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Post-Correction of Pipelined Analog-Digital
Converters based on Input Dependent Integral

Nonlinearity Modeling
Samer Medawar, Peter Händel, Niclas Björsell, Magnus Jansson

Abstract— The integral nonlinearity (INL) is used for the
post-correction of analog-digital converters (ADCs). An input-
frequency-dependent INL-model is developed for the post-
correction. The model consists of a static term that is dependent
on the ADC output code and a dynamic term that has an
additional dependence on the input frequency. The concept of
ADC digital output post-correction by INL is first introduced.
The INL model is subtracted from the digital output for post-
correction. The static compensation part is made by adjacent
sets of gains and offsets, where each set corrects a range
of output codes. The dynamic information, i.e., the frequency
dependence of the INL dynamic component is used to construct
a set of filter blocks that performs ADC compensation in the
time domain. The compensation scheme is applied to measured
data of two ADCs of the same type (Analog Devices AD9430).
Performance improvements in terms of spurious-free dynamic
range (SFDR), signal-to-noise and distortion ratio (SINAD),
intermodulation distortion (IMD) and noise are obtained. The
dynamic compensation part, due to its frequency dependence,
can be generalized; hence, a post-correction block model can be
used for compensating multiple ADCs of the same type.

Index Terms— Radio frequency systems, analog-digital conver-
sion, integral nonlinearity, dynamic modeling, post-correction.

I. INTRODUCTION

Error correction is a crucial task in a wireless digital
communication system. Correction schemes are present in
all layers of the open system interconnection (OSI) model.
In this work, we consider errors caused by the hardware,
or, more specifically, errors induced by the analog-digital
converter (ADC). ADCs are ubiquitous in the receiver chains
of communications systems, and faster devices with higher
resolution are always in demand.

Modern communication system receivers consist mainly of
an antenna at the radio frequency (RF) front-end followed by a
preselection RF filter, a low-noise amplifier plus a frequency
down-converting stage prior to the in-phase and quadrature-
phase branches. Each branch has an ADC at its periphery,
which feeds data to the digital signal processing (DSP) blocks.
Because contemporary and future telecommunications systems
enjoy a substantial increase in data rate relative to the data
rates of earlier systems, the digital signal processing is now
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Fig. 1. Static ADC post-correction employing a look-up-table approach.

performed at a higher rate and covers a wider bandwidth. The
ADC performance is crucial due to its position at the input of
the DSP block. Thus, a potential error or distortion generated
by the ADC propagates over the processing scheme, adding
to the channel, DSP processing and RF block errors.

An appealing approach to boost the performance of a
wireless communication system when its functioning is limited
by the performance of the ADC is to apply ADC post-
correction by DSP [1]. Using digital processing, we are able
to boost the actual performance of the system without adding
new hardware or modifying the existing one. There is a limited
number of studies available that have investigated the influence
of ADC imperfections on the link level performance [2], [3].
In [2], the ADC resolution was found to have a significant
effect on the link-level bit-error rate of a wireless multiple-
input/multiple-output (MIMO) system. It was shown in [3] that
sigma-delta ADCs are more robust than pulse code modulation
converters in terms of bit error rate in an orthogonal frequency-
division multiplexing (OFDM) system.

The typical ADC structure in RF applications is the
pipelined, or subranging, structure [4]. The pipelined ADC
comprises several pipelined blocks and a flash ADC at the
end. The input signal goes through the subsequent stages
where each resolves a fraction of the output code. Each stage
outputs a fraction of the ADC output code and a residual
that is amplified prior to being fed to the next stage. The
residual is the difference between the analog signal at the
stage input and its quantized value. Thus, at every clock cycle,
each stage resolves the subsequent signal sample, which is the
reason behind the high processing speed of the pipeline ADCs
(reaching a sampling frequency of 2.5 GHz [5]; See also [6]).
The flash ADC at the end converts the least significant bits of
the ADC output code.

ADC impairments can be compensated using an in-chip
approach by modifying some of the ADC building blocks.
Another method is digital post-correction, where the ADC
output is compensated for by adding correction values that
depend on the ADC output characteristics. Post-correction is
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Fig. 2. Dynamic ADC post-correction, where m is an additional parameter
addressing the look-up-table. The index m can designate the frequency, slope
or previous sample(s) of the ADC output.

done by adding a block at the ADC output through a feed-
forward loop, as illustrated in Figs. 1 and 2.

A widely used ADC compensation method is the look-
up-table (LUT) [7]–[10]. Post-correction using a LUT has
been tackled by two basic approaches: static and dynamic
correction. The static approach comprises a compensation
block that adds a correction term εk for every ADC output
code k, as shown in Fig. 1. However, the ADC performance
shows a dependence on input signal characteristics, such as
slope and frequency. Thus, a dynamic post-correction in which
the compensation term is taken from a multidimensional table
can provide enhanced performance. In addition to the code
k, the input to such a table may include frequency, slope
or previous sample(s). These additional features of the ADC
output are denoted by m in Fig. 2.

In [7], a phase-plane LUT approach to correct a subranging
and a flash ADC was adopted. The two-dimensional correction
table was addressed by the code k and the slope (indicated
by m in Fig. 2). ADC performance improvements occurred
especially at frequencies near the calibration frequency. In [7],
the spurious-free dynamic range (SFDR) improvement ranged
from 4 to 14 dB. Smaller improvements were encountered
at frequencies distant from the frequency employed for cali-
bration. The compensation scheme in [7] was replaced in [8]
by the state-space method, where, referring to the scheme of
Fig. 2, the correction table is addressed by the current code
k(n) and the previous one m = k(n − 1), where n denotes
the running time index. Improved results were obtained when
three calibration frequencies (instead of one) were used to
calculate the LUT entries.

An attempt to avoid real-time estimation of the slope
information as in [7], was through the use of adjacent channel
sampling [9]. The delay applied on the adjacent channel was
optimized to achieve the best possible least mean square
estimate of the input slope. A second similar ADC was used
to quantize the adjacent channel signal. The experimental
results showed the need for two calibration frequencies to
achieve a positive SFDR compensation over the entire Nyquist
bandwidth.

Static post-correction using LUT was performed on a
pipeline ADC in [10]. The best SFDR improvements occurred
near the calibration frequencies. In [11], a state-space post-
correction was implemented to take into account the slope
and frequency dependence of the error. Results showed that
using a dynamic post-correction with a limited number of
resolution bits achieves an improved compensation over that
of the static correction previously done in [10], given a fixed

size of the LUT. The current sample is used with K delayed
samples in combination with a bit-reduction scheme to derive
the correcting term in a multi-dimensional LUT. In [12], a
mathematical analysis tool was investigated to optimize the
correction term bit-resolution and the number of delayed K
samples for two different criteria: total harmonic distortion
(THD) and signal to noise and distortion ratio (SINAD).

LUT-based ADC post-correction enables effective ADC
error compensation. However, LUTs are memory-expensive,
so multi-dimensional tables for high-resolution ADCs are not
feasible to implement. As an alternative to dynamic LUT
approaches for ADC correction, methods based on linear fil-
tering of the ADC output have been proposed in the literature.
A model composed of a set of parallel Hammerstein filters,
in combination with linear regressors, was used for post-
correction in [13], based on the integral nonlinearity (INL)
model in [14], which was divided into two parts: a dynamic
low code frequency component (LCF) and a static high code
frequency component (HCF). The quantities LCF and HCF
were first introduced in [15]. The dynamic LCF component
was constructed by a set of parallel Hammerstein time domain
filters, and the static HCF segments were computed by linear
gain regressors [13]. Theoretical THD, SINAD, SFDR and
SNR improvements were also computed in [13].

Another method in ADC post-correction is model inversion.
The two used models are Volterra and Wiener. The basic
method is composed of: a) computation of the model or
filter coefficients (Volterra filter kernels in case of the former
approach); b) derivation of the inverse model to be used
for compensation; and c) applying the correction scheme
at the ADC output to obtain the compensated output. A
theoretical investigation of the Volterra and Wiener models
was done in [16] from the starting point of analyzing the
jitter and distortion caused by an empirical sample-and-hold
circuit. Fifth order Volterra and Wiener correction models were
derived. The sampler distortion was removed using the post-
correction scheme composed of the 5th order inverse of the 5th
order Volterra model. Also, it has been shown that the Volterra
model can be derived from the Wiener model [16]. Volterra
kernels were measured using a three tone input signal on a
pipeline ADC in [17]. A frequency dependence was observed
in the Volterra kernels and a parallel Hammerstein scheme was
proposed for post-correction. In [18], the inverse Volterra filter
coefficients were derived by the least squares (LS) method
applied on an "ideal" 12-bit pipeline ADC where a controlled
INL is added to. The INL was generated by an amplifier used
in the feedback loop of the ADC. Significant improvement in
terms of signal-to-noise ratio (SNR) was achieved [18].

In this work, a model-based approach for ADC postcorrec-
tion is developed based on dynamic INL models. The INL
is modeled with respect to the code k and the frequency fm

(represented by the integer m). The main advantage of this
approach over an LUT is that it requires significantly less
parameter storage than does a traditional LUT. The dynamic
error compensation is implemented in terms of linear time-
invariant filters and static nonlinearities. The work relies on
INL models presented and characterized in [19]. The objective
of this paper is to derive a proper post-correction scheme
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Fig. 3. Ideal (solid line) and practical (dashed line) 3-bit mid-riser ADC
transfer curve. The practical ADC is compensated for gain and offset errors.
The ideal transition levels Tk coincide with the solid vertical lines, whereas,
the practical transition levels T [k] (not shown for ease of presentation)
coincide with the dashed lines.

based on the available models and to show that it results
in performance improvement when applied to a commercial
pipeline ADC working at RF. In brief, this paper derives
a scheme for dynamic post-correction for pipelined ADCs
based on a two-dimensional INL model. The post-correction
procedure is implemented in software and is used to process
ADC data collected by a state-of-the art test-bed [20]. The
paper is organized as follows: Sec. II describes the INL entity
including an outline about its modeling and estimation. Sec.
III presents the concept of ADC INL parameter correction;
furthermore, it details the post-correction schemes based on the
INL model. The experimental results employing two pipeline
ADCs (AD9430) are discussed in Sec. IV. Sec. V concludes
the work.

II. DYNAMIC INL MODELING

The ideal Tk and practical T [k] code transition levels (in
[Volt]) of an ADC are illustrated in Fig. 3. The ideal transition
level can be written in terms of the output code k of the ADC,
as [21]

Tk = Q (k − 1) + T1 [Volt] (1)

where Q [Volt] is the ideal width of a code bin that can be
taken as the ratio of the full-scale range of the ADC over the
total number of codes, i.e., Q = (Vmax−Vmin)/2N . The integer
N denotes the number of bits of the ADC. Furthermore, T1

denotes the first transition level of an ideal ADC and is equal
to Vmin + Q for the ’mid-riser’ convention or Vmin + Q/2 for
the ’mid-tread’ convention [21]. For a practical ADC subject
to a gain G and offset Vos, the INL i[k] is defined as [21];
(see also [22], [23])

i[k] =
Tk − GT [k] − Vos

Q
[LSB] . (2)

The INL in (2) is expressed in least significant bits (LSBs).
The gain and offset can be computed by different procedures as
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Fig. 5. Estimated static HCF model for the 12-bit 210 MSPS AD9430.

given in [23]. An example INL sequence of a 12-bit pipelined
ADC (that is, the AD9430) is shown in Fig. 4.

In [19], the measured INL was described by a parametric
model im,k, where m corresponds to the test frequency (that
is, fm in Hz) and k to the ADC output code:

im,k = hk + �m,k . (3)

The term hk is the HCF component, and �m,k is the dynamic
LCF component.

The HCF component hk is modeled by a set of P disjoint
segments centered around zero, whereas the LCF is modeled
by a smooth polynomial over the code range for every fre-
quency under test. The HCF model can be written as [19]:

hk
�
= hk,p = ηp k + βp (4)

for an output code k belonging to the segment p, where p =
1, . . . , P . In (4), ηp is the slope of the segment p and βp is an
offset. In Fig. 5, an example extracted HCF model is shown.
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Fig. 6. Estimated LCF model for frequencies between 30 and 90 MHz of
the 12-bit 210 MSPS AD9430.

The LCF component is modeled as an L:th-order polyno-
mial [19];

�m,k = θ0,m + k̄ θ1,m + . . . + k̄l θl,m + . . . + k̄L θL,m , (5)

for a given input frequency fm, where m = 1, . . . , M .
Furthermore, k̄ = (k − 2N−1)/(2N−1 − 1) is a normalized
ADC output code introduced to ensure numerical robustness
[19]. An example LCF model is shown in Fig 6.

The model (3)-(5) is linear in the parameters. Accordingly,
the unknown parameters may be obtained by a least-squares
fit of the measured INL data [19]. This approach is an
efficient way to compress the information regarding the INL
for effective implementation of post-correction schemes.

III. INL-BASED POST-CORRECTION

The compensation method is derived from the dynamic INL
model presented in the previous section. The post-correction
scheme is composed of two components: a static remapping of
the ADC output and a filter structure composed of linear time-
invariant filters and static nonlinearities. The setup is shown
in Fig. 7.

A. INL-Based Post-Correction

The endpoint representation for the ADC output is used in
this section. A static INL is used for illustrating the post-
correction concept prior to generalizing the compensation
procedure to dynamic correction. The transition levels of an
ideal and a practical ADC (compensated for gain and offset)
are illustrated in Fig. 3. Despite having transition levels that
deviate from the ideal ones, the digital output of a practical
ADC cannot be distinguished from the corresponding output
of an ideal ADC. Let the ADC digital output be represented
by the transition levels Tk, that is,

xk = Tk . (6)

Then, from (2)

xk = GT [k] + Vos + Q i[k] . (7)

k̄[n]
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θ0

G1(ν)

G2(ν)

GL(ν)
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p
p

p
k ∈ {Kp}
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δ1 δ2

βp η1

ηP

ηp

1 β2

P βP

Fig. 7. ADC post-correction block with ADC code k[n], as input. δ1 and
δ2 are defined as δ1 = 1/(2N−1 − 1) and δ2 = −2N−1/(2N−1 − 1).
The ADC output code k is indexed by n to indicate its time dependence. The
output is the correction term îm,k [n].

With an endpoint representation, a practical ADC outputs Tk

corresponding to the transition level T [k]. Then, the ADC
output xk is remapped to the corrected output ŝk = xk + εk

according to Fig. 1, where εk is to be determined from

ŝk = T [k] . (8)

Inserting (8) into (7), a rearrangement of terms yields

ŝk =
1
G

(xk − Vos − Q i[k]) . (9)

The gain G and offset Vos do not influence the dynamic
properties of the output. Accordingly, the correction term is
given by

εk = −Q i[k] . (10)

The correction in (10) is valid for a specific frequency corre-
sponding to the frequency of the ADC stimuli during the INL
characterization. Formally, we may distinguish the outcome
of different stimuli by adding the integer m corresponding
to frequency fm Hz. In such a case, the static i[k] in the
LUT in (10) is in turn replaced by the 2-dimensional i[m, k],
where m = 1, . . . , M and k = 1, . . . , N . The applied model-
based approach implies that the LUT i[m, k] is replaced by a
parametric model îm,k, where "̂" is used to denote the least-
squares estimated model based on the structure im,k in (3),
that is,

εk,m = −Q ĥk − Q �̂m,k . (11)

The first term in (11) is a static post-correction, whereas the
second term depends on the frequency characteristics of the
analog input.
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B. HCF Post-Correction

The P centered HCF segments mimic the INL behavior
that endures disjoint abrupt changes and are used for a
direct remapping of the ADC output. The post-correction is
illustrated in Fig. 7. The static compensation term derived from
the HCF model is given by ĥk in (4), that is,

ĥk = η̂p k + βp kp−1 ≤ k < kp (12)

where βp is a known offset, βp = −η̂p(kp + kp−1− 1)/2, and
kp are the segments borders, p = 1, . . . , P [19].

C. LCF Post-Correction

The LCF model is composed of a set of polynomials,
each of which represents measured LCF data for a certain
frequency fm in the bandwidth under test. Thus, for a sine
wave input with frequency fm, the LCF model is presented
as in (5). Examining (5), one can note that an instantaneous
(normalized) ADC code k̄ and its powers k̄l are weighted by
a frequency-dependent factor θl,m. In other words, the output
code k̄l contributes with a factor of θl,m, where the factor
depends on the ADC input. Thus, for a given ADC output
code k̄, the entity θl,m can be considered as sampled points
of a filter frequency response Gl(ν). The frequency function
Gl(ν) can be written as

Gl(νm) = θl,m where νm =
2πfm

fs
, (13)

where θl,m are real valued quantities and fs is the sampling
frequency. See Fig. 8 for an illustration. The ADC post-
correction is performed in the time domain by linear filtering
of the ADC normalized output k̄. The output of the filter is
multiplied by k̄l−1. Thus, we need to derive the time response
of the filters Gl(ν) from their respective frequency responses
given by (13). The considered frequency response θ0,m for
m = 1, . . . , M , is a set of offsets, each corresponding to a
given frequency fm. For a practical implementation, the set of
LCF polynomials is accordingly transformed into a set having

a common offset θ0; see Fig. 7. The new polynomial coeffi-
cients are derived from the old ones by the method of least-
squares. For simplicity of notation, the adjusted polynomial
coefficients are still designated as θ0 and θl,m.

The time domain pulse response of Gl(ν) can be computed
by the inverse Fourier transform based on the samples in (13).
An adequate method to compute the filter coefficients from the
sampled frequency response is to use the inverse fast Fourier
transform (IFFT) [24]–[26]. We will not go into detail on the
design of the LCF filters. Simply, the concept entails designing
a filter based on a specification in the frequency domain.
Different approaches can be found in textbooks on this topic
[24]–[26]. To continue, denoting the resulting pulse response
by gl[n] for l = 1, . . . , L, the dynamic post-correction term
−Q l̂m,k in (11) is given by

−Q θ0 − Q

L∑
l=1

(
gl[n] ∗ k̄[n]

)
k̄l−1[n] , (14)

where ∗ denotes convolution.
One may note that in the case where the LCF data is

modeled by a static polynomial, the set of equations (5)
reduces to

lk = θ0 + k̄ θ1 + . . . + k̄l θl + . . . + k̄L θL . (15)

In this case, the compensation in terms of linear filters is
replaced by a multiplication.

IV. EXPERIMENTAL VALIDATION

A. Test set-up and device under test

The INL has been characterized over a 60 MHz wide fre-
quency band ranging from 30 to 90 MHz for two samples from
the Analog Devices AD9430. The ADC output sequences are
collected for specific input frequencies spanning the bandwidth
with a frequency step of 5 MHz. The two ADC samples
are referred to as ADC1 and ADC2. The employed ADC
test setup for INL testing is described in [19]. ADC data for
INL characterization and for evaluation of the post-correction
method were collected, where the frequencies are fine-tuned to
fulfill the conditions for coherent sampling [21]. For the INL
measurements, the ADC input is slightly overdriven according
to [21] whereas the data used for post-correction is measured
at -0.5 dBFS. Information about the test bed in general can be
found in [20]. The estimated HCF and LCF models for ADC2
were shown in Figs. 5-6. The complete INL model is shown
in Fig. 9. The 104-parameter LCF model is shown in Fig. 6;
that is, L = 7 and M = 13. The P = 16 segments HCF
model is sketched in Fig. 5. Fig. 9 combines the static HCF
and dynamic LCF in the representation of the complete INL.
The parameters used for post-correction are calculated once
for each ADC, out of its INL model as indicated in Sec. III.
The obtained correction models corresponding to ADC1 and
ADC2 are used throughout the work. A question of importance
is ADC aging. We have not encountered any aging effects.
One may note that ADC1 is a several years older sample
than ADC2. Aging and temperature sensitivity in general are
not investigated in this paper. More details on the temperature
dependence of post-correction are found in [27].
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Fig. 9. Estimated INL model for frequencies between 30 and 90 MHz of
the 12-bit 210 MSPS AD9430.
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Fig. 10. SFDR improvement of a 65-MHz signal sequence.

Different figures of merit are used to characterize the behav-
ior of an ADC and its post-corrected counterpart. Among them
are INL, SFDR, SINAD, noise, intermodulation distortion
(IMD), THD or effective number of bits (ENOB) – we refer
to [21] and [23] for definitions and procedures for their
characterization. In wideband systems, the SFDR, SINAD,
noise and IMD of an ADC are the crucial parameters [21].
These parameters are considered here.

B. SFDR Improvement

The post-correction scheme was evaluated for single-tone
input signals spanning the bandwidth of use. As an illustration,
the SFDR improvement for a 65 MHz signal sequence is
shown in Fig. 10. A 13 dB SFDR improvement is achieved
whereas all harmonics are cancelled and the spurious peaks
are diminished to the noise level.

Fig. 11 summarizes the improvements in terms of SFDR
for ADC1 and ADC2. Three methods are used to compensate
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Fig. 11. SFDR improvement for ADC1 and ADC2 over the band of use.

the ADCs: the developed INL model according to Fig. 7; a
static compensation based on averaged INL data over the 30-
90 MHz band (consisting of a LUT of 2N − 1 = 4095 i[k]
entries); and the INL sequence for every input frequency (self-
calibration or a LUT of 13×(2N−1) = 53235 i[m, k] entries).
Both ADCs undergo significant improvements in SFDR over
the band of use. However, the dissimilarity between the model
compensation and the LUT differs for the two ADCs.

Considering ADC1, the INL model can perform an almost
identical correction to the dynamic LUT. The model outper-
forms the self-calibration for some singular frequencies by an
order of 0.5 to 1 dB. Self-calibration is superior by 1 dB at
the 90 MHz frequency. One can explain this by the fact that
the INL at high frequencies is quite noisy; thus, the model
cannot grasp some of the INL information, as shown in [19].
Model compensation is constantly superior to the static LUT
compensation (except at 65 and 70 MHz), although it consists
of significantly fewer parameters (120 and 4095 parameters
for the model and static LUT, respectively).

Referring to the similarity in performance between the
model correction and the dynamic LUT, we can claim that the
post-correction block based on the INL model is reconstructing
the INL prior to the compensation. Another observation from
Fig. 11 is that the INL model compensation capabilities
strongly depend on frequency (especially for ADC1). Refer-
ring to Fig. 10 and Fig. 12, one may note that the INL model
allows a reduction of harmonics and spurious amplitudes (to
some extent) for some frequencies (65 MHz for example)
whereas it represents them modestly for other frequencies (30
MHz, for example). In other words, the INL compensation has
a dissimilar impact on the harmonics and the spurious peaks
at different frequencies.

ADC2 did not encounter the higher improvements of ADC1;
however, it shows more consistent improvements over the
entire bandwidth. One can deduce when comparing the results
of the two ADCs that ADC2 is subject to a more uniform
improvement (above 4 dB) because its static HCF is more
pronounced [19]. However, the difference in performance
between the LUT and the model-based approach is larger when
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Fig. 12. SFDR improvement for the 30-MHz output sequence of ADC1
using model and LUT methods.

compared to ADC1. Referring to [19], the model was not able
to mimic the INL as well as for ADC1, which is due to the
noisier INL of ADC2. Moreover, the static part of ADC2’s
INL is more pronounced than that of ADC1, but the model is
mostly comprised of dynamic parameters.

C. SINAD and Noise Improvements

SINAD is given as the ratio of the root mean square (rms)
value of the signal to the rms of the noise and distortion [23]

SINAD = 20 log10

A√
2PNAD

, (16)

where A is the amplitude of the signal and PNAD is the rms
error

PNAD =

(
1

Ns

Ns−1∑
n=0

(x(n) − s̃(n))2
) 1

2

. (17)

Here, x(n) is the measured signal sequence, s̃(n) is the sine
wave fitted to x(n), and Ns denotes the number of samples.

A theoretical analysis of possible SINAD improvements of
the AD9430 was presented in [28] based on a mean square
error correction (MSE); i.e., correction values were computed
by minimizing the MSE between the ADC output and an
ideal sine wave. In [28], it was found that the maximum
improvement that can be achieved is 0.7 dB for a post-
correction scheme using an LUT with infinite precision.

Using the proposed model-based correction, ADC1 pre-
sented improvements between 0.1 and 0.2 dB in the band of
interest. Improvements for ADC2 spanned from 0.3 to 0.5 dB
over the bandwidth. The dynamic LUT approach achieved 0.2
to 0.3 dB improvements for ADC1, and 0.4 to 0.7 dB for
ADC2.

The noise power for all ADC output data was calculated
by removing the harmonics [21] from the ADCs output data
spectrum. It is hinted from the SINAD improvements (both
theoretically and experimentally obtained) that the noise level

TABLE I

ADC IMD IMPROVEMENTS IN DB. THE TABLE ENTRIES ’-’ DESIGNATE

WHEN THE IMD PRODUCTS ARE BELOW THE NOISE LEVEL. THE

DOMINANT IMD PRODUCT AFTER POST-CORRECTION IS INDICATED BY A

STAR.

ADC f1&f2 [MHz] f1 + f2 f2 − f1 2 f1 − f2 2 f2 − f1

ADC1 28.3 & 29.3 8.2 6.7 0.1* -1.4
ADC1 60.0 & 65.0 7.0 5.5* - -
ADC2 28.3 & 29.3 5.4 -0.1 0.6 1.1*
ADC2 60.0 & 65.0 - - - -

TABLE II

IN-BETWEEN AND OUT-OF-BAND SFDR IMPROVEMENTS.

ADC1 ADC2
f [MHz] Improvement dB f [MHz] Improvement dB

20 5.5 20 8.2
25 3.2 25 6.0
52 9.1 64 7.1
95 -0.5 95 5.7

cannot be decreased by more than 0.5 dB. ADC2 had improve-
ments of 0.2-0.3 dB with the INL-model-based compensation
scheme and up to 0.4 dB with the LUT method, whereas
ADC1 had more modest improvements in the order of 0.04
dB for both methods.

D. IMD Improvements

The IMD for both ADCs was measured for a two-tone input
with f1 = 28.3 and f2 = 29.3 MHz at -7.0 dBFS. The INL
data was not characterized for frequencies below 30MHz; thus,
the filter frequency response [refer to (13)] was not available
at this frequency range. Hence, the frequency response in
disposition (between 30 to 90 MHz) was extrapolated to those
frequencies and down to the DC level, prior to the IFFT
process. An additional two tone signal with input frequencies
f1 = 60 and f2 = 65 MHz at -7.0 dBFS was also used.
The improvements for the IMD are summarized in Tab. I,
where they are listed for the different IMD product orders.
According to the AD9430 datasheet, the IMD ratio is defined
for the highest third IMD product (i.e. 2 f1−f2 and 2 f2−f1 ).
The dominant IMD product is indicated by a star in the table.
For the first two-tone signal, the largest third intermodulation
peak happens to be at 2 f1− f2. For the two-tone test with 60
and 65 MHz, the third-order intermodulation products were
below the noise level for ADC1. Therefore, the star points at
the dominant second-order IMD product. ADC2 had all its
second- and third-order intermodulation products below noise
level for the 60 and 65 MHz input, and are thus not listed in
the table.

The third IMD products are the most important ones because
they lie near the two-tone input; thus, the method works to
reduce the IMD. However, the second IMD f1 + f2 was most
attenuated by the post-correction method (up to 8.2 dB).

E. In-Between and Out-of-Band Performance

ADC1 and ADC2 have been post-corrected for in-band
frequencies (between 30 to 90 MHz) not coinciding with the
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frequencies used for INL characterization and for out-of-band
frequencies. The improvement results are reported in Tab. II.

The in-between improvements for ADC1 and ADC2 lies
between the improvements at characterized frequencies (i.e.,
the 5 MHz separated frequencies used for INL characteriza-
tion). ADC2 had positive improvements for the out-of-band
frequencies compensated (see Tab. II).

ADC1 had positive out-of-band improvement results except
for the the 95 MHz input frequency (-0.5 dB); however, neg-
ative results are encountered if the 95 MHz sequence is com-
pensated by the ADC1 mean INL data (average LUT method)
and ADC1 90 MHz INL sequence (the negative improvements
are -2.3 and -0.1 dB). This result is not surprising because the
model is extrapolated at these frequencies; the compensations
(model and the LUTs) are poor at the end frequencies where
the improvement curve has a downward trend. Obviously the
INL data (30 to 90 MHz), and consequently its model, has no
similar features with the 95 MHz INL sequence. Measured
frequencies below 30 MHz were not available for ADC1;
instead, we post-corrected ADC2 at 20 and 25 MHz by the
filters’ block of ADC1 (cross-compensation).

One can deduce from the results that the method is useful
for post-correction and also for ADC inputs not belonging to
the training set. This is further shown below.

F. Input Level Performance

Here, SFDR improvements are investigated with respect to
the input power level for the 45 and 47 MHz frequencies
using ADC2. The performance at 45 MHz was measured at
-4, -5 and -10 dBFS and the obtained improvements in terms
of SFDR were 2.3, 4.0 and 4.9 dB, respectively. In addition,
the performance for the between-band 47 MHz signal was
measured for input levels of -5, -10, and -15 dBFS, where
the improvements were 0.2, 4.2 and 2.7 dB, respectively. The
ADC still encounters improvements for amplitudes signifi-
cantly below the nominal operation level despite the fact that
the correction method is derived based on full scale inputs.
Improvement figures also hold for the in-band frequencies (47
MHz).

G. Post-Correction with Cross-Validation of the Results

One observation is that the LCF part of the INL is quite
similar (in structure and magnitude) in the two ADCs. To
illustrate that the correction scheme is valid for several ADCs
of the same type, a cross-ADC compensation was performed;
that is, ADC1 was corrected using the ADC2 correction block
and vice versa. Fig. 13 shows the results of such a cross-
correction compared to the self-compensation, as well as an
additional curve where each of the ADCs is compensated
by only the LCF model or filters’ block of the second
ADC. The cross-compensation achieves improvements over
the entire band, although they are inferior to those of the self-
correction. However, the performance of the filter based cross-
compensation is quite similar to self-compensation except for
some given frequencies. The high improvements encountered
by ADC1 at the middle band frequencies are reduced by the
ADC2 filters’ scheme that, unlike the ADC1 filters’ block,
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Fig. 13. ADC1 and ADC2 cross-compensation.

does not favor this frequency range. The improvements of
ADC2 drop at frequencies near the edge due to the ADC1
filters’ scheme (or equivalently the ADC1 LCF model) modest
improvements at this range.

Cross-correction by the LCF block is uniformly better
than the full cross-correction because the HCF segments are
tailored for every ADC. It can occasionally outperform the
self-correction. Thus, the frequency dependence of the LCF
can be used for cross-ADC correction or for developing a
general post-correction scheme.

V. CONCLUSIONS

The concept of ADC model-based post-correction based
on the INL-model introduced in [19] proved to be a reliable
method while presenting low complexity. The developed INL-
model-based post-correction method showed similar perfor-
mance to a dynamic LUT approach.

INL modeling with respect to the frequency of the ADC
stimuli (in addition to the ADC output code k) proved to
be a versatile tool because the implicit frequency information
can be used for developing a post-correction based on linear
filtering of the ADC output. The filters demonstrated their
capability to reconstruct the INL information. Such a filter
approach is preferable to an LUT in the sense that it requires
the storage of significantly fewer parameters and needs no
additional interpolations or approximations to compensate for
input signals that differ from calibration frequencies.
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