomes.

Author Summary

The identity of human tissues depends on their protein levels. Are tissue protein levels set

largely by corresponding mRNA levels or by other (post-transcriptional) regulatory mech-

anisms? We revisit this question based on statistical analysis of mRNA and protein levels

measured across human tissues. We find that for any one gene, its protein levels across tis-

sues are poorly predicted by its mRNA levels, suggesting tissue-specific post-transcrip-

tional regulation. In contrast, the overall protein levels are well predicted by scaled mRNA

levels. We show how these speciously contradictory findings are consistent with each

other and represent the two sides of Simpson’s paradox.
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Introduction

The relative ease of measuring mRNA levels has facilitated numerous investigations of how

cells regulate their gene expression across different pathological and physiological conditions

[1–6]. However, often the relevant biological processes depend on protein levels, and mRNA

levels are merely proxies for protein levels [7]. If a gene is regulated mostly transcriptionally,

its mRNA level is a good proxy for its protein level. Conversely, post-transcriptional regulation

can set protein levels independently from mRNA levels, as in the cases of classical regulators of

development [8], cell division [9, 10] and metabolism [11, 12]. Thus understanding the relative

contributions of transcriptional and post-transcriptional regulation is essential for under-

standing their trade-offs and the principles of biological regulation, as well as for assessing the

feasibility of using mRNA levels as proxies for protein levels.

Previous studies have considered single cell-types and conditions in studying variation

in absolute mRNA and protein levels genome-wide, often employing unicellular model

organisms or mammalian cell cultures [13–19]. However, analyzing per-gene variation in

relative mRNA and protein expression across different tissue-types in a multicellular

organism presents a potentially different and critical problem which cannot be properly

addressed by examining only genome-scale correlations between mRNA and protein levels.

[20–22] have measured protein levels across human tissues, thus providing valuable

datasets for analyzing the regulatory layers shaping tissue-type-specific proteomes. The

absolute levels of proteins and mRNAs in these datasets correlate well, highlighting that

highly abundant proteins have highly abundant mRNAs. Such correlations between the

absolute levels of mRNA and protein mix/conflate many sources of variation, including

variability between the levels of different proteins, variability within the same protein

across different conditions and cell-types, and the variability due to measurement error and

technological bias.

However, these different sources of variability have very different biological interpretations

and implications. A major source of variability in protein and mRNA data arises from differ-

ences between the levels of mRNAs and proteins corresponding to different genes. That is, the

mean levels (averaged across tissue-types) of different proteins and mRNAs vary widely. We

refer to this source of variability asmean-level variability. This mean-level variability reflects

the fact that some proteins, such as ribosomal proteins, are highly abundant across all profiled

tissues while other proteins, such as cell cycle and signaling regulators, are orders of magnitude

less abundant across all profiled conditions [20]. Another principal source of variability in pro-

tein levels, intuitively orthogonal to the mean-level variability, is the variability within a pro-

tein across different cell-types or physiological conditions and we refer to it as across-tissues

variability. The across-tissues variability is usually much smaller in magnitude, but may be the

most relevant source of variability for understanding different phenotypes across cells-types

and physiological conditions.

Here, we sought to separately quantify the contributions of transcriptional and post-tran-

scriptional regulation to the mean-level variability and to the across-tissues variability across

human tissues. Our results show that much of the mean-level protein variability can be

explained well by mRNA levels while across-tissues protein variability is poorly explained by

mRNA levels; much of the unexplained variance is due to measurement noise but some of it is

reproducible across datasets and thus likely reflects post-transcriptional regulation. These

results add to previous results in the literature [13–18, 20, 22] and suggest that the post-tran-

scriptional regulation is a significant contributor to shaping tissue-type specific proteomes in

human.

Post-transcriptional regulation across human tissues
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Results

The correlation between absolute mRNA and protein levels conflates
distinct sources of variability

We start by outlining the statistical concepts underpinning the common correlational analysis

and depiction [13, 15, 17, 20] of estimated absolute protein and mRNA levels as displayed in

Fig 1a and 1b. The correlation between the absolute mRNA and protein levels of different

genes and across different tissue-types has been used to estimate the level at which the protein

levels are regulated [20, 22].

Fig 1. The fraction of total protein variance explained by scaledmRNA levels is not informative about the across-tissues
variance explained by scaledmRNA levels. (a) mRNA levels correlate with measured protein levels (RT = 0.33 over all measured
mRNAs and proteins across 12 different tissues). (b) Protein levels versus mRNA levels scaled by the median protein-to-mRNA
ratio (PTR); the only change from panel (a) is the scaling of mRNAs, which considerably improves the correlation. (c) A subset of
100 genes are used to illustrate an example Simpson’s paradox: regression lines reflect within-gene and across-tissues variability.
Despite the fact that the overall correlation between scaled mRNA and measured protein levels is large and positiveRT = 0.89, for
any single gene in this set, mRNA levels scaled by the median PTR ratio are not correlated to the corresponding measured protein
levels (RP� 0). (d) Cumulative distributions of across-tissues scaled mRNA-protein correlations (RP) for 3 datasets [20–22]. The
smooth curves correspond to all quantified proteins by shotgun proteomics while the dashed curves correspond to a subset of
proteins quantified in a small targeted dataset [22]. The vertical lines show the corresponding overall (conflated) correlation between
scaled mRNA levels and protein levels, RT. See Methods and S1 Fig.

https://doi.org/10.1371/journal.pcbi.1005535.g001
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One measure reflecting the post-transcriptional regulation of a gene is its protein to mRNA

ratio, which is sometimes referred to as a gene’s “translational efficiency”. Since this ratio also

reflects other layers of regulation, such as protein degradation and noise [18], we will refer to it

descriptively as protein-to-mRNA (PTR) ratio. If the across-tissues variability of a gene is domi-

nated by transcriptional regulation, its PTR in different tissue-types will be a gene-specific con-

stant. Based on this idea, [20, 22] estimated these protein-to-mRNA ratios and suggested that

the median PTR for each gene can be used to scale its tissue-specific mRNA levels and that this

“scaled mRNA” predicts accurately tissue-specific protein levels.

Indeed, mRNA levels scaled by the corresponding median PTR explain large fraction of the

total protein variance (R2

T ¼ 0:70, across all measured proteins, Fig 1a and 1b) as previously

observed [15, 20, 22]. However, this high R2

T does not indicate concordance for across-tissues

variability of mRNAs and proteins. R2

T quantifies the fraction of the total protein variance

explained by mRNA levels between genes and across tissue-types; thus, it conflates the mean-

level variability with the across-tissues variability. This conflation is shown schematically in

Fig 1c for a subset of 100 genes measured across 12 tissues. The across-tissues variability is cap-

tured by the variability within the regression fits while the mean-level variability is captured by

the variability between the regression fits.

Such aggregation of distinct sources of variability, where different subgroups of the data

show different trends, may lead to counter-intuitive results and incorrect conclusions, and is

known as the Simpson’s or amalgamation paradox [23]. To illustrate the Simpson’s paradox in

this context, we depicted a subset of genes for which the measured mRNA and protein levels

are unrelated across-tissues while the mean-level variability still spans the full dynamic range

of the data, Fig 1c. For this subset of genes, the overall (conflated/amalgamated) correlation is

large and positive, despite the fact that all across-tissues (within-gene) trends are close to zero.

This counter-intuitive result is possible because the conflated correlation is dominated by the

variability with larger dynamical range, in this case the mean-level variability. This conceptual

example using data from [20] demonstrates that R2

T is not necessarily informative about the

across-tissues variability, i.e., the protein variance explained by scaled mRNA within a gene

(R2

P). Thus the conflated correlation is not generally informative about the level—transcrip-

tional or post-transcriptional—at which across-tissues variability is regulated. This point is

also illustrated in S1 Fig with data for all quantified genes: The correlations between scaled

mRNA and measured protein levels are not informative for the correlations between the corre-

sponding relative changes in protein and mRNA levels.

To further illustrate this point with more datasets, Fig 1d displays the cumulative distribu-

tions of across-tissues mRNA-protein correlations (RP) for all proteins quantified across the

large shotgun datasets [20, 21], as well as the corresponding conflated correlations between

scaled mRNA and protein levels (RT). This depiction demonstrates that RT are not representa-

tive for RP. To extend this analysis to protein levels measured by targeted MS [22], we plotted

the distributions of across-tissues mRNA-protein correlations (RP) for the subset of 33 genes

quantified across all datasets [20–22]; see dotted curves in Fig 1d. These genes were selected to

have larger variance across tissues [22] and have relatively higher across-tissues correlations,

especially in the data by [21, 22]. Nevertheless, all datasets include low and even negative

across-tissues correlations (RP) and very high conflated correlations between scaled mRNA

and protein levels (RT), Fig 1d. These results underscore the weak connection between RP and

RT even for a carefully selected and measured subset of mRNAs and proteins.

The across-tissues variability has a dynamic range of about 2 − 10 fold and is thus dwarfed

by the 103 − 104 fold dynamic range of abundances across different proteins. While across-tis-

sues variability is smaller than mean-level variability, it is exactly the across-tissues variability

Post-transcriptional regulation across human tissues
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that contributes to the biological identity of each tissue type and we focus the rest of our analy-

sis to factors regulating the across-tissues protein variability.

Estimates of transcriptional and post-transcriptional regulation across-
tissues depend strongly on data reliability

Next, we sought to estimate the fractions of across-tissues protein variability due to transcrip-

tional regulation and to post-transcriptional regulation. This estimate depends crucially on

noise in the mRNA and protein data, from sample collection to measurement error. Both

RNA-seq [24, 25] and mass-spectrometry [15, 26] have relatively large and systematic error in

estimating absolute levels of mRNAs and proteins, i.e., the ratios between different proteins/

mRNAs. These errors originate from DNA sequencing GC-biases, and variations in protein

digestion and peptide ionization. However, relative quantification of the same gene across tis-

sue-types by both methods can be much more accurate since systematic biases are minimized

when taking ratios between the intensities/counts of the same peptide/DNA-sequence mea-

sured in different tissue types [18, 25, 27, 28]. It is this relative quantification that is used in

estimating across-tissues variability, and we start by estimating the reliability of the relative

quantification across human tissues, Fig 2a–2d. Reliability is defined as the fraction of the

observed/empirical variance due to signal. Thus reliability is proportional to the signal strength

and decreases with the noise levels.

To estimate the within study reliability of mRNA levels, we took advantage that each mRNA

dataset contains data frommultiple subjects. We split the subjects in each dataset into two sub-

sets, each of which containing measurements for all 12 tissues from several subjects. The levels

of each mRNA were estimated from each subset by averaging across subjects and the estimates

from the two subsets correlated, Fig 2a. These correlations provide estimates for the reliability

of each mRNA and their median provides a global estimate for the reliability of relative RNA

measurement, not taking into account noise due to sample collection and processing.

To estimate the within study reliability of protein levels, we computed separate estimates of

the relative protein levels within a dataset. For each protein, Estimate 1 was derived from 50%

of the quantified peptides and Estimate 2 from the other 50%. Since much of the analytical

noise related to protein digestion, chromatographic mobility and peptide ionization is pep-

tide-specific, such non-overlapping sets of of peptides provide mostly, albeit not completely,

independent estimates for the relative protein levels. The correlations between the estimates

for each protein (averaging across 12 tissues) are displayed as a distribution in Fig 2b.

In addition to the within studymeasurement error, protein and mRNA estimates can be

affected by study-dependable variables such as sample collection and data processing. To

account for these factors, we estimated across study reliability by comparing estimates for rela-

tive protein and mRNA levels derived from independent studies, Fig 2c and 2d. For each gene,

we estimate the reliability for each protein by computing the empirical correlation between

mRNA abundance reported by the ENCODE [29] and by [30]. The correlations in Fig 2c have

much broader distribution than the within-study correlations, indicating that much of the

noise in mRNA estimates is study-dependent.

To estimate the across study reliability of protein levels, we compared the protein levels esti-

mated from data published by [20] and [21]. To quantify protein abundances, [20] used iBAQ

scores and [21] used spectral counts. To ensure uniform processing of the two datasets, we

downloaded the raw data and analyzed them with maxquant using identical settings, and esti-

mated protein abundances in each dataset using iBAQ; see Methods. The corresponding esti-

mates for each protein were correlated to estimate their reliability. Again, the correlations

depicted in Fig 2d have a much broader distribution compared to the within-study protein

Post-transcriptional regulation across human tissues
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correlations in Fig 2b, indicating that, as with mRNA, the vast majority of the noise is study-

dependent. As a representative estimate of the reliability of protein levels, we use the median

of the across tissue correlations from Fig 2d.

The across tissues correlations and the reliability of the measurements can be used to esti-

mate the across tissues variability in protein levels that can be explained by mRNA levels (i.e.,

transcriptional regulation) as shown in Fig 2e; see Methods. As the reliabilities of the protein

and the mRNA estimates decrease, the noise sensitivity of the estimated transcriptional contri-

bution increases. Although the average across-tissues mRNA protein correlation was only

0.29 (R2 = 0.08), the data are consistent with approximately 50% of the variance being

explained by transcriptional regulation and approximately 50% coming from post-transcrip-

tional regulation; see S2 Fig for reliability-corrected estimates for specific functional gene sets.

However, the low reliability of the data and large sampling variability precludes making such

Fig 2. Data reliability crucially influences estimates of transcriptional and post-transcriptional regulation across-tissues. (a)
The within-study reliability—defined as the fraction of the measured variance due to the signal—of relative mRNA levels is estimated as
the correlation between the mRNA levels measured in the twelve different tissues. Estimates for the levels of each transcript measured
in different subjects were correlated (averaging across the 12 tissue-types) and the results for all analyzed transcripts displayed as a
distribution for each RNA dataset [29, 30]. (b) The within-study reliability of relative protein levels is estimated as the correlation between
the protein levels measured in 12 different tissues [20, 21]. Within each dataset, separate estimates for each protein were derived from
non-overlapping sets of peptides and were correlated (averaging across the 12 tissue-types) and the results for all analyzed proteins
displayed as a distribution; see Methods. (c) The across-study reliability of mRNA was estimated by correlating estimates as in (a) but
these estimates came from different studies [29] and [30]. (d) The across-study reliability of proteins was estimated by correlating
estimates as in (b) but these estimates came from different studies [20] and [21]. (e) The fraction of across-tissues protein variance that
can be explained by mRNA levels is plotted as a function of the reliability of the estimates of mRNA and protein levels, given an empirical
mRNA/protein correlation of 0.29. The red Xs correspond to two estimates of reliability of the mRNA and protein measurements
computed from both independent mRNA and protein datasets.

https://doi.org/10.1371/journal.pcbi.1005535.g002
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estimate reliable. Thus, we next considered analyses that can provide estimates for the scope of

post-transcriptional regulation even when the reliability of the data is low.

Coordinated post-transcriptional regulation of functional gene sets

The low reliability of estimates across datasets limits the reliability of estimates of transcrip-

tional and post-transcriptional regulation for individual proteins, Fig 2. Thus, we focused on

estimating the post-transcriptional regulation for sets of functionally related genes as defined

by the gene ontology (GO) [31]. By considering such gene sets, we may be able to average out

some of the measurement noise and see regulatory trends shared by functionally related genes.

Indeed, some of the noise contributing to the across-tissues variability of a gene is likely inde-

pendent from the function of the gene; see Methods. Conversely, genes with similar functions

are likely to be regulated similarly and thus have similar tissue-type-specific PTR ratios. Thus,

we explored whether the across-tissues variability of the PTR ratios of functionally related

genes reflects such tissue-type-specific and biological-function-specific post-transcriptional

regulation.

Since this analysis aims to quantify across-tissues variability, we define the “relative protein

to mRNA ratio” (rPTR) of a gene in a given tissue to be the PTR ratio in that tissue divided by

the median PTR ratio of the gene across the other 11 tissues. We evaluated the significance of

rPTR variability for a gene-set in each tissue-type by comparing the corresponding gene-set

rPTR distribution to the rPTR distribution for those same genes pooled across the other tissues

(Fig 3); we use the KS-test to quantify the statistical significance of differences in the rPTR dis-

tributions; see Methods. The results indicate that the genes from many GO terms have sub-

stantially higher rPTR in some tissues than in others. For example the ribosomal proteins of

the small subunit (40S) have high rPTR in kidney but low rPTR in stomach (Fig 3a–3c).

While the strong functional enrichment of rPTR suggests functionally concerted post-tran-

scriptional regulation, it can also reflect systematic dataset-specific measurement artifacts. To

investigate this possibility, we obtained two estimates for rPTR from independent datasets:

Estimate 1 is based on data from [20] and [30], and Estimate 2 is based on data from [21] and

[29]. These two estimates are reproducible (e.g., ρ = 0.7 − 0.8) for most tissues but less for oth-

ers (e.g., ρ = 0.14), as shown by the scatter plots between the median rPTR for GO terms in Fig

3d; S3 Fig shows the reproducibility for all tissues. The correlations between the two rPTR esti-

mates remain statistically significant albeit weaker (i.e., ρ = 0.1 − 0.4) when computed with all

GO terms (not only those showing significant enrichment) as shown in S1 Table, as well as

when computed between the rPTRs for all genes, S2 Table.

Consensus protein levels

Given the low reliability of protein estimates across studies show in Fig 2, we sought to increase

it by deriving consensus estimates. Indeed, by appropriately combining data from both protein

studies, we can average out some of the noise thus improving the reliability of the consensus

estimates; see Methods. As expected for protein estimates with increased reliability, the con-

sensus protein levels correlate better to mRNA levels than the corresponding protein levels

estimated from a either dataset alone, Fig 4a and 4b. We further validate our consensus esti-

mates against 124 protein/tissue measurements from a targeted MS study [22]. We computed

the mean squared errors (MSE) between the protein levels estimated from the targeted study

and the other three datasets using only protein/tissue measurements quantified in all datasets,

facilitating fair comparison (Fig 4c). The MSE are lower for the consensus dataset than for

either [20] or [21] and are consistent with a 10% error reduction relative to the [21] dataset. In

addition to increased reliability, the consensus dataset increased coverage, providing a more

Post-transcriptional regulation across human tissues
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comprehensive quantification of protein levels across human tissues than either draft of the

human proteome taken alone (Table 1).

Discussion

Highly abundant proteins have highly abundant mRNAs. This dependence is consistently

observed [13–15, 17, 18] and dominates the explained variance in the estimates of absolute

Fig 3. Concerted variability in the relative protein-to-RNA (rPTR) ratio of functional gene-sets across tissue-types. (a)
mRNAs coding for the ribosomal proteins, NADH dehydrogenase and respiratory proteins have higher protein-to-mRNA ratios in
kidney as compared to the median across the other 11 tissues (FDR < 1%). In contrast mRNAs genes functioning in Rac GTPase
binding have lower protein-to-mRNA ratios (FDR < 1%). (b) The stomach also shows significant rPTR variation, with low rPTR for the
ribosomal proteins and high rPTR for tRNA-aminoacylation (FDR < 1%). (c) Summary of rPTR variability, as depicted in panel (a-b),
across all tissues and many gene ontology (GO) terms. Metabolic pathways and functional gene-sets that show statistically
significant (FDR < 1%) variability in the relative protein-to-mRNA ratios across the 12 tissue types. All data are displayed on a log10
scale, and functionally related gene-sets are marked with the same color. (d) The reproducibility of rPTR estimates across estimates
from different studies is estimated as the correlation between the median rPTRs for GO terms showing significant enrichment as
shown in panels (a-c). See Methods, S2 and S3 Figs.

https://doi.org/10.1371/journal.pcbi.1005535.g003
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protein levels (Fig 1 and S1 Fig). This underscores the role of transcription for setting the full

dynamic range of protein levels. In stark contrast, differences in the proteomes of distinct

human tissues are poorly explained by transcriptional regulation, Fig 1. This is due to mea-

surement noise (Fig 2) but also to post-transcriptional regulation. Indeed, large and partially

reproducible rPTR ratios suggest that the mechanisms shaping tissue-specific proteomes

involve post-transcriptional regulation, Fig 3. This result underscores the role of translational

regulation and of protein degradation for mediating physiological functions within the range

of protein levels consistent with life.

As with all analysis of empirical data, the results depend on the quality of the data and the

estimates of their reliability. This dependence on data quality is particularly strong given that

some conclusions rest on the failure of across-tissues mRNA variability to predict across-tis-

sues protein variability. Such inference based on unaccounted for variability is substantially

weaker than measuring directly and accounting for all sources of variability. The low across

Fig 4. Deriving a consensus protein dataset for improved quantification of human tissue proteomes.We compiled a
consensus protein dataset by merging data from [20] and [21] as described in Methods. The relative protein levels estimated
from [20, 21], and the consensus dataset were correlated to mRNA levels from [30] (a) or to mRNA levels from [29] (b). The
correlations are shown as a function of the median correlation between protein estimates from [20] and [21]. The consensus
dataset exhibits the highest correlations, suggesting that it has averaged out some of the noise in each dataset and provides a
more reliable quantification of of human tissue proteomes. (c) The datasets from [20], from [21], and the consensus dataset
were evaluated by comparison to a targeted MS validation dataset quantifying 33 proteins over 5 tissues [22]. The similarity for
each dataset was quantified by the mean squared error (MSE) relative to the targeted MS validation data using 124 protein/
tissue measurements that were observed in all datasets. The MSEs are reported for each of the five tissues and for all 5 tissues
combined; they indicate that the consensus data have the best agreement with the validation dataset.

https://doi.org/10.1371/journal.pcbi.1005535.g004
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study reliability suggest that the signal is strongly contaminated by noise, especially systematic

biases in sample collection and handling, and thus the data cannot accurately quantify the con-

tributions of different regulatory mechanisms, Fig 2. Another limitation of the data is that iso-

forms of mRNAs and proteins are merged together, i.e., using razor proteins. This latter

limitation is common to all approaches quantifying proteins and mRNAs from peptides/short-

sequence reads. It stems from the limitation of existing approaches to infer and distinctly

quantify isoforms and proteoforms.

The strong enrichment of rPTR ratios within gene sets (Fig 3) demonstrates a functionally

concerted regulation at the post-transcriptional level. Some of the rPTR trends can account for

fundamental physiological differences between tissue types. For example, the kidney is the

most metabolically active (energy consuming) tissue among the 12 profiled tissues [32] and it

has very high rPTR for many gene sets involved in energy production (Fig 3a). In this case,

post-transcriptional regulation likely plays a functional role in meeting the high energy

demands of kidneys. Quantifying and understanding mRNA and protein covariation in single

cells is an important frontier of this analysis [33].

The rPTR patterns and the across tissue correlations in S1 Fig indicate that the relative con-

tributions of transcriptional and post-transcriptional regulation can vary substantially depend-

ing on the tissues compared. Thus, the level of gene regulation depends strongly on the

context. For example transcriptional regulation is contributing significantly to the dynamical

responses of dendritic cells [18] and to the differences between kidney and prostate gland

(S1h Fig) but less to the differences between kidney and liver (S1g Fig). All data, across all pro-

filed tissues, suggest that post-transcriptional regulation contributes substantially to the

across-tissues variability of protein levels. The degree of this contribution depends on the

context.

Indeed, if we only increase the levels for a set of mRNAs without any other changes, the cor-

responding protein levels must increase proportionally as demonstrated by gene inductions

[34]. However, the differences across cell-types are not confined only to different mRNA levels.

Rather, these differences include different RNA-binding proteins, alternative untranslated

regions (UTRs) with known regulatory roles in protein synthesis, specialized ribosomes [35–

Table 1. Proteome coverage.Number of quantified proteins and peptides in 3 datasets: [20, 21], and the consensus dataset derived here. The consensus
data have the highest coverage and the best agreement with the validation dataset, Fig 4.

Tissue type Wilhelm et al. Kim et al. Consensus

Proteins Peptides Proteins Kim pep Proteins Peptides

Adrenal Gland 3,947 43,661 3,610 40,619 4,436 62,719

Colon 3,745 34,925 4,004 32,786 4,517 52,872

Esophagus 3,989 39,677 1,682 15,298 4,086 45,881

Kidney 3,045 34,740 2,814 26,499 3,526 45,865

Liver 3,669 34,844 2,307 22,992 3,971 45,168

Lung 2,852 31,293 2,935 29,686 3,704 47,617

Ovary 3,681 41,289 3,568 53,956 4,419 72,337

Pancreas 3,048 30,463 2,326 19,974 3,423 38,807

Prostate 3,467 38,562 3,118 33,765 3,932 51,891

Testis 3,950 51,369 3,505 42,865 4,478 70,952

Spleen 3,244 39,465 0 0 3,237 39,465

Stomach 3,957 44,609 0 0 3,949 44,609

Heart 0 0 2,227 27,205 2,227 27,205

All 5,719 113,069 5,326 105,158 5,786 150,830

https://doi.org/10.1371/journal.pcbi.1005535.t001
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38], and different protein degradation rates [39–43]. The more substantial these differences,

the bigger the potential for post-transcriptional regulation. Thus cell-type differentiation and

commitment may result in much more post-transcriptional regulation than observed during

perturbations preserving the cellular identity. Consistent with this possibility, tissue-type spe-

cific proteomes may be shaped by substantial post-transcriptional regulation; in contrast, cell

stimulation that preserves the cell-type, may elicit a strong transcriptional remodeling but

weaker post-transcriptional remodeling.

Methods

Data sources

We used RNA estimates based on RNA-seq from [29, 30] and protein estimates based on shot-

gun mass-spectrometry from [20, 21]. These large scale datasets contained N = 6104 genes

measured in each of twelve different human tissues: adrenal gland, esophagus, kidney, ovary,

pancreas, prostate, salivary gland, spleen, stomach, testis, thyroid gland, and uterus. For these

genes, about 8% of the mRNAmeasurements and about 40% of the protein measurements are

missing. The mRNA datasets contain measurements from multiple subjects/people and the

subjects were split into two subsets in estimating the within study reliability in Fig 2a. We also

used a small scale targeted dataset from [22] containing data for 33 proteins measured across 5

tissues. The datasets were collected by different groups and measurements derived from differ-

ent subjects.

Searching raw MS data

Raw data from [21, 22] were searched by MaxQuant [44] 1.5.7.0 against a protein sequence

database including all entries from a Human UniProt database from 2015 and known contam-

inants such as human keratins and common laboratory contaminants. MaxQuant searches

were performed with trypsin specificity allowing up to two missed cleavages, with fixed Carba-

midomethyl acetylation on cysteines, and with variable modifications allowing methionine

oxidation and acetylation on Protein N-termminus. All razor peptides were used for quantify-

ing the proteins to which they were assigned by MaxQuant. False discovery rate (FDR) was set

to 1% at both the protein and the peptide levels.

Scaling mRNA levels

First, denotemit the log mRNA levels for gene i in tissue t. Similarly, let pit denote the corre-

sponding log protein levels. First, we normalize the columns of the data, for both protein and

mRNA, to different amounts of total protein per sample. Any multiplicative factors on the raw

scale correspond to additive constants on the log scale. Consequently, we normalize data from

each tissue-type by minimizing the absolute differences between data from the tissue and the

first tissue (arbitrarily chosen as a baseline). That is, for all t> 1, we define

pn
it ¼ ðpu

it � m̂tÞ

with

m̂t ¼ argmin
m

X

i

jpu
i1 � ðpu

it � mÞj

Where pn
it and pu

it represent the normalized and non-normalized protein measurements
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respectively. For each t, the value of μt which minimizes the absolute difference is

m̂t ¼ median
u

ðpi1 � pu
itÞ

We use the same normalization for mRNA. This normalization, which corresponds to a loca-

tion shift of the log abundances for each tissue, corrects for any multiplicative differences in

the raw (unlogged) mRNA or protein. We normalize these measurements by aligning the

medians rather than the means, as the median is more robust to outliers.

After normalization, we define rit = pit −mit as the log PTR ratio of gene i in condition t. If

the post-transcriptional regulation for the ith gene were not tissue-specific, then the ith PTR

ratio would be independent of tissue-type and can be estimated as

T̂ i ¼ median
t

ðpit �mitÞ

In such a situation the log “scaled mRNA” (or mean protein level) can be defined as

pit ¼ mit þ Ti

On the raw scale this amounts to scaling each mRNA by its median PTR ratio and represents

and estimate of the mean protein level. The residual difference between the log mean protein

level and the measured log protein level, which we call the log rPTR ratio

rit ¼ pit � pit

consists of both tissue-specific post-transcriptional regulation and measurement noise.

Across-tissues correlations

For each gene, i, we compute the correlation between mRNA and protein across tissues.

Unlike the between gene correlations which are consistently large after scaling for each tissue

(Fig 1a), across-tissues correlations are highly variable between genes. Although this could be

in part because true mRNA/protein correlations vary significantly between genes, a huge

amount of the heterogeneity can be explained by sampling variability. There are only 10 and

12 tissues in common across datasets (depending on which datasets are used) and for many

genes the abundances are missing, which means that the empirical estimates of across tissue

correlation for each gene are very noisy. To find a representative estimate of the across-tissues

correlation we can take the median over all genes. As an alternative, if the correlation was

roughly constant between genes, we can pool information to yield a representative estimate of

this across-tissues correlation. For a gene i, we compute the Fisher transformation of the

within-gene correlation. This Fisher transformation, zi ¼ arctanhðr̂ iÞ is approximately nor-

mally distributed:

zi � N
1

2
log

1þ r

1� r

� �

;
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � 3

p

 !

where Ni are the number of observed mRNA-protein pairs for gene i (at most 12) and ρ corre-

sponds to the population correlation. We estimate the maximum likelihood estimate of the
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Fisher transformed population correlation by weighting each observation by its variance:

oi ¼
1

ni � 3

Wi ¼
oi
P

joj

ẑpop ¼
P

Wizi

We then transform this estimate back to the correlation scale

r̂ ¼
e2ẑpop � 1

e2ẑpop þ 1

Depending on the data sets used, with this method we estimate the population across-tissues

mRNA/protein correlation to be between 0.21 ([20]) and 0.29 ([21]). This correlation cannot

be used as direct evidence for the relationship between mRNA and protein levels since both

mRNA and protein datasets are unreliable due to measurement noise. This measurement

noise attenuates the true correlation. Below we address this by directly estimating data reliabil-

ity and correcting for noise.

Noise correction

Measurement noise attenuates estimates of correlations between mRNA and protein level

[45]. A simple way to quantify this attenuation of correlation due to measurement error is via

Spearman’s correction. Spearman’s correction is based on the fact that the variance of the mea-

sured data can be decomposed into the sum of variance of the noise and the signal. If the noise

and the signal are independent, this decomposition and the Spearman’s correction are exact

[17].

Note that it is simple to show that the empirical variance is the sum of the variance of the

signal and the variance of the noise:

• ei—Expectation at the ith data point; ~ei ¼ ei � hei

• zi—Noise at the ith data point; hzi = 0

• xi—Observation at the ith data point; ~xi ¼ xi � hxi, xi = ei + zi;

s2

x ¼
1

n

X

i

~x2

i ¼
1

n

X

ð~ei þ ziÞ
2
¼

¼
1

n

X

i

~e2i

|fflfflfflffl{zfflfflfflffl}

s2e

þ
1

n

X

i

z
2

i

|fflfflfflffl{zfflfflfflffl}

s2
z

þ
2

n

X

i

~eizi

|fflfflfflfflffl{zfflfflfflfflffl}

�0

Spearman’s correction is based on estimates of the “reliability” of the measurements, which is

defined as the fraction of total measured variance due to signal rather than to noise:

Reliability ¼
s2

signal

s2

total

ð1Þ

¼ 1�
s2

err

s2

err þ s2

signal

ð2Þ
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If X and Y are noisy measurements of two quantities, we can compute the noise corrected cor-

relation between them as

CorðX;YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RelðXÞRelðYÞ
p ð3Þ

In practice, reliabilities are not known but we can often estimate them. In this application, for

both mRNA and protein we need measurements in which all steps, from sample collection to

level estimation, are repeated independently. In order to estimate the mRNA reliabilities we

use independent measurements from [30] and [29]. For estimating protein reliabilities we use

measurements from [20] and [21]. across-tissues reliabilities are computed per gene whereas

within-tissue reliabilities are computed per tissue across genes. If two independent measure-

ments have the same reliability, it can be estimated by computing the correlation between the

two measurements [17, 46, 47]. We estimated the approximate across-tissues protein reliability

to be 0.21 and the across-tissues mRNA reliability to be 0.77. Given the estimated across-tis-

sues mRNA/protein correlation of 0.29 (calculated using data from [21] and [30]) we esti-

mated the noise-corrected fraction of across-tissues protein variance explained by mRNA to

be approximately 50%, Fig 2. Note that if both mRNA or both protein datasets share biases,

then the estimated reliabilities will be too small, thus deflating the inferred fraction of protein

variance explained by mRNA. Moreover, because the reliabilities are low, sampling variability

is large, missing data is prevalent, and mRNA/protein correlation likely vary by gene, there is

uncertainty about this estimate.

Creating a consensus protein dataset

We use the two independent protein datasets to create a single consensus data set which is of

arguably higher reliability than either dataset individually. To create this dataset, we take a

weighted average of the two protein abundance datasets, by tissue. We compute the weights

based on measurement reliabilities for each tissue in each of the two datasets.

Assume we have two random variables, ~X
1
and ~X

2
, corresponding to measurements

on the same quantity (e.g. two independent protein measurements) with ~X i ¼ X þ �i where

X � Nð0; s2

XÞ is the signal which is independent of �i � Nð0; s2

�i
Þ, the measurement error for

sample i. We have a third random variable corresponding to a different quantity (e.g. an

mRNAmeasurement), ~Y that is typically positively correlated with ~X
1
and ~X

2
with the

same covariance s2

XY . To create the consensus data set we first compute the reliability of ~X i

Rel ~X i

� �
¼

s2
X

s2
~X i

¼
s2
X

s2
X
þs2�i

for both datasets.

Note that

Corð~X
1
; ~X

2
Þ ¼

s2

X

s~X1
s~X2

Corð~X i;YÞ ¼
s2

XY

s~X i
sY
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Thus,

Corð~X
1
; ~X

2
Þ
Corð~X

1
; ~Y Þ

Corð~X
2
; ~Y Þ

¼
s2

X

s2

~X1

¼
s2

X

s2

X þ s2

�1

¼ Relð~X
1
Þ

Similarly, Cor ~X
1
; ~X

2

� �
Corð~X 2 ;

~Y Þ

Corð~X 1 ;
~Y Þ
¼ Rel ~X

2

� �
. We use these facts and compute the empirical cor-

relations between datasets to independently estimate the across gene reliabilities for each tissue

from each dataset. We then Fisher weight the protein abundances based on their reliabilities.

That is, for each tissue t, the consensus dataset, XC
t is

XC
t ¼ w~X t

t þ ð1� wÞ~X 2

t

w ¼
Relð~X 1

t Þ

Relð~X 1

t Þ þ Relð~X 2

t Þ

When the reliability of ~X 1

t and
~X 2

t are close, each dataset is weighted equally. When one reli-

ability dominates the other, that dataset contributes more to the aggregated dataset. We found

that the full consensus data set has a higher median per gene correlation with mRNA than

either of the protein datasets individually (0.34) and agreed more closely with validation data

from [22] (Table 1).

Functional gene set analysis

To identify tissue-specific rPTR for functional sets of genes, we analyzed the distributions of

rPTR ratios within functional gene-sets using the same methodology as [48]. We restrict our

attention to functional groups in the GO ontology [31] for which at least 10 genes were quanti-

fied by [20]. Let k index one of these approximately 1600 functional gene sets. First, for every

gene in every tissue we estimate the relative PTR (rPTR) or equivalently, the difference

between log mean protein level and measured protein level:

r̂ it ¼ pit �median
t0 6¼t

ðpit0 �mit0Þ

To exclude the possibility that r̂ it ¼ 0 exactly, we require that t0 6¼ t. When the estimated

rPTR is larger than zero, the measured protein level in tissue t is larger than the estimated

mean protein level. Likewise, when this quantity is smaller than zero, the measured protein is

smaller than expected. Measured deviations from the mean protein level are due to both mea-

surement noise and tissue specific PTR. To eliminate the possibility that all of the variability in

the rPTR ratios is due to measurement error we conduct a full gene set analysis.

For each of the gene sets we compute a vector of these estimated log ratios so that a gene set

is comprised of

Gkt ¼ fr̂ i1 j; :::; r̂ ink t
g

where i1 to ink
index the genes in set k and t indexes the tissue type.

Let KSðG
1
;G

2
Þ be the function that returns the p-value of the Kolmogorov-Smirnov test on

the distribution in sets G
1
and G

2
. The KS-test is a test for a difference in distribution between

two samples. Using this test, we identify gene sets that show systematic differences in PTR

ratio in a particular tissue (t) relative to all other tissues.
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Specifically, the p-value associated with gene set k in condition j is

rkt ¼ KSðGkt;[
t0 6¼t
Gkt0Þ

To correct for testing multiple hypotheses, we computed the false discovery rate (FDR)

for all gene sets in tissue t [49]. In Fig 3a–3c, we present only the functional groups with

FDR less than 1% and report their associated p-values. Note that the test statistics for each

gene set are positively correlated since the gene sets are not disjoint, but [50] prove that the

Benjamini-Hochberg procedure applied to positively correlated test statistics is conservative.

Thus, the significance of of certain functional groups suggests that not all of the variability in

rPTR is due to measurement noise. We also calculated rPTR using two pairs of measure-

ments: one set of rPTR estimates was calculated using protein data from [20] and mRNA

from [30] and the other was calculated using data from [21] and [29]. rPTR of the significant

sets was largely reproducible across estimates from independent datasets (Fig 3d) and less

reproducible across genes (S2 Table). Note that when computing the per tissue reliabilities

for the construction of the consensus data set, we found that the reliabilities of the lung and

pancreas datasets from [20] were much less reliable than the data from [21]. This could

explain why the independent estimates of the rPTR ratios for these tissues were less

reproducible.

Supporting information

S1 Table. Estimates of relative protein-to-RNA (rPTR) ratio for GO terms reproduce

across different datasets. Pearson correlations between two estimates of the median rPTR

ratios for all GO terms indicate reproducible effects in all tissues. As in Fig 2, rPTR estimates

are derived using independent data sources. The lower and upper estimates are the endpoints

of the 95% confidence interval.

(PDF)

S2 Table. Estimates of relative protein-to-RNA (rPTR) ratio for genes reproduce across

different datasets. Correlations between the two estimates of rPTR ratios for all genes indicate

reproducible effects in all tissues. The rPTR ratios were estimated independently from differ-

ent datasets (as in Fig 2). The lower and upper estimates are the endpoints of the 95% confi-

dence interval.

(PDF)

S1 Dataset. Consensus dataset of protein levels across human tissues. A zip-archived

comma-delimited text file with consensus estimates of protein levels across 13 human tissues:

adrenal gland, colon, esophagus, kidney, liver, lung, ovary, pancreas, prostate, testis, spleen,

stomach, and heart.

(ZIP)

S2 Dataset. Peptide levels across human tissues. A zip-archived comma-delimited text file

with estimates of peptide levels across 13 human tissues: adrenal gland, colon, esophagus, kid-

ney, liver, lung, ovary, pancreas, prostate, testis, spleen, stomach, and heart. This file contains

all peptide levels (integrated precursors areas) estimated from the MaxQuant searches

described in the Methods.

(ZIP)

S1 Fig. The total protein variance explained by scaled mRNA levels is not indicative of the

correlations between mRNA and protein fold-changes across the corresponding tissue

pairs. (a-c, top row), protein versus mRNA in kidney, liver and prostate. (d-f, middle row)
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protein versus scaled mRNA in kidney, liver and prostate. The only difference from the top

row is that the mRNA was scaled by the median PTR. (g-i, bottom row) protein fold changes

versus the corresponding mRNA fold changes between the tissues indicated on the top. While

scaled mRNA is predictive of the absolute protein levels the accuracy of these predictions does

not generally reflect the accuracy of protein fold-changes across tissues that are predicted from

the corresponding mRNA fold-changes. RNA fold changes in (g-i, bottom row) were com-

puted between the mRNA levels without PTR scaling.

(PDF)

S2 Fig. Fraction of across-tissues variability in protein levels explained by RNA variability

for different functional gene sets. (a) The distributions of across-tissues correlations for gene

sets defined by the gene ontology are shown as boxplots. The reliability of RNA and protein

are estimated as the correlations between estimates from different datasets. (b) For each gene

set, the median RNA-protein correlation was corrected by the median reliabilities and the

results shown as a boxplot. Differences between RNA-protein correlations for different gene-

sets cannot be explained simply by differences in the reliabilities.

(PDF)

S3 Fig. Reproducibility of rPTR ratios estimated from different datasets. The x-axes shows

estimates fromWilhelm et al. [20] and the y-axes estimates from Kim et al. [21].

(PDF)
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