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Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related

fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological

loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing

skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the

macroscale, the underlying micromechanical material behaviour and the scale transition of bone’s mechanical

properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the

post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level.
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Introduction

Skeletal diseases such as osteoporosis constitute serious
personal, social and economic burdens. Osteoporosis affects
200 million women and causes 9 million fractures annually
worldwide. Hip fracture incidence alone is projected to increase
240% in women and 310% in men by 2050. At the same
time Europe will face associated costs of approximately h77
billion per year while in China over 500 million inhabitants
are expected to suffer from osteoporosis see, for example,
http://www.iofbonehealth.org/facts-statistics (last accessed
on 01/02/2016) for more information.
Age-related fractures lead to a loss of mobility, an increased

mortality and a lower quality of life in general. A significant
proportion of physiological loading is carried by the cortical
shell.1,2 Thus, its role in the fracture resistance and strength of
whole bones is important.3–5 Whole-bone strength has been
shown to depend on the tissue mineralisation measured
by clinical densitometry, but also on the micromechanical
properties of the hierarchical organisation of bone tissue.6,7

Therefore, this paper aimsat reviewing thepost-yield and failure
properties of cortical bone at the extracellular matrix (ECM) and
the tissue level.

Defining Post-Yield Behaviour and Some Nomenclature

The mechanical behaviour of cortical bone (Figure 1) can be
characterised by (i) an initial elastic domain where the material
deforms in a reversible fashion, (ii) a post-yield domain where
irreversible strains and damage are produced and (iii) a fracture
zone where a macrocrack is formed. These domains can be

more or less pronounced, as for instance in tension, the
formation of a macrocrack is a rapid event once the ultimate
point is passed. Altogether the zones represent an area that is
equal to themechanical work necessary to break the specimen.
Zone I represents the elastic mechanical work and the sum of
zone II and III yield the plastic mechanical work, see for
example, Lemaitre and Chaboche.8

The elastic domain I is limited by a yield point, which
represents a threshold from where irreversible deformation is
accumulated. This point is an alternative representation of a
critical strain energy and may be represented as a function of
the six independent components of the stress or strain tensor.9

Unlike in steel, where the yield point can be relatively clearly
distinguished, yielding in bone is rather associated with a
continuous transition zone (Figure 1). Several methods are
used to approximate this point, such as, an offset-criterion
where the intercept of the stress–strain curve with a line with a
slopeequal to the initial stiffnessE0andshiftedbyastrain-offset
is evaluated. An offset of 0.2%10 can include considerable
non-linearity whereas 0.05%11 seems to provide a better
approximation of the start of the non-linear part of the stress–
strain curve. Bone can be considered as a quasi-brittle material
at the tissue level since many microcracks are developed prior
to failure that do not immediately lead to catastrophic failure.12

Therefore, a critical damage (Dc) criterion10 may be usable with
a chosen, smallDcof, for example, 2.5%. Yield is determined as
the intercept of the stress–strain curve with a line passing
through zero and with a slope of (1�Dc)E0. Finally, a critical
energy criterionmay be usedwhere the area of domain I, elastic
work, is evaluated and compared to a critical value.
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The post-yield domain II is, towards higher strains, delimited
by the ultimate point. Unlike yield, this point can be exactly
determined from a stress-strain experiment.
The fracture domain III following the ultimate point is

out of scope of this review. The load bearing capacity is
drastically reduced by formation of a macrocrack after
passing the ultimate point. This crack travels through the
thicknessof the cortical shell andeventually leads to fracture. To
investigate this behaviour requires fracture mechanics
approaches as used by many authors and we provide a mere
starting-point.13–15

Cortical Bone Tissue

Bone is a hierarchically structured bio-composite consisting
of a cell-seeded mineralised collagen matrix (Figure 2). It is
mainly composed of mineral (50–60 wt.%), type I collagen
(30–40 wt.%), and water (10–20 wt.%).16 Fibrils consisting of
self-assembled collagen molecules are reinforced periodically
by mineral platelets in a collagen guided biochemical pro-
cess.17–19 Water and noncollagenous proteins fill inter-fibrillar
pore space. Of these non-collagenous proteins, osteocalcin
strongly binds to minerals while it complexes and links to
collagen via osteopontin20 to help to impregnate themineralised
collagen fibrils by extra-fibrillar mineral particles13,19 and
combine them into fibril arraysmaking upamineralised collagen
fibre. Assemblies of mineralised collagen fibres form lamellae in
a rotated plywood pattern.21,22 The lacuno-canalicular network
provides a habitat for osteocytes and their processes at this
length-scale constituting about 1% of bone porosity.23

Cortical bone encloses trabecular bone in, for instance,
vertebrae or the epiphyses of long bones. It consists of
concentric bone lamellae arranged around blood vessels
forming osteons and interstitial areas.24 It features a macro-
porosity of around 5–15%, which is mainly oriented along the
osteon direction.13 A continuous remodelling process that
counteracts the development of fatigue damage results in
secondary osteons.13 Osteons are separated from the
surrounding tissue by a cementous interface,25which is 1–5 mm
in thickness.13,25 Its exact nature andmechanical role has been

widely debated and for instance associated with an increase in
toughness, a decrease in strength, a role as crack-arrestor, and
an increase in crack-path.26–30

Major Determinants of Strength

Cortical bone strengthon theorgan level hasbeen the subject of
a considerable amount of research and Table 1 provides an
overview over yield strain, ultimate strain, yield stress, strength
values and the observed hardening behaviour for human
cortical bone.
Osteonal porosity is the major determinant of bone

strength13,31–35 despite the importance of other variables such
as mineralisation and collagen fibre orientation.36–38 Although
the orientation of the collagen fibres affects its local anisotropic
properties, the mineralisation in human bone is relatively
constant.36,32

A negative correlation was found between porosity and
strength,32,13 which showed a faster decrease of strength in
compression compared with tension and torsion.35 This fast
decrease may have been caused by the load case. Tensile and
torsional samples remain aligned with the loading axis during
testing. For compressive loading, macroscopic samples may
become unstable after reaching yield. Microcrack appearance
may be accompanied by pore driven deformation localisation
and a change from a homogeneous stress state over the
cross-section into a state of plastic buckling which can then
lead to a decreased strength. This processmay be amplified by
a higher porosity, as it can act as a stress concentrator and
decreases the lateral support of locally buckling regions.
Yield strain in tension and compression, however,

is independent of porosity (see citations on strength) and a ratio
between yield strain in tension and compression of 0.68 was
identified,35 which is very similar to the ratio of yield strains
numerically determined for trabecular bone at the ECM level.39

Torsional yield strains are significantly dependent on porosity35

which may be due to the interplay of loading condition and
sample geometry.27 A higher porosity could imply more sec-
tionedosteons at the circumferential surfaceof the sample. This
leads to the presence of weak interfaces and pre-existing

Figure 1 Typical monotonic stress-strain curves are sketched to illustrate the behaviour for tension (red), compression (blue), and shear (green) in axial and transverse loading.
The three domains of the mechanical behaviour are an elastic domain I, post-yield or damaging zone II, and a fracture zone III where a macrocrack forms. The form of the curves is
deduced from the sources displayed in Table 1. Hardening, be it linear or exponential, describes an increase in stress after passing the yield point. Softening, in turn, is a decrease in
stress usually observed after passing an ultimate value that may coincide with the yield point. Ideal plasticity denotes an asymptotic behaviour after reaching yield. Brittle,
quasi-brittle, and ductile are phenomenological descriptions whether the area underneath the stress-strain curve, i.e. the energy, after passing the yield zone, i.e. region II plus III, is
small or large, respectively. Ductility refers to a material’s ability to dissipate a lot of mechanical work and it is the opposite of brittleness.
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surface cracks in the most stressed area, which might lead to a
decrease of apparent yield strains compared to a pristine sample.
Porosity is indeed the major significant but often weak

determinant of macroscopic tensile, compressive and torsional
strength.35 The authors related multiple macro- and micro-
mechanical tests, computed tomography, histomorphometry
and Raman spectroscopy to each other in order to find the
relevant factors determining macroscopic strength. Not
included in the study were pre-existing microdamage, bound
water and collagen cross-links. The latter two, however, should
have influenced the microindentation properties obtained for
each sample. As this was not the case, it was concluded that
another structural feature such as pre-existing microdamage
has a decisive role in the post-yield and failure properties of
cortical bone which is in line with observations on the scale
transition of mechanical properties, which will be discussed
later in this review.40

Microdamage

Pre-existing and pre-failure microdamage (Figure 3) is not
detectable usingclinical imagingmodalitiesbut is deemed tobe
the most detrimental factor in defining bone’s strength and
toughness.35 Microdamage accumulates due to isolated,
non-physiological overloading events in a quasi-static mode or
after suffering fatigue from a large number of physiological
loading cycles11,41 and decreases bone’s stiffness, strength
and toughness.14,42

Microdamage can be differentiated into microcracks and
diffuse damage which are smaller cracks on a lower length
scale.43 Microcracks appear linear and spatially organised in
2D histological sections with a pertinent length of tens of
micrometer.43–45 In 3D,microcracks are approximately elliptical
with an aspect ratio of 4:1 to 5:1.46 Their thickness is one to two
orders of magnitude smaller than their length. Microcracks are
associated and guided by microstructural and ultrastructural
features of bone.16,27,47,48 They appear at highly mineralised
zones in bone tissue, between interstitial lamellae, along
osteonal cement lines, at the boundaries of trabecular
packages, at resorption cavities in trabecular bone, and, in case
of sub-lamellar microcracking, along the canaliculi in cortical
bone.27,43,47–49

Microdamage (Figure 3) is loading mode dependent11 as it
appears to be different in bone regions loaded primarily in
tension compared to regions loaded in compression.44,50–52 In
histology studies, tensile microdamage appears to consist
mostly of diffuse cracks oriented normally to the loading axis
while compressive microdamage is expressed as cross-
hatched microcracks.44,43,51 This may be due to different
yielding processes for tension and compression.13,53 These
processes eventually lead to fracture planes oriented normal to
the loading direction in tension and oblique in compression
as observed in creep failure experiments.54 The angle of the
cross-hatches (Figure 3) was found to be different from 451 in
specimens tested in axial, transverse or oblique directions29

highlighting the impact of the structural anisotropy.

Loading Mode Dependence and Anisotropy

Thecombinationof bone’s structural anisotropyand the loading
mode dependent and anisotropic nature of microdamage
yields loading mode dependent and anisotropic post-elastic
behaviour of cortical bone.11,13,53,55–57 After an initial
exponential hardening regime, the monotonic postyield
behaviour is characterised by linear hardening in tension,
quasi-brittle softening in compression, and ideal plasticity
without hardening under shear (Figure 1). Hardening in cortical
bone is generated by mineralised collagen fibres bridging
emerging cracks. It was suggested that bone is plastically
compressible40,58 which might as well contribute to initial
hardening under compression next to friction. Softening in
compression is dominated by the occurrence of microdamage.
Emerging cracks reduce the load carrying cross-section and,
with it, the load bearing capacity. In a material that contains
manymicrocracks, two stresses canbedefined.12The effective
stress ~s, is the average stress transmitted by the yet unbroken,
that is, effective, area ~A. The total stress s is the stress acting on
the total area A of, for example, a macroscopic test specimen.
Both are related by s ¼ ð1�DÞ~s where the damage variable
D ¼ A� ~A

A
represents the accumulated microcracks. For ideal or

asymptotic hardening behaviour, ~s would be constant or
increasing, while s, and therefore, the load bearing capacity
would decreasedue to the increasing damage.12 Ideal plasticity
observed in torsion35 may be dominated by cleavage opening

Figure 2 Hierarchical structure of cortical bone tissue. The red dashed line separates the upper level of tissue organisation (macroscopic, organ or tissue level) from the lower
level of tissue organisation (microscopic, extracellular matrix level). The image is adopted from Reisinger et al.138
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of the osteonal microstructure while in axial direction friction
without fibre bridging may explain the asymptotic post yield
behaviour. In transverse loading, the absence of hardening29

may be due to the formation of a slip-plane parallel to the
osteons reinforcing the structure. Such reinforcing elements
may also be inactive in transverse tensionwhere the cementous

interface could naturally open without the support of bridging
fibres which leads to rapid formation of a macrocrack.
The monotonic post-yield behaviour is influenced differently

by pre-existing microdamage. Repetitive loading experi-
ments11 showed that a previous compressive overload
deteriorates the tensile elastic and post-elastic properties,

Table 1 Macroscopic strength values for human cortical bone

Source d n Age Range in
years

Test
condition

Test
direction

Loading
mode

e
y in % s

y in MPa e
u in % s

u in MPa Post-yield
behaviour

Bayraktar
et al.33

34 74 54–85 w ax ut 0.73±0.05 107.9±12.3 — — ha

Carter et al.127 4 10 51–84 w ax ut 0.84±0.05 121.0±11.0 1.6±0.38 140.0±12.0 ha
Cezayirlioglu
et al.60

4 50 40–80 w ax ut — 121.7±10.2* 3.6±0.83* 145.2±8.4* ha

28 w ax uc — 176.3±13.1* 2.8±0.64* 204.0±11.2* —
29 w ax tr — 52.5±6.3* 3.0±0.71* 69.0±5.5* so

Courtney
et al.119

10 28 72±6 w ax ut 0.36±0.039 49.3±5.5 — — ha

foo 8 28 26±5 w ax ut 0.38±0.041 55.3±8.6 — — ha
Currey128 11 — 3–5 w ax ut 0.95 87.45 3.9 134.1 ha
foo 4 — 35 w ax ut 0.72 122.3 2.2 165.9 ha
Dickenson
et al.129

11 29 67–87 w ax ut — 80.8±13.7 — 117.0±17.3 ha

Dong et al.62 8 8 51.5±3.3 w ax uc 0.91±0.09 111.0±18.6 — 124.0±15.0 so
8 w ci uc 0.83±0.42 41.8±19.4 — 65.2±13.8 nh
8 w ra uc 0.84±0.23 44.1±21.1 — 63.1±20.7 nh

Dong et al.130 6 6 76–88 w ax sh 0.88±0.18 35.7±9.9 — 61.4±6.3 nh
Duchemin
et al.131

13 46 54–101 w ax ut — — — 53.8±20.3 —

46 w ax uc — — — 106.4±29.4 —
Ebacher
et al.29

3 7 55–69 w ax uc 1.07±0.14 141.0±5.0 1.3±0.20 143.0±6.0 so

7 w tr uc 1.15±0.07 79.0±7.0 3.3±0.80 91.0±9.0 nh
3 w 451 uc 0.98±0.08 104.0±10.0 1.7±0.40 113.0±11.0 so

Evans et al.31 17 207 36–75 e ax ut — — 1.5 88.3 ha
Jepsen et al.50 6 18 25–49 w ax tr 1.30±0.10 55.8±3.8 5.2±0.90 74.1±3.2 so
Lee et al.132 26 11 53–98 w ax ut 0.56±0.07 70.6±31.6 2.0±0.85 77.0±42.2 ha
Leng et al.133 16 16 51–90 w ax uc 0.77±0.03 112.5±9.5 — 127.0±8.6 so
Mirzaali et al.35 39 32 46–99 w ax ut 0.45±0.05 71.6±10.2 1.9±0.60 93.0±10.1 ha

32 w ax uc 0.66±0.09 115.1±16.4 1.3±0.30 153.6±21.6 so
32 w ax tr 0.57±0.03 31.6±4.0 — 46.3±5.8 nh

Nyman
et al.134

17 17 51–90 w ax ut 0.41±0.02 — — 100.9±7.3 ha

Reilly et al.55 19 101 20–86 w ax ut — — 2.74±0.57 128.3±12.3 ha
95 w ax uc — — 2.11±0.33 190.4±15.6 so

Reilly and
Burstein53

4 21 23–63 w ax ut — 114.0±3.1 3.10±0.72 135.0±15.6 ha

20 w tr ut — — 0.70±0.14 53.0±10.7 —
4 16 21–52 w ax uc — — 1.87±0.29* 202.3±17.3 so

12 w tr uc — — 4.33±1.25* 160.0±20.7 ha
2 12 23–56 w ax tr — — — 68.0±2.9* —

Saha135 14 24 — e ax sh — — — 46.6±9.7* so
Tang et al.63 8 10 62–79 w ax sh — — — 28.9±6.2 nh

9 w 301 sh — — — 31.2±8.4 qb
5 w 601 sh — — — 22.7±2.5 qb
5 w tr sh — — — 49.9±6.2 qb

Turner et al.61 5 11 63–83 w ax sh — — — 51.6±1.9 —
14 w tr sh — — — 65.3±2.5 —

Wang and
Nyman136

9 9 49–59 w ax ut — — — 88.1±11.4 ha

9 9 69–87 w ax ut — — — 75.6±13.0 ha
Yamada137 60 — 10–19 w ax ut — — 1.48 113.8±1.5 ha

— 20–79 w ax ut — — 1.30±0.014 103.3±2.0* ha
33 — 20–59 w ax uc — — 1.83±0.04 156.9±3.7* ha
21 — 20–89 w ax tr — — 2.67±0.09 52.2±1.0* ha

Abbreviations: ax, axial in osteonal direction; ci, circumferential; d, number of donors; e, embalmed; n, number of specimens; ob, oblique 451; ra, radial in a cylindrical
coordinate system; sh, shear; tr, transverse to osteonal direction; uc, uniaxial compression; ut, uniaxial tension; w, wet.
Mechanical variables included are, yield strain (ey), yield stress (sy), ultimate strain (eu), and ultimate stress (su). Characteristics of the post yield behaviour (Figure 1) are,
brittle (br), quasi-brittle (qb), plastic (pl), hardening (ha), ideal plasticity or no hardening (nh). Please note that the tremendous body of work on other species that can be
found, for instance, in Currey12 is not included.
#Given standard deviation �s are pooled variations for a sample with m means±standard deviations. sm, i.e., �s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
2
1 þ � � � þs

2
m

q

.
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while a previous tensile overload had only a minor effect on a
subsequent compressive load (Figure 4). In fact, a previous
compressive overload was not only detectable as damage on
the compressive side but also reduced tensile yield and
strength properties which was not the case vice versa. This is
in line with crack closure observations upon unloading.59

This implies that pre-existing compressive microdamage
significantly decreases the load bearing capacity in a sideways
fall which is tension dominated.
When loaded in transverse direction, the mechanical

response changes to a brittle behaviour in tension with hardly
any ductile deformation and to an ideal plasticity with no or little
hardening and softening in compression (Figure 1). Strength is
lower (Tables 1 and 2) that indicates anisotropic material
behaviour. Cortical bone seems to be well described by
transverse isotropy, which is most likely due to its osteonal
micro-structure.13,29,53,57,60–63

In shear, a quasi-brittle behaviour with a lower ductility than in
torsion experiments is encountered with slightly increased
strength values. Since it was found that osteonal bone
is anisotropic under shear,61,63 it is yet to be confirmed
whether only one loading axis is distinct or all three. Transverse
isotropy might hold given the osteonal structure and the
observation that cement line motion is the major deformation
mechanism,64 which fits well with the observed microdamage
(Figure 3).
All these values are affected by increasing loading rates

which lead to an increase in brittleness and a decrease in
strength in tension with hardly an effect on torsional loads.65–68

Whether this is true for the transverse directions is yet to be
confirmed. In addition, changingwater content has a significant
influence on the mechanical properties.69 Drying increases
strength and decreases ductility and, if similar to the micro-
scale,70 changes anisotropy.

Micromechanical Properties

As bone is a hierarchical composite material, its strength
depends greatly on the length scale under observation
(Table 2). Its properties on the nano- and microscale have a
decisive effect on its macroscopic properties and are a major
determinant of what is often referred to as ‘bone quality’, that is,
factors despite bone mass influencing fracture risk.
The mechanism by which bone deforms following

overloading on the nanoscale has been widely debated.
Synchrotron radiation diffraction experiments performed in situ

onmacroscopic tensile specimens showed that the nanometer
sized mineral platelets carry a large portion of the load and
appear to be flaw insensitive due to their small size, which
prevents brittle failure and increases their strength significantly
compared to bulk hydroxyapatite.71 The organic matrix on the
other hand is crucial for transferring the load to the mineral
platelets. The onset of apparent yielding in parallel fibred bone
corresponded to yielding on the fibrillar level: the extrafibrillar
matrix starts to flow, which leads to a constant fibrillar
elongation at rising apparent strain levels.72,73 Moreover, after
unloading the fibril was at a negative strain value relative to
the original configuration. Gupta et al.73 interpreted this as
internal decohesion between the mineral platelets and
the tropocollagen molecule, which might be interpreted
as a damage mechanism. Further experiments at variable
temperature and strain rate interpreting the changes in yield
stress by an Arrhenius-type rate equation showed that the
activation energy and volume74 of the nanoscale deformation
mechanism lie in the range of 1 eV and 1 nm3, respectively.75

This activation energy ismuch larger than a hydrogen bond, but
considerably smaller than a covalent bond and it most likely
corresponds to charge interactions between molecules in the
extrafibrillar matrix.75

Figure 3 Basic Fuchsin stained, sagittal histological sections of three osteonal samples overloaded in uniaxial tension, uniaxial compression, and torsion are shown.11 The
osteonal main axis is equal tom3 and the scale bar is 100mm. Three distinct, loading mode dependent microcrack families can be distinguished as indicated in the sketches. The
cracks under tension are smaller and more diffuse than the cross-hatches found under compression or cracks under torsion. Note, that the tensile image was taken close to the final
macrocrack of which some effects are partially visible and that small or perpendicular microcracks may close upon unloading59 and are, thus, difficult to detect histologically.
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Fantner et al.76 reported on the importance of ‘sacrificial
bonds’ and ‘hidden lengths’ for bone toughness. Sacrificial
bonds are weak, re-formable bonds increasing the energy
required to stretchmolecules to their full length and break them.
When sacrificial bonds inside a network break, they allow further
unfolding of the molecular structure referred to as ‘hidden
length’. After removal of strain from the network, the sacrificial
bonds can reform, which provides a possible mechanism for
repeated dissipation of strain energy.76,77Using an atomic force
microscopy (AFM) based technique, traction–separation curves
of mineralised fibrils were recorded and it was found that the
dissipated energy increased significantly in the presence of Ca
ions. This hints at the presence of an ion-mediated organic
network acting as a glue between the mineralised fibrils.78 This
concept is in line with the findings of Gupta et al.71–73 and the
importance of charge interactions75 in the extrafibrillar space.
Although these experiments gave great insight into the

deformation mechanisms in bone, the mechanical tests were
performed mostly on specimens on the length scale of
hundreds of micrometers to millimetres. Therefore, the
measured response included the averaged deformation of a
large numberof osteons and noquantitative datawas extracted
about the local micromechanical strength properties on the
length scale of a lamella.
For mineralised collagen fibrils, molecular dynamics

simulations shed some light on their deformation and failure
mechanisms.79,80 By atomistic and coarse grained molecular
dynamics simulations, it was found that the presence ofmineral

crystals provides additional resistance against plastic defor-
mation and increases the fracture strength. The adhesion forces
between the mineral platelets and collagen molecules remain
weak allowing slippage following overloading, which serves as
stress shielding against collagen fracture. This is in agreement
with the hypothesis by Fritsch et al.81 that bone failure involves
slippageofmineral platelets lubricatedby thepresenceofwater
followed by rupture of collagen. Gupta et al.82 found during
in situ diffraction experiments on tensile specimens of antler
bone both interfibrillar deformation in the extrafibrillar space
as well as intrafibrillar deformation at the collagen-mineral
interface, which is in line with the findings of Buehler79 and Nair
et al.80 Mechanical tests of single mineralised collagen fibrils83

showed a wide range of strengths (40-490 MPa), but were in
qualitative agreement with the simulations.
One of the most widely used micromechanical testing

methods in bone is microindentation.84,85 In this technique a
diamond tip with known geometry is pressed into a flat sample
surface and the force and tip displacement are recorded
simultaneously. The pioneering work of Oliver and Pharr86

allows the extraction of elastic properties from the unloading
part of the indentation curve, while hardness or mean
indentation pressure is related to the tested material’s
strength.87 However, the determination of strength properties
frommicroindentation data is complicated by themultiaxial and
heterogeneous stress state under the indenter tip and bone’s
complex mechanical behaviour and necessitates the use of
inverse methods based on finite element modelling.45,88–90

Figure4 Two example curves from a repetitive loading experiment.11 Left, overloading in compression (blue) and elastic reloading in tension (red). Right, the same exercise vice
versa. The dashed lines illustrate how stiffness was identified. The greater effect of a compressive overload on a tensile reload in comparison to a tensile overload and a compressive
reload is clearly visible.

Table 2 Microscopic strength values

Source n Species Test
condition

Test
direction

Loading
mode

e
y in
%

s
y in MPa e

u in % s
u in MPa Post-yield

behaviour

Schwiedrzik et al.40 19 ov v ax uc — 490.0±100.0 — 750.0±60.0 pl
20 ov v tr uc — 300.0±20.0 — 590.0±40.0 pl, ha

Luczynski et al.102 9 bo v/a ax uc — — 3.74±0.77 505.1±87.5 pl
Jimenez-Palomar
et al.105

6 ra v ax be — — — 632.0� 1083.0 br

Abbreviations: a, in air; ax, axial in osteonal direction; bo, bovine; ov, ovine; ra, rat; tr, transverse to osteonal direction; v, in vacuum.
Loading modes are, uniaxial compression (uc) and bending (be). Included variables are yield strain (ey), yield stress (sy), ultimate strain (eu), ultimate stress (su).
Characteristics of the post yield behaviour (Figure 1) are, brittle (br), plastic (pl), hardening (ha).
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Tai et al.88 performed a combination of microindentation with
two different tips and finite elementmodelling using a cohesive-
frictional Mohr-Coulomb yield criterion. They interpreted their
findings by suggesting that nanogranular friction between
mineral platelets is responsible for the tension-compression
asymmetry in yield properties, while cohesion is originated
by the organic matrix rather than organic-mineral bonding.
They reported back-calculated strength values, which are
similar to macroscopic properties as well as results from other
microindentation based studies.45,89,90 However, the inherent
nanoporosity in the tissue91 and the fact that bone does not
exhibit pile-up behaviour around the indentation58,88,89 would
suggest the presence of plastic compressibility,9whichwas not
accounted for in these studies.92 Therefore, the strength values
reported in such studies depend greatly on the assumptions
about the material’s plastic response rendering the general-
isation of such results to other load cases very difficult.
It is not trivial to interpret microindentation data quantitatively

in terms of strength, as indentations in materials with very
different behaviours can result in very similar curves.93

However, correlations of hardness with microstructural and
compositional features can give an important insight into the
mechanisms and relevant factors determining bone strength at
the microscale. Correlation of hardness or modulus with
microstructural properties like mineral fraction or collagen
orientation showedgood correlations in an interspecies study94

and significant differences between osteonal bone and the

more highly mineralised interstitial areas in human bone.84,85

However, studies concentrating on human bone reported either
low correlation coefficients37,95,96 or even a lack of correla-
tion35,97,98 highlighting the importance of other factors like
nanoporosity98 or collagen cross-linking37 and the relative
inter-donor homogeneity of bone tissue on the lamellar level,35

especially in the elderly. The intra-donor variation in indentation
properties between osteonal and interstitial bone remains
significant also in this age group.35 Finally, it was hypothesised
based on AFM-nanoindentation, reference point indentation,
and macroscopic fracture tests, that nano- and micro-
heterogeneity of local material properties could act as a
toughening and strengthening mechanisms by redistributing
stresses and deflecting crack paths.99

Recently, an alternative testing method has emerged, in
which micron-sized micropillars milled by focused ion beam
fromabulk sample are tested using a flat punch indenter.100The
mostly homogeneous and uniaxial stress state inside the
probed pillar101 allows for a relatively straightforward inter-
pretation of the data in terms of stress–strain relationships. This
opens up the opportunity to measure yield and post-yield
properties at themicroscale in a quantitative fashion, which has
been recently performed in dry condition on bone.40,102 The
experiments showed an anisotropic elastoplastic behaviour40

with a superior strength of bone at the lamellar level (Table 2)
andan increasedductilitywith strains up to10–15%followedby
failure in a single shear crack40 (Figure 5).

Figure 5 Scale transition of the mechanical behaviour shown by compression of micropillars on the lamellar level (1) and macroscopic dumbbell-shaped specimens (2).40

(a) Sketch of the tested specimen size and shape compared to the relevant structural level of bone. (b) Stress-strain curves from uniaxial compression tests with partial unloading
cycles to measure unloading modulus as a function of plastic strain showing a superior strength on the lamellar level. (c) Evolution of normalised apparent unloading modulus as a
function of plastic strain showing an increased ductility and absence of damage on the lamellar level. (d) Images of the relevant failure mode showing a scale transition from
homogeneous deformation followed by a single shear crack on the lamellar level to microcracking followed by catastrophic failure on the macroscale.
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This ductile behaviour of the quasi-brittle material bone is in
line with the scaling theory of quasi-brittle failure103 andmay be
explained by the fact that the size of the micropillar is smaller
than the plastic process zone, which has been reported to be in
the range of 20 mm.104 The failure stress probability distribution
function in this case follows a Gaussian and plastic behaviour
dominates,103 while microcracks do not develop easily in this
situation. These experiments highlighted the presence of a size
effect also in the hierarchical material bone (Figure 5) and the
importance of interfaces and flaws such as cement interfaces,
porosity and pre-existing cracks for the change in behaviour
when testing larger specimens.40 Recent microcantilever
bending tests on rat bone105 reported strength values in a
similar range to Schwiedrzik et al.40 However, the observed
failure mode was brittle. This could hint at a loading mode
dependent nanoscale deformation mechanism and plastic
zone size, but further research in this area is needed.
Finally, all studies measuring microscale strength based on

FIB-machined microspecimens so far40,102,105 were performed
indry condition (in air or in vacuo). However, it hasbeenshown in
several microindentation studies that the hydration state
has a severe impact on the micromechanical properties of
bone.40,70,106 Therefore, there is a clear need for further
development toward testing of micron-sized cantilevers
or pillars in hydrated conditions in order to measure
physiologically relevant microscale strength properties.

Ageing and Disease

The following section is a brief introduction on the influence of
ageing and different diseases on the post-yield mechanical
properties of bone.
Osteoporosis is characterised by a loss of bone mass that

induces a loss of structural integrity and it has been shown that
porosity32 increases significantly with donor age. More and
smaller osteons are developed31 over the live span but may
reach asymptotic values in mature bone.35 This changing
heterogeneity decrease bone’s overall strength and its
toughness.13,32,107,108 Although an increased cortical porosity
in type 2 diabetic postmenopausal women with fragility
fractures was found,109 porosity, number of osteons, and
osteonal diameter were gender independent in elderly cohorts
of other studies.35 In terms of bone quality, it could be shown
that while composition and micromechanical properties of
bone on the length scale of a lamella measured by Raman
spectroscopy andmicroindentation change up to a certain age,
they reach a plateau and remain mostly constant in the
elderly.35,85,70,96,110–112 It was found that the collagen network
and the tissuewater contentmay changewith agewhich affects
the mechanical properties.69,113–115

Microdamage increases exponentially with age,42,116 while
the ability to remodel bone and, thus, repair induced damage is
impaired.117,118Cement line density was also found to increase
with donor age.35,108 Since shear motion is possible in these
interfaces,64 they are presumably the loci for emerging cracks.
The age related differences in post-yield behaviour have been
associated with this exponential increase119 and it seems to
play a decisive role in the variability of the post-yield behaviour
in elderly donors.35

Hardness tests and electron probemicroanalysis97 in normal,
osteoporotic and osteoarthritic bone from patients obtained

during a total hip arthoplasty or hemi-arthoplasty following a
femoral neck fracture showed a 7%decrease inmicrohardness
for osteoarthritic patients, which may be attributed to an
increased remodelling activity in osteoarthritic patients and
thus a reduction inmean tissue age. Surprisingly, no differences
were found in terms of composition between osteoarthritis and
osteoporosis patients ormale and female donors. However, this
may be an artefact of the measurement technique, as electron
microprobe analysis is not an ideal tool for measuring bone
composition in a quantitative fashion.97 In a recent study,
no significant changes of micromechanical properties in
the femoral diaphysis measured by microindentation were
observed between patients suffering from osteopenia or
osteoporosis and thosewho did not (classification based on hip
areal bone mineral density).35

In other diseases, such as Paget’s disease, high bone turn-
over andboneenlargement lead to localiseddeformities.120The
high turnover alters the structural organisation of the tissue into
a less organised patchwork of lamellar and woven bone121

which may increase the heterogeneity of the post-yield
properties and leads to a lower stiffness and higher ductility.122

This effect may also be encountered in osteomalacia where a
vitamin D deficiency leads to a significant undermineralisation
of the tissue.123

Using molecular dynamics simulations, three major changes
influencing the nano- and micromechanical mechanical
properties due to osteogenesis imperfecta mutations could be
identified.124 These are a reduction of tropocollagen stiffness,
decreased intermolecular adhesion and increased inter-
molecular spacing (and thus decreased cross-link density), and
the formation of stress concentrations leading to a reduction of
strength of the collagen fibril. Recent indentation studies
reported a decrease in stiffness despite an increased
mineralisation125 and could verify the trend that stiffness
reduces with increased disease severity.126

Conclusion

The reviewed data indicates that the post-yield behaviour of
cortical bone has been well understood on the organ level
(Figure 2). The underlying post-yield behaviour at the ECM level
has yet to be unravelled. While first steps have been taken,
especially the tension-compression asymmetry and the nature
of the dissipation mechanism as well as the micromechanical
strength properties under physiologic and diseased conditions
are yet to be determined. Such knowledge could inform the
development and realisation of tailored treatment strategies
ranging from diagnostics to patient specific implant solution.
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