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Introduction

Extracellular vesicles

Extracellular vesicles (EVs) are 50–300 nm-sized nanovesi-

cles secreted to the extracellular milieu by a vast variety 

of cell types to promote inter-cellular communication on 

cells that capture them. Such vesicle exchange is involved 

in many physio-pathological situations such as tumour pro-

gression, metastasis, immunomodulation and the spread-

ing of infections [1]. EVs have a heterogeneous nature, 

thus they are classified according to their origin into three 

groups: exosomes, shedding vesicles and apoptotic bod-

ies [2]. Exosomes are of endosomal origin. Cells release 

them by fusing multivesicular bodies (MVBs)-containing 

intraluminal vesicles (ILVs) with the plasma membrane. 

Shedding vesicles form directly at the plasma membrane. 

Finally, apoptotic bodies are vesicles that result from apop-

tosis and contain cellular waste [3, 4]. EVs are membrane-

covered vesicles that contain proteins, nucleic acids (DNA, 

mRNA and miRNAs), lipids and metabolites [5]. Proteins 

that are enriched in exosomes include tetraspanins (CD9, 

CD63, CD81), cytoskeleton components (Syntenin, Drebrin, 

ERMs), Endosomal Sorting Complexes Required for Trans-

port (ESCRT complex) (TSG101, ALIX), Heat-Shock pro-

teins (HSP70 and 90), Annexins, Rab proteins, among others 

[6]. Exosome membranes are also different from the mem-

brane of their producer cells, mainly enriched in ceramide, 

sphingolipids, glycerophospholipids and cholesterol [7, 8].

Almost every cell, prokaryotic and eukaryotic, can 

secrete EVs. These particles appear in many fluids, includ-

ing urine, amniotic fluid, blood, bile, semen, cerebrospinal 

fluid, breast milk, ascites and cell cultures (reviewed in 

[2]). Moreover, EVs contain specific external and inter-

nal markers, which vary depending on their origin. For 
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instance, CD24 is a marker for urine and amniotic fluid 

exosomes [9]. In addition, a single cell type can simultane-

ously secrete different populations of exosomes [10, 11]. 

For example, polarized cells can deliver different popula-

tions of exosomes through the apical and basolateral poles 

[12].

Regarding cargo sorting, EVs receive cargoes through 

both ESCRT-dependent and independent mechanisms [13, 

14]. The existence of heterogeneous MVBs populations 

becomes apparent when different components of endo-

somal trafficking or the ESCRT pathway are silenced or 

overexpressed, and when exosomal secretion is disturbed 

and not all exosomal markers are affected to the same 

extent [10, 15]. This enables distinguishing between global 

markers, e.g. TSG101, ALIX or HSP70; and cell-specific 

markers, e.g. class II Major Histocompatibility Complex 

(MHC-II) [3]. EV cargo also evolves with global changes 

to the whole cells. For example, oxidative stress modu-

lates MVB biogenesis, endocytosis and consequently EVs 

composition [12].

Post-translational modifications

Post-translational modifications (PTMs) include a collection 

of add-ons that provide variability to a defined set of pro-

teins that all cells use to enable most biological processes, 

adapting the functionality of those proteins by varying 

their interactive capability, resistance to degradation, etc. 

In this sense, PTMs exponentially increase the level of the 

proteome complexity [16]. These add-ons are molecules of 

diverse nature that attach to specific amino acids. Multiple 

amino acids can receive varied PTMs. The types of added 

molecule include chemical groups, carbohydrates, lipids, 

aminoacids, proteins and nucleotides. This process is con-

trolled by specialized enzymes responsible for the addition 

or removal of each modification [17]. PTMs and their regu-

lation constitute a cellular communication code to respond 

in a fast, versatile and accurate mode. The fulcrum of this 

review is that PTMs can direct exosome loading. Exosomes 

do not mirror the protein composition of their parental cells, 

and some proteins appear enriched in exosomes by selective 

mechanisms of protein cargo sorting controlled by specific 

PTMs [18]. The main PTMs are summarized in Table 1. 

These include addition of chemical groups (phosphorylation, 

acetylation, methylation, oxidation, hydroxylation, S-nitros-

ylation, sulfation or sulfonation, and others), carbohydrates 

[N-glycosylation, O-glycosylation, glycosylphosphati-

dylinositol (GPI)-anchoring], lipids (myristoylation, palmi-

toylation, prenylation) and nucleotides (ADP-rybosylation, 

PARylation). To make this large problem tractable, we focus 

in Ubiquitin and Ubiquitin-like modifiers (UBLs) as major 

controllers of EV protein loading.

Ubiquitination and Ubiquitin-like modifiers (UBLs)

This group of PTMs represents one of the most important 

regulatory systems of protein location, stability and func-

tion. The C-terminal (C-t) Gly of ubiquitin and most UBLs 

attaches covalently mainly to the ε-amino group of a Lys 

(K) residue of the substrate protein, forming an isopeptide 

bond. The conjugation of ubiquitin and UBLs requires the 

consecutive action of three specific enzymes: Ubl-activating 

enzymes (E1s), Ubl-conjugating enzymes (E2s) and Ubl-

protein ligases (E3s). Specific proteases reverse this process, 

removing ubiquitin from target proteins [19, 20]. Ubiquitin 

is a highly conserved, small protein of 8.5 kDa involved 

in diverse functions, such as protein degradation, endocytic 

trafficking, signal transduction and DNA repair, among oth-

ers. Mono-ubiquitination is the modification of a specific 

Lys in a target protein. The same protein can bear multiple 

mono-ubiquitinated residues simultaneously. Besides, the 

ubiquitin protein itself contains seven Lys (K6, 11, 27, 29, 

33, 48 and 63) in its sequence. These Lys can bind to other 

molecules of ubiquitin, generating seven types of polymeric 

ubiquitin chains, constituting the so called “ubiquitin code”. 

Moreover, M1 chains are polymeric chains formed by ubiq-

uitin N-terminal (N-t) Met. All these chains vary in length, 

ranging from two to more than ten residues. They can be 

homotypic if the same residue is modified during elongation 

as in M1, K11, 48 or 63-linked chains, or heterotypic if the 

same chain displays different linkages [21, 22]. Moreover, 

a single ubiquitin can be modified with multiple chains or 

UBLs (NEDD8, SUMO, ISG15), generating branched chains 

or mixed chains, respectively. Finally, ubiquitin can be acety-

lated or phosphorylated [21–25]. K48-linked ubiquitin was 

the first described poly-ubiquitin chain related to degrada-

tion [21, 26]. On the other hand, K63-linked chains relate to 

many biological processes, and K63-modified proteins play 

important roles in diverse cellular signalling pathways, e.g. 

Toll-like receptor (TLR) cascade and endosomal transport 

[21, 27–30]. However, the specific functions of other mixed, 

branched or heterogeneous chains remain almost unknown 

[28] (Table 1). The consensus is that proteins modified with 

K29 and K48-linked chains are proteasome-bound for deg-

radation. Nevertheless, M1, K6, K11, K27 and K63 chains 

and mono-ubiquitination regulate different cellular processes 

such as DNA repair, translation, inflammation and endocytic 

trafficking [21, 27–33] (Table 1).

UBLs share many features with ubiquitin, including 

their sequence and three-dimensional structure, which is a 

compact β-grasp fold. The main members of this group are 

SUMO1, SUMO2-3, SUMO4, ISG15, NEDD8, ATG12, 

FAT10, MNSFβ, UFM1, URM and UBL5 (reviewed in 

[34–38]). Neural precursor cells-Expressed Developmentally 

Down-regulated protein 8 (NEDD8) is the closest UBL to 

ubiquitin. NEDD8 mainly modifies proteins from the Cullin 
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Table 1  Post-translational modifications of proteins

Group Subgroup Molecule (donor)

Protein

residues

Average

mass (Da) Structure Adding Enzyme // Cleaving Enzyme Ref
p

u
or

g
l

aci
m

e
h

C
Phosphoryla�on Phosphate

(γ-phosphate ATP)

Ser/Thr     Tyr    

His   Asp, Arg*,Lys*

94.973 Kinases (phosphotransferases)//

Phosphatases

[155]

Acetyla�on Acetate

(Acetyl coenzyme A)

Lys(1,2)

N-t(1,2)

43.045 Acetyl-trasferases (ATs)//

Desacetylases (DACs)

[156,157]

N- Methyla�on Methyl group
(S-adenosylmethionine, SAM)

Arg        Lys 15.035 Methyltransferases // Demethylases [158-160]

Oxida�on Reac�ve Oxygen species (ROS) [161]

Oxida�on Anion superoxide Cys      Met 16.000 - // Superoxide dismutases [161]

Hydroxyla�on Hydroxyl group Pro      Asn

Lys       

17.007 Iron-containing monooxygenases  // Pro-

hydroxylase and oxygenases

[162]

Reac�ve Nitrogen species (RNS) [161]

Tyr-Nitra�on Nitro group (NO2)
(Peroxynitrites)

Tyr 46.006 - // Denitrase [163]

S-Nitrosyla�on Nitric oxide (NO) Cys(1,2) Met 30.006 Nytrosylases // Denitrosylases, S-

Nitroglutathione reductase (GSNOR)

[164]

Other oxida�ve compound: hydrogen peroxide (peroxida�on) and nitrate. [161]

Sulfa�on Sulphate 
(Phosphoadenosyl-

phosphosulfate)

Tyr 96.064 Tyrosylprotein sulfotransferases // Sulfatase [165]

Amida�on Amide C-tA 16.023 Pep�dylglysine α-amid monooxygenase (PAM) [166]

Formyla�on Formate Met         Lys 28.010 Methionyl-tRNAMet transformylase [167,168]

Succinyla�on Succinate

(Succinyl-coenzyme A)

Lys 116.073 - // Sirtuin 5 [169]

Malonyla�on Malonate

(Manolyl-coenzyme A)

Lys 102.047 - // Sirtuin 5 [170]

s
et

ar
d

y
h

o
br

a
C

N-Glycosyla�on Monosaccharides
(dolilchol pyrophosphate 

or lipid-linked 

oligosaccharide, LLO)

Asn (NxT/S)
liuliul

Olygosaccaryl transferases (OST), glucosyl

transferases // glucosidases I and II, 

mannosidases

[171-174]

O-Glycosyla�on Monosaccharides
(GlcNAc, GalNAc, fucose, 

glucose, mannose,…)

Ser             Thr

Trp# Tyr*

~ 200

GlcNAc

O-(monosaccharide)-transferase // Hydrolases [171,172,

174,175]

Others: C-mannossyla�on and glypia�on

GPI Glycosyl phospha�dyl-

inositol

C-t(1)
ujok

GPI transamidase // Phosphoinositol-specific 

phospholipase C

[176-178]

Li
p
id
s

S-Palmitoyla�on Palmi�c acid
(palmitoyl coenzyme A)

Cys

Ser       Thr

256.424 Palmitoyl acyl transferases (PATs) // 

Thioesterases

[179-181]

N-Myristoyla�on Myris�c acid

(myristoyl coenzyme A)

N-t Gly 228.371 N-myristoyltransferase (NMT) [179-181]

S-Prenyla�on

Farnesyla�on Farnesyl

(Farnesylpyrophosphate)

CysB  (CaaX box) 222.366 Proteinfarnesyl transferase (FT) [181,182]

Geranylgeranyla�on Geranylgeranyl

(Geranylgeranyl-pyroP)

290.483 Proteingeranyl-geranyl transferases (GGT I and 

II)

[181,182]

s
ni

e
t

o
r

P

Aminoacids

Polyglutamyla�on Glutamate (up to 20) Internal Glu > 147.13 Tubulin-tyrosine ligase-like (TTLL) protein family 

// Deglutamylase  

[183]

Polyglycyla�on Glycine (up to 34) Glu  > 75.067 Glycylase // Deglycylase [184,185]

Other: Citrullina�on (conversion of Arg to citrulline by PAD enzyme) [186,187]

Ubiqui�na�on

PDB: 1UBQ
MonoUb Ubiqui�n Lys          N-t 

Thr#, Cys#, Ser#

8565 E1 ac�va�ng enzyme,

E2 conjuga�ng enzyme, 

E3 ligase 

E4//

Deubiqui�nases

[21,22,14

7]

M1/K63 PolyUB Chain: C-t bond with N-t Met, Lys63 > 8565 [88,147]

K6/K29/K33 PolyUB Chain: C-t bond with Lys6/Lys29/

Lys33

> 8565

K11/K27/K48 PolyUB Chain: C-t bond with Lys11/Lys27/ 

Lys48 

> 8565

Ubiqui�n-like proteins (UBLs) [34-38]

SUMOyla�on SUMO1 Lys 11557 PDB: 1WM3 

(SUMO-2)
E1 (SAE), E2 (Ubc9), E3 // 

DeSUMOylases (SENP)

[188]

SUMO 2-3 10871

ISGyla�on ISG15 17888
PDB: 1Z2M

E1 (UbE1L), E2 (UbCH8), E3 // DeISGylase

(USP18)

[189]

Neddyla�on NEDD8 9072

PDB: 1NDD
E1 (NAE), E2 (UbCH12), E3 // Isopep�dase

[40,41]

Others UBLs: ATG12, FAT10, MNSFβ, UFM1, URM, UBL5, SUMO4 [34-38]

Modifica on of  Ub:   Phospho-Ub  and Acetyl-Ub                                     Polyubiqui n chains:        Branched chains    PolyUb mixed chains (modified by SUMO, NEDD8, ISG15) [21-25]

Nucleo

�des

ADP-ribosyla on 

Mono ADP-ribose
(NAD+)

Tyr        Asn      Lys

Arg       Cys   

559.316 ADP-rybosyltransferases (ARTs) // ADP-

ribosylhydrolases

[190,191]

Poly (PARyla�on) Glu      Asp Poly(ADP-ribose)polymerases (PARPs) // 

Poly (ADP-ribose) glycohydrolase (PARG)

[191]

* Found in prokaryotes                                 A Almost followed by a proline                                             (1) Reversible

#   Rare    B Cys - 5 aminoacids from the C-terminus                          (2) Irreversible

Nucleophile or electrophile site          

Structures obtained from ChemSpider Search and share chemistry (Royal Society of Chemistry) and Protein Data Bank (PDB)

≥ 2372.1

~ 1900
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RING Ligases (CRLs) superfamily. RING E3 Ligases trans-

fer ubiquitin directly from E2 enzymes to the substrate pro-

tein forming a complex scaffolding by Cullin. CRLs play 

an important role in protein ubiquitination for proteasomal 

degradation under the control of NEDD8 [39, 40]. NEDD8 

also forms chains through one of its six Lys [41]. Small 

ubiquitin-related modifier (SUMO) is an UBL involved in 

nuclear transport and organization, DNA repair, transcrip-

tion, chromatin remodelling and ribosome biogenesis. It is 

an essential modification to maintain cell homeostasis in 

stress responses and has become relevant in many diseases 

[42]. Interferon-stimulated gene 15 (ISG15) is induced by 

type I interferons (IFN-I), exposure to bacterial lipopoly-

saccharide (LPS), viral double-stranded RNA (dsRNA), 

ischemia and aging [43]. It is an essential part of the innate 

immune response to fight against bacterial and virus infec-

tions [44]. Besides, ISG15 is also overrepresented in various 

types of tumours [45]. Interestingly, ISG15 can also function 

as a free unconjugated form with an immunomodulatory 

role [46].

Exploring the sorting of modified proteins 

into EVs

Sorting mechanisms to MVBs

Exosomes originate in the endocytic pathway, whereas shed-

ding vesicles form from direct budding of plasma membrane. 

Therefore, the mechanisms involved in protein secretion are 

different [18]. Here, we will discuss how PTMs could be 

involved in the sorting of proteins into EVs.

ESCRT-dependent and independent sorting mechanisms 

into ILVs

Presently, mechanisms of protein incorporation into the ILVs 

of MVBs for exosomal secretion or lysosomal degradation 

remain unclear. One key part of the machinery that con-

trols the incorporation of ubiquitinated proteins into ILVs 

is the ESCRT complex [47, 48]. This complex includes four 

sub-complexes that sequentially recognize protein cargos 

and include them into ILVs. ESCRT-0 comprises HRS and 

STAM1/2 subunits, which are proteins with several distinct 

ubiquitin-binding domains (UBDs) that form a cargo-rec-

ognition module. HRS recognizes ubiquitinated proteins 

through a FYVE domain necessary to interact with phos-

phatidyl inositol 3-phosphate (PI3-P) molecules of endoso-

mal membranes. HRS also displays PSAP domains that con-

nect with the ESCRT-I subunit TSG101, which also binds 

ubiquitinated proteins. Moreover, the PSAP domains of 

small integral membrane protein of the lysosome/late endo-

some (SIMPLE) also bind TSG101. SIMPLE has a PPxY 

motif that interacts with NEDD4 to be ubiquitinated, and 

di-Leu and YKRL motives, which are signatures of endo-

cytic functions [14, 49]. Mutations in these motifs impair 

the secretion of SIMPLE to exosomes, altering MVBs bio-

genesis [49]. Moreover, Hrs conditional knock-out (KO) in 

dendritic cells (DC) significantly reduces exosome release, 

pointing to an important role for ESCRT components in exo-

some secretion [50].

Deubiquitination is mandatory prior to packaging cargo 

into ILVs. To remove ubiquitin, ESCRT-III recruits deu-

biquitinating enzymes. ESCRT-III subunits CHMP2 A, B, 

CHMP3, CHMP4 A, B, C and CHMP6 bind to lipid mem-

branes through their positively charged N-t domains, allow-

ing high order oligomerization that results in structures over 

600 kDa. Yeast ESCRT-III Snf7 (CHMP4 in humans), is 

not only implicated in neck-shaped oligomeric assembly 

for vesicle budding, but also in its scission. In this regard, 

the necessary energy to dissociate budding vesicles from 

membrane is provided by the ATPase activity of the Vacu-

olar protein 4 (VPS4) Complex (SKD1, CHMP5, LIP5) 

(reviewed in [47, 48]).

Ubiquitination of cargo proteins is necessary for rec-

ognition by ESCRT-0 components, whereas deubiquitina-

tion is a crucial step for sorting them into ILVs. However, 

whether ubiquitination is mandatory for driving proteins into 

exosomes is currently controversial. The sorting of some 

proteins seems independent of ubiquitination, e.g. MHCII 

loading into DC exosomes after T cell activation, which is 

associated to tetraspanin-enriched microdomains (TEMs) 

formed by CD9 [13, 51]. Furthermore, CD81 is important 

for the sorting of its associated proteins into exosomes [42]. 

Other studies support that the ubiquitination drives MHCII-

containing MVBs to degradation upon fusion with the lyso-

somal system [52] (Fig. 1).

In addition, ESCRT components can be ubiquitinated 

themselves, for example HRS. HRS mono-ubiquitination 

prevents binding of ubiquitinated cargo, regulating the 

flow of specific proteins into MVBs [47]. The E3 ubiquitin 

ligase implicated in ubiquitin turnover can thus control the 

destiny of MVBs. For example, the activity of Mahogunin 

on TSG101 disrupts MVB lysosomal trafficking, whereas 

another E3 ubiquitin ligase called Tal abrogates MVB bio-

genesis [53, 54]. Associated molecule with the SH3 domain 

of STAM (AMSH) ubiquitin isopeptidase and ubiquitin iso-

peptidase Y (UBPY) removes mono-ubiquitin from HRS to 

recycle ESCRT components, preventing their degradation. 

Moreover, AMSH deubiquitinates cargoes modified with 

K63-linked chains, whereas UBPY recognizes both K63 and 

K48-linked chains. The action of these enzymes indicated 

a deubiquitination step that is required to sort cargoes into 

ILVs, and hence, into exosomes [55, 56].

However, mono and poly-ubiquitinated proteins can 

be found in exosomes, but not associated to the exosomal 
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membrane [57]. Cargo deubiquitination before its packag-

ing into ILVs seems essential, but how some ubiquitinated 

proteins end up in exosomes remains controversial. These 

contradictory results suggest that ubiquitinated proteins can 

evade deubiquitination; or finish up in exosomes through 

ESCRT-independent mechanisms. Such mechanisms do 

exist. In these, sorting depends on tetraspanins, sphingolip-

ids and ceramide [58–60]. For example, LYPX(n)L motifs in 

the protein ALIX are implicated in its interaction with CD63 

tetraspanin, and together with transmembrane proteins syn-

decans and syntenin induce budding and membrane abscis-

sion of ILVs [61]. In fact, an extensive study of ESCRT com-

ponents downregulation revealed that of 23 ESCRT proteins 

studied, not all of them interfered with exosome secretion in 

the same way [11]. When HRS, TSG101, VPS22 and VPS24 

are simultaneously silenced, MVBs are still produced and 

only the formation of Epidermal Growth Factor (EGF)+-

MVBs is affected, highlighting a possible mechanism of 

substrate selectivity [62]. Proteolipid (PLP)+-exosomes 

localize together with flotillin and GPI in endosomal com-

partments, but not with HRS. These vesicles were enriched 

in cholesterol and ceramide, and their secretion depended 

on ceramide production by the activity of sphingomyelinase 

2 (nSMase2) [63]. The enzyme sphingomyelin synthase 

SMS2 regulates the secretion of amyloid-β (Aβ)-peptide+-

exosomes. In addition, the transfer of  CD63+-exosomes 

from T cells to APCs during immune synapse is ceramide-

dependent [59, 60]. This is likely related to the fact that 

ceramide creates spontaneous curvature of endosomal 

membranes, triggering ILVs budding. Besides, other lipids 

metabolites such as sphingosine-1-phosphate (S1P), dia-

cylglycerol (DAG), cholesterol, phosphatidyl choline, or 

Endocytosis

Endosome

Degradative MVB

Degradation

EVs
EV

Lysosome

Exocytic MVB

EGFR

Exocytosis

Ubiquitinated MHC-II

Ubiquitinated LMP2A

MHC-IILMP2A
Key

Phosphotylated EGFR

Ubiquitination

SUMOylation

Acetylation

ISGylation

Oxidation

Phosphorylation

SUMOylated hnRNPA2B1 + miRNA

ISGylated TSG101 

Phosphorylated AKT

Oxidated and phosphorylated γ-synuclein

SUMOylated α-synuclein

Acetylated GRP78

Ubiquitinated HSP70

Citrullinated vimentin

Citrullination

ILVs

Fig. 1  Schematic representation of some PTMs found in EVs. Endo-

cytosis of plasma membrane receptors (MHC-II, LMP2A and EGFR) 

transfer them into the endocytic pathway. Depending on the added 

PTMs, these receptors can have different fates. Ubiquitinated-MHC-II 

is preferentially directed to degradative MVBs for degradation in lys-

osomes, whereas, Ub-LMP2A and ph-EGFR are usually incorporated 

into ILVs of exocytic MVBs, which are fused with plasma mem-

brane to be secreted as EVs [52, 77, 116]. In the case of acetylated-

GRP78 and ISGylated-TSG101, these PTMs act as cellular retention 

tags, promoting their degradation in lysosomes [128, 129]. However, 

Ub-HSP70, SUMOylated-hnRNPA2B1, SUMOylated-α-synuclein, 

ph-AKT, oxidized and phosphorylated γ-synuclein and citrullinated 

vimentin are loaded into ILVs and driven to EVs [80, 104, 106, 108, 

118, 154]. Besides, unmodified TSG101 and GRP78 proteins can also 

be present in EVs [128, 129]. Figure key is shown at the right side. 

The images in the figures are not scaled
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lysobisphosphatidic acid (LBPA) are involved in the MVB 

biogenesis and exosome secretion, although how protein 

cargoes are selectively transported into this kind of vesicles 

remains unknown [64–71].

Ubiquitinated proteins in EVs

Ubiquitin was first observed in human urine exosomes 

showing a wide range of molecular weight complexes by 

Western blot, which suggested the presence of ubiquitinated 

proteins in exosomes [72]. Specific antibodies for ubiquitin 

and poly-ubiquitin chains allowed to identify mono-, oligo- 

and poly-ubiquitinated proteins in exosomes [57]. Various 

studies and proteomic analysis identified specific ubiquit-

inated proteins (reviewed in [73]) (Table 2 and Fig. 1). For 

example, myeloid-derived suppressor cells (MDSC) secrete 

exosomes enriched in ubiquitinated proteins, including 

endosomal trafficking proteins and histones [74]. Moreover, 

high molecular weight complexes of non-classical human 

leukocyte antigen-G (HLA-G) are ubiquitinated, but not 

glycosylated, in exosomes obtained from ascitic and pleural 

exudates of patients [75]. Shedding vesicles also contain 

modified proteins such as arrestin domain-containing protein 

1 (ARRDC1), which is ubiquitinated by the E3 ubiquitin 

ligase WW domain-containing protein 2 (WWP2). An arres-

tin domain in ARRDC1 anchors it to the plasma membrane, 

enabling its interaction with the PSAP domain of TSG101 

to generate direct membrane budding [76]. In the case of 

ubiquitinated Epstein–Bar virus latent membrane protein 2A 

(LMP2A), exosome sorting depends on cholesterol, whereas 

the phosphorylated form was not detected in exosomes [77] 

(Table 2 and Fig. 1).

Phosphatase and tensin homolog deleted on chromosome 

10 (PTEN) is ubiquitinated on Lys13 by the association and 

regulation of Nedd4 family-interacting protein 1 (Ndfip1), 

an adaptor protein of the Nedd4 family E3 ubiquitin ligases, 

appearing in this form in exosomes, although modified-

Ndfip1 does not. However, its presence is necessary for the 

import of Nedd4, Nedd4-2 and ITCH to exosomes [14, 78]. 

Alanine replacement on di-Leu (LL) and YKRL motifs of 

SIMPLE reduces it secretion into exosomes, as well as a 

mutation on its PTAP motif, which controls SIMPLE bind-

ing to TSG101 for incorporation into ILVs. However, point 

mutations of the two PPxY motifs of SIMPLE, a binding 

domain for Nedd4 type E3 ubiquitin ligases, such as Nedd4 

and ITCH, increase exosomal incorporation; hence SIM-

PLE ubiquitination does not direct its own sorting [49]. In 

other cases, such as Fas Ligand (FasL), ubiquitination of 

the proline-rich domain (PRD)-flanking Lys and phospho-

rylation of multiple tyrosines promote its internalization in 

MVBs and its secretion into EVs [79]. The COP9 signalo-

some (CSN)-associated protein CSN5 mediates ubiquitin 

isopeptidase activity. Deletion of its JAB1/MPN/Mov34 

metalloenzyme (JAMM) domain increases the sorting of 

ubiquitinated HSP70 and HIV Gag proteins into exosomes; 

whereas a mutation of its associated deubiquitin activity 

domain promotes the enrichment of non-modified proteins in 

EVs [80]. These results highlight that CSN5 participates in 

ubiquitin-dependent and independent protein vectorization 

into exosomes [80] (Table 2). MARCH1, an E3 ubiquitin 

ligase for MHCII and CD86, is incorporated into exosomes 

dependent on its C-t tyrosin-based motifs [81]. This endo-

some sorting motif is also important for sorting of transfer-

rin receptor into exosomes due to its interaction with ALIX 

[82]. Nevertheless, whether MARCH1 is ubiquitinated or 

not in exosomes remains unclear, although this region is 

important for MARCH1 auto-ubiquitination [83].

Human urine exosomes contain approximately 15% of 

ubiquitinated proteins. Of these, 21% are transmembrane 

proteins, underscoring that deubiquitination is not manda-

tory for the incorporation of protein cargo into MVBs and 

exosomes [84]. Although, ubiquitination-specific motifs 

remain unidentified, this PTM has preference for basic 

Table 2  Post-translational modified proteins found in EVs

Target protein PTM Residue References 

CryAB Phosphoryla�on Ser-59/Ser-45 [112] 

Tau Phosphoryla�on Hyperphosphorylated Tau [110] 

 Phosphoryla�on Thr-181/Ser-396 [117] 

 Phosphoryla�on - [113] 

EGFR Phosphoryla�on Tyr-1068 [116] 

IRS-1 Phosphoryla�on Ser-312 and Pan-Tyr [111] 

PDK1* Phosphoryla�on Ser-241 [108] 

AKT* Phosphoryla�on Thr-308 [108] 

SRC* Phosphoryla�on Tyr-416 [108] 

ELK1 * Phosphoryla�on Ser-383 [108] 

ERK 1/2* Phosphoryla�on Thr-202/Tyr-204 [108] 

AMPKα1 * Phosphoryla�on Ser-485 [108] 

Acetyl-CoA carboxylase* Phosphoryla�on Ser-79 [108] 

NCC Phosphoryla�on Thr-46, Thr-50 and Thr-55 [114] 

Aquaporin 2* Phosphoryla�on Ser-256 [101] 

GPRC5C* Phosphoryla�on Thr-435/Ser-395/Tyr-426 [101] 

CHMP2B* Phosphoryla�on Ser-199 [101] 

Fas Ligand  Phosphoryla�on Tyr-7/Tyr-9/Tyr-13 [79] 

 Ubiqui�na�on   Mono- [79] 

Annexin A2 Phosphoryla�on Tyr-23 [109] 

γ-synuclein Phosphoryla�on - [118] 

 Oxida�on Met-38/Tyr-39 [118] 

TyA* Myristoyla�on  MGCINSKRKD N-t tag [124] 

CD55  GPI-anchor - [125] 

Vimen�n* Citrullina�on - [154] 

LGALS3BP$ Glycosyla�on  - [120] 

Histone H1.2* Ubiqui�na�on - [74] 

HLA-G complex Ubiqui�na�on  - [75] 

ARRDC1 Ubiqui�na�on - [76] 

LMP2A Ubiqui�na�on - [77] 

PTEN Ubiqui�na�on  Lys-13 [78] 

HSP70 Ubiqui�na�on - [80] 

SIMPLE Ubiqui�na�on - [49] 

Aquaporin-1* Ubiqui�na�on Mono- and Poly- [84] 

Annexin A1* Ubiqui�na�on Poly- [84] 

Plas�n-3 isoform 1* Ubiqui�na�on Mul�mono- at Lys-11 and 

Lys-18 

[84] 

HspX# Ubiqui�na�on - [136] 

GroES# Ubiqui�na�on - [136] 

GFP Ubiqui�na�on Ubiqui�n C-t tag [137] 

ATG85B- ESAT6 Ubiqui�na�on Ubiqui�n C-t tag [137] 

nHer2 Ubiqui�na�on Ubiqui�n C-t tag [137] 

GFP SUMOyla�on SUMO-1/SUMO-2 C-t tag [106] 

hnRNPA2B1 SUMOyla�on  - [104] 

α-synuclein  SUMOyla�on  - [106] 

* More proteins iden�fied in a high-throughput screening approach, proteomics [74,84,101,108,120].   

# Mycobacterial proteins detected in exosomes from human and mouse cell lines.  

$ More glycosylated proteins iden�fied by lec�n blo�ng, NP-HPLC analysis and mass spectrometry [120].  
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amino acids and positively charged residues upstream of the 

ubiquitination site, hydrophobic residues adjacent to it and 

additional Lys 6 amino acids upstream [84]. Besides, poly-

ubiquitin chains appear following this order of enrichment: 

K63 > K48 > K11 > K6 > K29 > K33 > K27. This shows 

that K63, K48 and K11-linked chains are the most repre-

sentative poly-ubiquitin topologies in exosomes [84]. Fur-

thermore, platelet exosomes contain poly-ubiquitin chains 

and in higher numbers compared to platelets microparticles 

[85] (Table 2).

Deciphering the ubiquitin code in EVs

The ubiquitin code comprises the combination of mono-, 

poly- and branched-ubiquitin chains and even other PTMs, 

which allow a wide range of possibilities for the regulation 

of proteins. K48-linked chains require at least four ubiquitin 

units to attach to the target protein to enable recognition by 

the 26S proteasome [86, 87]. In particular, the proteasome 

subunit S5a/Rpn10 contains an ubiquitin-interacting motif 

(UIM) in the hydrophobic patch of its C-t region, which ena-

bles recognition of this specific poly-ubiquitin chain. Inside 

the proteasome, ubiquitin molecules are removed from target 

proteins for recycling, whereas the rest of the proteins are 

cleaved into small peptides (3–25 amino acids of length). 

There is some evidence suggesting that other chains, e.g. 

M1, K6, K11, K27 and K29 could be involved in proteaso-

mal degradation of target proteins [21, 30, 33, 86]. More-

over, a new conjugation factor, named E4, participates in 

the generation of efficient poly-ubiquitinated-linked chains 

under stress conditions to direct modified proteins to the 

proteasome, demonstrating the existence of an E4-dependent 

multi-ubiquitination pathway for degradation [88] (Fig. 2). 

K63-linked chains do not end up in the proteasome as they 

bind specifically to the ESCRT-0 complex, specifically to 

UIMs found in HRS and STAM1 components [27, 89]. 

These interactions condense proteins modified with K63-

linked poly-ubiquitin chains into endosomes, promoting 

their import into ILVs of MVBs and possibly, their subse-

quent delivery into exosomes [90]. In fact, K63-linked chain 

is the most representative ubiquitin topology found in EVs 

[84] (Fig. 2).

How ubiquitin-binding proteins detect unequivocally a 

specific conformation of poly-ubiquitin chains may explain 

the selective targeting of a given protein within the cell. For 

example, M1 and K63-linked chains display a fairly linear or 

open space conformation, whereas K6, K11, and K48-linked 

chains create closed structures [21, 33, 91, 92] (Table 1). 

Open-conformation chains only limitation is that imposed 

by isopeptide bonds that connect them [21, 33]. However, 

closed conformation chains have multiple steric hindrances, 

which alters ubiquitin space structure by exposing and con-

cealing different parts of ubiquitin residues, creating diverse 

topologies intrinsic to a specific type of linkage [21, 91]. 

In the cell, specific proteins bind to a unique type of ubiq-

uitin linkage topology [91]. Because distances between 

ubiquitin units within a chain are different in K63 or K48-

linked chains, UBDs of cellular machinery display small 

spaces between UIMs to specifically recognize K48-chains, 

whereas larger spacers are used for K63 binding [91, 92]. 

The use of a variety of UBDs structures not only allows dis-

criminating between open and close conformations, it also 

enables distinguishing among different open structures such 

as K63- and M1-linked chains [91, 92]. All these possibili-

ties of ubiquitin topologies and UBDs compose a fine and 

selective language among ubiquitinated-target proteins and 

ubiquitin-interacting proteins.

In a similar way, depending on the different distances 

between UIMs inside UBDs, certain E3-ubiquitin ligases 

elongate specific types of K-linked chains associated to 

target proteins. Besides, the wide variety of E3-ubiquitin 

ligases described in eukaryotic cells and their tissue restric-

tions amplify the code of ubiquitin chains. For example, the 

Cbl family of E3-ubiquitin ligases are highly expressed in 

hematopoietic cells and are involved in the downregulation 

of many signalling pathways controlling T and B cell recep-

tors and integrins [93, 94]. However, MARCH1 is repre-

sented in antigen presenting cells (APCs), modifying class 

II MHC molecules, downregulating their expression in the 

plasma membrane, whereas MARCH-IV regulates class I 

MHC molecules using a similar mechanism [95, 96]. In this 

regard, a possible explanation regarding how K48-linked 

poly-ubiquitin chains evade proteasomal degradation and 

travel into exosome involves the collaboration of certain 

ubiquitin-binding proteins located in endosomal pathway 

(Fig. 2).

Branched poly-ubiquitin chains display the particular sig-

nalling properties of their K48 or K63 components, although 

they are recognized by multiple linkage-specific enzymes 

[97]. This underscores the predominance of certain chain 

topologies within a mixed-linkage poly-ubiquitin chain. The 

sorting of ubiquitin chains other than K63-linked requires 

mechanisms different from those dependent on ESCRT 

components. The incorporation of SUMO-2/3 following 

ubiquitination creates heterologous SUMO-2/3-Ubiquitin 

chains responsible for enhancing the degradation of IκBα 

by the proteasome after the activation of the Tumour Necro-

sis α (TNFα) signalling pathway [23]. In stress situations, 

NEDD8 can also modify ubiquitin Lys48 [25]. A recent 

study described how ISGylation of ubiquitin Lys29 nega-

tively controls the turnover of ubiquitinated proteins [24].

Interestingly, ubiquitin can be phosphorylated on Ser65 

by PTEN induced putative kinase 1 (PINK1), enhancing 

its interaction with the mitochondrial E3 ubiquitin ligase 

parkin [98]. This phosphorylation-dependent mechanism 

increases the enzymatic activity of parkin, decreasing the 
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mitochondrial membrane potential [98]. Moreover, ubiquitin 

becomes acetylated in Lys6 and Lys48 without affecting sub-

strate mono-ubiquitination of histone H2B [99]. However, 

both acetylations inhibit K11, K48 and K63-linked poly-

ubiquitin chain elongation, providing a novel regulatory step 

of control of mono- and poly-ubiquitination [99].

Because many PTMs can modify proteins in the same 

residue, competition and crosstalk between different PTMs 

depending on different cell factors can change protein func-

tion and localization [100]. In summary, deciphering the 

sophisticated ubiquitin code is necessary to unveil specific 

functions of every chain topology in the selective import of 

proteins into exosomes.

Other PTMs in EVs

Proteomic studies have contributed extensively to define 

the protein composition of EVs [72, 84, 101–103]. Het-

erogeneous nuclear ribonucleoprotein A2/B1 (hnRN-

PA2B1) is present in exosomes in its sumoylated form, 

and that is necessary for the sorting of EXOmotif-con-

taining microRNAs into exosomes [104]. On the other 

hand, a study suggested that SUMO-1 could modulate 

the toxicity of α-synuclein in neurodegenerative disor-

ders such as Parkinson’s disease (PD) [105]. Besides, EVs 

can contribute to disseminate neurotoxic proteins, which 

favours the development of PD pathogenesis. Hence, 

Endocytosis Endosome

Degradative MVB

Degradation

Lysosome

Exocytic MVB

EV
EVs

MHC-II

Exocytosis

Mitochondria

Mitophagy
Degradation

Proteasome

Damaged 

mitochondria

Translocation

DNA repair

Signalling 

pathways

ILVs

Proteasome

Endocytosis

Degradation

K11,48,63-proteins

Ub-MHC-I

Nucleus

Gene transcription

ILVs

Key

MHC-II

MHC-I (HLA-G)

K-6

K-11

K-48

M1

K-29

K-33

K-63

Parkin (E3-Ub-ligase)

Target protein

MARCH-I (E3-Ub-ligase)

MARCH-IV (E3-Ub-ligase)

K-27

NF-κB (p65/p50)

ESCRT-0 complex (HRS/STAM1)

IκBα

Cbl (E3-Ub-ligase)

Ubiquitination

TCR (T Cell Receptor)

Receptor (TNFR or TLR)

Ligand (TNF-α or TLR agonist)

Peptide

Signalling molecules

Degradation

Fig. 2  The ubiquitin code in cellular functions. MHC-I and II and 

TCR are preferentially retained in endosomes by the action of spe-

cific E3-Ub-ligases MARCH-IV, I and Cbl, respectively. Whereas 

Ub-MHC-II is mainly degraded by lysosomes, Ub-MHC-I (HLA-

G) can be sorted into EVs. Signalling proteins downstream of TCR, 

TNFR or TLR can be modified by K63-linked chains to mediate sig-

nal transduction or by K48-linked ones, such as IκBα to be degraded 

in the proteasome. M1-linked chain is added to NF-κB to allow its 

nuclear translocation to start gene transcription. K27-linked chains 

are related with DNA repair processes, while K6, K11 and K63 

chains can modify mitochondrial proteins to initiate mitophagy of 

damaged mitochondria by the E3-Ub-ligase Parkin. Proteins with 

K11 and K48-chains are principally transported to the proteasome to 

be degraded. Most of the proteins modified with K63-linked chains 

interact with ESCRT-0 and are vectorised in ILVs of exocytic MVBs 

to be delivered into EVs. Although Ub-MHC-II is mainly degraded, 

unmodified MHC-II and Ub-MHC-I (HLA-G) are usually incorpo-

rated in exosome membrane. Besides, K11, K48 and K63-linked 

chains can be found in EVs. Figure key is shown at the right side. The 

images in the figures are not scaled
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sumoylated α-synuclein is incorporated into exosomes 

by a mechanism dependent on the ESCRT complex and 

phospholipids [106] (Table 2 and Fig. 1).

Nevertheless, ubiquitin and UBLs are not the only 

PTMs detected in EVs [73, 107]. For example, many 

phosphorylated proteins appear in exosomes, including 

the calcium-dependent phospholipid-binding protein 

Annexin A2, which is enriched in cholesterol-rich lipid 

raft micro-domains of exosome membranes [101, 108, 

109]. The localization of this protein depends on the 

phosphorylation of Tyr23, which prevents its endosomal 

degradation and allows its incorporation into exosomal 

membranes [109]. Other phosphorylated proteins found 

in exosomes include Tau, type 1 insulin receptor substrate 

(IRS-1), Crystalline alphaB (CryAB), Epidermal Growth 

Factor Receptor (EGFR),  Na+-Cl− co-transporter (NCC), 

Aquaporin 2, FasL and proteins implicated in cellular pro-

cesses such as apoptosis, survival and metabolism [79, 

101, 108, 110–117] (Table 2 and Fig. 1).

γ-Synuclein acquires features of prion-like proteins by 

oxidation, which triggers the aggregation of other pro-

teins, e.g. α-synuclein [118]. The most frequent oxidized 

residues of γ-synuclein are Met38 and Tyr39. Oxidized 

γ-synuclein is released into exosomes and incorporated 

in neighbouring cells, amplifying the toxic protein-

aggregation cascade that finally causes a degenerative 

synucleinopathy [118]. Besides, other oxidized proteins 

appear in EVs as described in other studies (reviewed 

in [107]) (Table 2 and Fig. 1). Moreover, several stud-

ies have revealed the presence of glycosylated proteins 

in EVs (reviewed in [73, 107]). Notably, EVs contain 

mainly mannose or sialic acid enriched-glycans and 

N-linked glycoproteins. In particular, exosomes contain 

large amounts of the sialoglycoprotein galectin-3-binding 

protein (LGALS3BP) [119–122] (Table 2).

Additionally, plasma membrane anchors induce vesicle 

budding directly from the plasma membrane of highly 

oligomeric proteins, such as the HIV Gag protein and 

the yeast cytoplasmic protein Tya [123, 124]. An evalua-

tion of different membrane anchors for Tya demonstrated 

that myristoylation was the most effective enhancer of the 

formation of shedding vesicles, whereas other types such 

as, phosphatidylinositol-(4,5)-bisphosphate and phos-

phatidylinositol-(3,4,5)-trisphosphate-binding domains, 

prenylation/palmitoylation tag or the type-1 plasma mem-

brane protein CD43 did not cause this effect [124]. This 

illustrates the role of protein anchors for the induction of 

shedding vesicles, which is similar to retrovirus budding 

[124] (Table 2). Besides, CD55 or decay-accelerating 

factor (DAF) anchored to a GPI molecules is selectively 

secreted to EVs [125].

The role of UBL and other PTMs in the sorting of proteins 

to EVs

The function of PTMs such as oxidation, phosphoryla-

tion, glycosylation and citrullination in the incorporation 

of proteins into EVs, has been recently reviewed in [107]. 

Briefly, these PTMs can regulate EVs release and uptake, 

acting as a disposal mechanism for cellular harmful com-

ponents or as a repair mechanism in physio-pathological 

conditions [107]. Similar to ubiquitin, the UBL SUMO 

also plays an important role in protein sorting to EVs. 

For example, SUMOylation is necessary for α-synuclein 

sorting into exosomes in an ESCRT-dependent manner 

[106] (Table 2). A recent study showed that other UBL 

called autophagy-related protein 12 (ATG12) and its E3 

ligase ATG3 interact with ALIX, regulating diverse func-

tions carried out by ALIX, for example, viral budding 

and MVBs biogenesis [126]. This observation suggests 

that ATG12 could also participate in exosome biogenesis. 

Besides, isoprenylation and palmitoylation may also par-

ticipate in protein delivery into exosomes, as in the case of 

the CINCCKVL palmitoylation and isoprenylation motif, 

which is present in human Ras Homolog Family Mem-

ber B (RhoB), determines its incorporation into ILVs in a 

cholesterol-dependent way and consequently in exosomes 

[127]. Furthermore, the expression of reporter proteins 

containing this palmitoylation/isoprenylation motif is 

enough to define a late-endosomal fate for these proteins 

[127].

On the contrary, ISG15, which is recognized as an 

immune alarm signal by cells, has an opposite role in 

protein sorting to exosomes. A recent study showed that 

ISGylation tags proteins for degradation, thereby avoid-

ing exosome secretion and spreading [43, 128] (Fig. 1). 

Besides, acetylation can abrogate the sorting of pro-

teins into exosomes. High glucose-regulated protein 78 

(GRP78) is expressed and secreted into exosomes by 

colon cancer cells to prepare the tumor microenvironment 

[129]. Its secretion in exosomes is impaired by chemical 

inhibitors of histone deacetylases (HDACs) and silenc-

ing of HDAC6 protein, which causes the dissociation of 

GRP78 from HDAC6 and promotes GRP78 aggregation 

and interaction with VPS34 complex [129]. The use of 

an acetylation mimetic mutant of GRP78 (K633Q) also 

impairs exosome sorting and blocks tumour cell growth 

in vivo [129] (Fig. 1).

On the other side, the role of the other PTMs, gathered 

in Table 1, remains largely unexplored. This could suggest 

that a role for these PTMs is unlikely, or that they can work 

as a cellular retaining signal for some proteins, directing 

them to other cellular processes such as the autophagy-

lysosome degradation pathway.
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Targeting post-translationally modified proteins 

into EVs for biomedical applications

Deciphering the role of PTMs for protein sorting into 

exosomes could be useful for medical purposes, such as 

association of certain modified proteins with concrete 

physio-pathological situations, highlighting PTMs of exo-

somal proteins as biomarkers for prognosis, diagnosis and 

treatment of diseases.

PTM marks in EVs as biomarkers for diagnosis 

and prognosis

EVs have potential as non-invasive biomarkers for several 

pathological conditions, particularly due to their accessibil-

ity from biological fluids, facilitating the detection of certain 

pathologies [130–133]. A specific PTM of a protein in EVs 

in particular diseases could constitute a potential biomarker 

(Fig. 3). For example, the secretion of modified Tau pro-

tein aggravates development and progression of neurode-

generative processes. The majority of modified (phospho-

Thr-181) Tau detected in human cerebrospinal fluid samples 

is secreted via exosomes, constituting a well-characterized 

Fig. 3  Targeting post-translationally modified proteins into EVs 

for biomedical applications. The process for exosome engineering 

to use as a vaccine or treatment comprises various steps: (1) EVs 

can be isolated from different cell cultures, either cell lines or cells 

obtained from human biopsies. (2) These cells can be transfected or 

transduced with specific constructs coding for engineered therapeu-

tic proteins, that will be targeted to EVs by the addition of a specific 

PTM motif or tag. Therapeutic proteins include: pathogen antigens 

for the generation of vaccines; antibodies or nanoantibodies for acti-

vation or blocking of signalling pathways, or any kind of protein with 

a therapeutic potential. Besides, the expression of LAMP2b fused 

to a tissue-delivery targeting-peptide defines a specific fate for these 

EVs once in the blood stream. (3) The EVs can be isolated by diverse 

procedures. (4) Additionally, an extra step can be performed to incor-

porate inside EVs therapeutic small interference RNAs by electropo-

ration. (5, 6) Finally, EVs preparations, once standardized and quan-

tified, could be administered intravenously for disease treatment or 

vaccination. On the other hand, EVs obtained from blood samples (or 

other fluids) can be analysed to identify certain condition biomarkers 

(post-translational modified protein) for disease prognosis and diag-

nosis. The images in the figures are not scaled
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biomarker for Alzheimer’s disease (AD) [115]. In fact, ph-

Tau in combination with Aβ activate diverse signalling 

pathways, increasing the production of hyperphosphorylated 

Tau oligomers, which are then secreted by exosomes within 

the brain, accelerating neurodegeneration [110]. Moreover, 

some AD-related proteins such as ph-Tau, Aβ1-42, neu-

rogranin (NRGN) and the repressor element 1-silencing 

transcription factor (REST) contained in neuronal-derived 

exosomes appear in plasma [117]. The transference of these 

proteins contained in exosomes isolated from AD patients’ 

plasma into the central nervous system of a normal mouse 

causes Tau aggregation and induces AD-like neuropathology 

[117]. Other studies carried out with Tau-transgenic mice 

(rTg4510) revealed a high grade of pathology and higher 

accumulation of Tau in their exosomes compared to control 

ones [113].

On the other hand, several phosphorylations of IRS-1 in 

different residues associate to insulin resistance syndrome 

in diabetes mellitus as well as to degenerative diseases such 

as AD and fronto-temporal dementia [111]. Exosomes 

released by retinal pigment epithelial (RPE) cells into vitre-

ous humour contain a vast subset of phosphorylated proteins 

in age-related macular degeneration (AMD) patients [108]. 

Oxidative stressed RPE cells modify the phosphorylation 

profile of exosomal proteins compared to control cells, thus 

their detection could represent a source of biomarkers for 

diagnosis and prognosis of eye-degenerative diseases [108].

Besides, detection of modified exosomal proteins bears 

potential as a biomarker of treatment progression. For 

instance, cetuximab works as a therapeutic antibody to block 

EGFR activation in tumour cells [116]. EVs coming from 

cetuximab-treated cells represent well their originating cells, 

containing lower level of phosphorylated EGFR after treat-

ment [116]. Monitoring total and phosphorylated forms of 

EGFR present in EVs from patient blood could reflect the 

efficacy of anti-tumour therapy [116].

Moreover, detection of some exosomal biomarkers can 

reveal the existence of side effects during treatment. For 

example, a fraction of kidney transplant patients treated 

with tacrolimus as part of the immunosuppressive therapy 

developed hypertension 6 months after surgery [114]. Uri-

nary exosomes of hypertensive patients are enriched in the 

phosphorylated form of thiazide-sensitive NCC compared to 

non-hypertensive patients [114]. Hence, the measurement of 

total and phosphorylated NCC in urinary exosomes can be 

used as a biomarker of hypertension [114].

Vaccines

EVs also represent a promising tool for other therapeutic 

applications, such as generation of vaccines. EVs and many 

viruses share common mechanisms for protein sorting and 

particle release [134]. The study of EVs physiology can 

help us to understand virus infections, but also to generate 

virus-like particles suitable for vaccination exploiting the 

exosome pathway by sorting virus proteins into exosomes. 

For instance, exosomes isolated from infected cells can 

prime mice and protect them from a following lethal infec-

tion [135]. In the case of macrophages infected with the 

intracellular bacteria Mycobacterium tuberculosis, more 

than 40 mycobacterial components appear in exosomes 

[136] (Table 2). In addition, the administration of soluble 

mycobacterial proteins in human epithelial and mouse mac-

rophage cell lines promotes sorting of similar bacterial pro-

teins into exosomes [136]. Ubiquitination of mycobacterial 

proteins such as HspX and GroES acts as a signal for their 

incorporation into ILVs and secretion as EVs [136]. Moreo-

ver, vaccination using these exosomes in mice protects them 

against subsequent aerosolized infection with the whole 

infective bacteria [136]. This is just an example of how vac-

cination with a PTM-protein is a new strategy to initiate a 

protective immune response against a specific pathogen. An 

option for heterologous protein sorting into exosomes, which 

can be used as a vaccine, consists of protein overexpres-

sion with the addition of an ubiquitin tag, avoiding strate-

gies based on inactivated or non-replicative pathogens [128, 

137] (Fig. 3). This approach enables the exosomal delivery 

of proteins not usually found in exosomes, e.g. GFP. For 

instance, the use of exosomes produced by a stable cell line 

and containing recombinant fusion proteins from M. tuber-

culosis evoked T cell immune responses [137]. However, 

although exosome-based vaccines could trigger antigen-

specific immune responses, they also contain other proteins 

that could trigger side- or off-target effects. In addition to 

ubiquitin, GFP SUMOylation drives it into exosomes, sug-

gesting that SUMO could work as a specific sorting tool for 

antigen incorporation into exosomes for vaccination schemes 

[106] (Fig. 3).

Disease treatment

EVs are a promising tool to design new strategies for dis-

ease treatment. The size of these small particles make 

them suitable to carry proteins, lipids, RNA, DNA or small 

chemical drugs, protecting them from external factors in 

the blood stream [138, 139]. They can be easily isolated 

in high amounts from diverse culture cells types. Further-

more, the target specificity of EVs prevents some secondary 

effects observed in traditional therapies [138]. One of the 

most potent advantages of exosomes is their capability of 

crossing the brain blood barrier (BBB), which opens a wide 

variety of possibilities for diagnosis and treatment of neu-

rodegenerative diseases [140]. In fact, exosomes carrying 

a specific siRNA and a brain-delivery peptide signal could 

even silence the expression of the targeted gene [141]. Gen-

erating exosomes targeted to a certain type of tissue can be 
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accomplished by the expression of specific tissue-delivery 

peptide fused to the N-t of lysosome-associated membrane 

glycoprotein 2 (LAMP2), a transmembrane protein which 

causes their incorporation into EVs [141]. Engineered tar-

geting peptides-LAMP2 sometimes undergo degradation 

even when localized to exosomes, reducing their potential 

as therapeutic tools. A recent study has discovered that the 

incorporation of glycosylating motifs enhances their deliv-

ery and protects them from damage [142].

The use of engineered EVs based on biologically active 

proteins could be used to treat some diseases. The addition 

of a WW tag (a domain-containing PPxY motif) to a certain 

protein determines its incorporation into exosomes [139]. 

The L-domains of Ndfip1 recognize this particular mark, 

targeting this protein to exosomes [14]. In the same way, we 

propose the use of known PTMs motifs, such as the myris-

toylation sequence MGCINSKRKD, in the N-t of the protein 

of interest to drive it specifically into exosomes, as other 

authors have described for Tya [124]. Moreover, addition 

of a C-t ubiquitin or SUMO tag could deliver proteins into 

exosomes, including targeting-peptides-LAMP2 with glyco-

sylated motifs for specific tissue delivery [106, 137, 142]. 

Besides, protein glycosylation has improved the efficacy 

of therapeutic proteins [143]. Thus, addition of glycosylat-

ing motifs to the protein of interest could also mediate its 

incorporation to exosomes, although protein glycosylation is 

still technically complex for industrial production [73, 107] 

(Fig. 3).

PTM-dependent sorting approaches could contribute 

to halting tumour progression and development. PTEN, a 

tumour suppressor phosphatase, is ubiquitinated in exosomes 

and is active in recipient cells, promoting the dephosphoryla-

tion of AKT [78]. Hence, the uptake of exosomes containing 

the C-t domain of PTEN by cancer cells reduces prolifera-

tion, migration and metastasis, postulating such a strategy 

as an anti-tumour treatment [144]. On the other hand, GPI 

modification of blocking-nanoantibodies that recognize 

receptors present in tumour cells, favours their attachment 

to exosomes. Exosome-attached EGFR-nanoantibodies 

approach can confer a specific selectivity to EVs against 

tumour cells, decreasing their EGFR-proliferative signalling 

pathways [145]. Hence, GPI anchors can be used to target 

particular proteins to EVs for biomedical applications [146] 

(Fig. 3). To sum up, all these strategies remark the potential 

application of EVs-containing post-translational modified 

proteins for selective delivery of therapeutic components 

into specific tissues.

Concluding remarks

Although the mechanisms that define the sorting of proteins 

into EVs are not fully understood, PTMs are likely to play 

an important role. Many post-translationally modified pro-

teins have been detected in EVs [73, 107], whereas others 

that have not been identified in EVs could have a role in 

protein delivery, participating in the incorporation of other 

proteins, or being removed before secretion. Ubiquitina-

tion or SUMOylation of some proteins have a clear role in 

their incorporation into exosomes, whereas others such as 

ISGylation or acetylation oppose such mechanisms, driv-

ing the modified protein to degradation [106, 128, 137]. 

Moreover, exosome secretion can be mediated by diverse 

mechanisms, such as the ESCRT complex, lipids and tet-

raspanins, increasing the complexity and diversity of ILV-

protein sorting and exosome release [18]. In this regard, EVs 

populations are heterogeneous as each vesicle contains a 

specific repertoire of proteins potentially different from its 

neighbours [10, 11]. In addition, there are other factors that 

increase the complexity of this system, for example the fact 

that almost every cell can secrete EVs containing common 

and cell-type-specific markers. Then, the final destination 

of each population of EVs can be different, working as an 

autocrine or paracrine signal or even travelling throughout 

the blood stream to other tissues.

Regarding ubiquitination, its own structure and functional 

complexity increases the number of factors to be taken into 

consideration. Compartimentalization and specificity of the 

different E3 ligases participate in protein localization [93, 

94]. In addition, competition or crosstalk with other PTMs 

such as SUMOylation or Neddylation alters the fate of the 

modified protein [100]. Also, the complexity of the ubiquitin 

code includes homotypic, heterotypic, mixed or branched 

chains that distribute protein populations among many cel-

lular processes such as proteasome degradation or endocytic 

trafficking, forming a ubiquitin-based protein ZIP code that 

has yet to be revealed [20–25, 33, 147]. Finally, the study 

of ubiquitinated proteins or even UBLs is difficult techni-

cally. Proteomics approaches to find ubiquitinated proteins 

in whole proteome typically used trypsin digestion of the 

sample. Nowadays, the discovery of new UBLs highlights 

that the sole use of this enzyme may mask the appearance 

of additional variations due to the same di-Gly residue 

shared by all these kind of modifications [148]. Hence, this 

information can only be used to localize specific sites on 

proteins susceptible to be modified by these kind of PTMs 

[148]. Nevertheless, some approaches tried to discern among 

these PTMs by terminal mutation and protein overexpres-

sion [149]. Besides, these proteomic approaches could also 

help to discover or define any possible consensus sequence 

for protein delivery into EVs, either protein mono-ubiquit-

ination and selective chain formation or other PTMs [102, 

150, 151].

In addition, EVs represent a novel non-invasive and selec-

tive therapeutic tool to be developed for prognosis, diagno-

sis or treatment of diverse diseases, with very promising 
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preliminary results [138, 139, 152, 153]. PTMs confer spe-

cific properties to proteins, playing a relevant role in EVs 

protein sorting. Hence, the use of PTMs represents a useful 

tool for the generation of therapeutically engineered EVs.
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