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Abstract. We propose a computational method to comprehensively
screen for pharmacogenomic pathway simulation models. A systematic
model generation strategy is developed; candidate pharmacogenomic
models are automatically generated from some prototype models con-
structed from existing literature. The parameters in the model are auto-
matically estimated based on time-course observed gene expression data
by data assimilation technique. The candidate simulation models are
also ranked based on their prediction power measured by Bayesian infor-
mation criterion. We generated 53 pharmacogenomic simulation models
from five prototypes and applied the proposed method to microarray gene
expression data of rat liver cells treated with corticosteroid. We found
that some extended simulation models have higher prediction power for
some genes than the original models.

1 Introduction

Construction and simulation of biological pathways are crucial steps in under-
standing complex networks of biological elements in cells [4, 7, 8, 9, 13, 15, 16].
To construct simulatable models, structures of networks and chemical reactions
are collected from existing literature and the values of parameters in the model
are set based on the results of biological experiments or estimated based on
observed data by some computational method [9]. However, it is possible that
there are some missing relationships or elements in the literature-based networks.
Therefore, we need to develop a computational strategy to improve a prototype
model and create better ones that can predict biological phenomena.

To propose novel networks of genes, statistical graphical models including
Bayesian networks [3] and vector autoregressive models [5, 11] have been applied
to gene expression data. An advantage of these methods is that we can find
networks with a large number of genes and analyze them by a viewpoint of
systems. However, due to the noise and the limited amount of the data, some
parts of the networks estimated by these methods are not biologically reasonable
and cannot be validated. In this paper, we focus on another strategy. Unlike the
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statistical methods, our method can create a set of extended simulatable models
from prototype literature-based models.

There are two key points in our proposed strategy: One is that various struc-
tures of candidate simulation models are systematically generated from the pro-
totypes. The other is that, for each created model, the values of parameters
are automatically estimated by data assimilation technique [9, 16]; the values of
parameters will be determined by maximizing the prediction capability of the
model. For each of simulation models, by using data assimilation technique, we
can discover that which genes are appropriately predicted their temporal ex-
pression patterns by the candidate model. Since we consider pharmacogenomic
pathways, these genes are possibly placed on the mode-of-action of target chem-
ical compound. The results obtained by our proposed strategy could be essential
to create a larger and more comprehensive simulation model and systems biology
driven pharmacology.

To show the effectiveness of the proposed strategy, we analyze time-course
microarray data of rat liver cells treated with corticosteroid [2]. In the previ-
ous study, differential equation-based simulation models, named fifth generation
model [12], were used and predictable expression patterns by this model were
discussed for 197 genes selected by clustering analysis [2]. In this paper, we
systematically generated 53 simulatable models from five prototypes and deter-
mined which 58 models suitably predict expression pattern of each gene. Finally,
we show a comprehensive pharmacogenomics pathway screening that elucidates
associations between genes and simulation models.

The paper is organized as follows: In Section 2, we elucidate a systematic
method to create extended simulation models from prototype ones. The param-
eter estimation based on data assimilation technique with particle filter [9, 16]
and a model selection method [6, 10] are also presented. We apply the pro-
posed pharmacogenomic pathway screening strategy to constructed 58 models
and time-course gene expression data of rat liver cells with corticosteroid in
Section 3. Discussions are given in Section 4.

2 Method

2.1 Corticosteroid Pharmacokinetic and Pharmacogenomics Models

We first introduce a framework of pharmacokinetic and pharmacogenomic mod-
els employed in Jin et al. [2]. Under this framework, a pharmacokinetic model
that represents a plasma concentration of methylprednisolone (MPL) in
nanograms per milliliter, CMPL, is given by

CMPL = C1 · e−λ1t + C2 · e−λ2t, (1)

where C1, C2, λ1 and λ2 are coefficients for the intercepts and slopes and Jin et
al. [2] set by C1 = 39, 130 (ng/ml), C2 = 12, 670 (ng/ml), λ1 = 7.54 (h−1) and
λ2 = 1.20 (h−1). These values are obtained from other biological experiments
than gene expression profilings that we will use for parameter estimation of
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Fig. 1. The left figure and right figure shows core model for corticosteroid pharma-
cokinetics and prototype pharmacogenomic models with extensions respectively. In
the right figure, the dashed lines with circle are the candidate relations to be extended
and BS is the intermediate biosignal.

pharmacogenomic models described in the latter section. We thus use these four
values for the corticosteroid pharmacokinetics.

In existing literature, corticosteroid pharmacogenomic pathways were inves-
tigated [2]. We show the core part of the pathway that includes corticosteroid,
represented by D, and its receptor, R, in Figure 1 (left). Here, mRNA(R) de-
notes the mRNA of the receptor, DR is cytosolic drug-receptor complex and
DR(N) is drug-receptor complex in nucleus. The reaction parameters in Figure
1 (left) were set according to Sun et al. [12] and summarized in Table 1 (left).
The dynamics of the pathway can be represented by four differential equations
given by

dmRNA(R)
dt

= ks Rm ·
{

1 − DR(N)
IC50 Rm + DR(N)

}

−kd Rm · mRNA(R), (2)
dR
dt

= ks R · mRNA(R) + Rf · kre · {DR(N) + DR}
−kon · D · R − kd R · R, (3)

dDR
dt

= kon · D · R − (kT + kre) · DR, (4)

dDR(N)
dt

= kT · DR − kre · DR(N). (5)

Based on the fundamental model represented in Figure 1 (left), we want to
know how DR and DR(N) affect other genes in transcriptional level. As a basic
pharmacogenomic model for finding relationship between drug-receptor complex
and other genes, we consider extending five pharmacogenomic models [2] shown
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Table 1. Parameter Setting for the core model and for the constructed pharmacoge-
nomic models

Fixed Parameter Value Unit

ks Rm 2.90 fmol/g/h
kd Rm 0.1124 fmol/g/h

IC50 Rm 26.2 fmol/mg
kon 0.00329 l/nmol/h
kT 0.63 h−1

kre 0.0572 h−1

Rf 0.49
ks R 1.2 h−1

kd R 0.0572 h−1

mRNA0
R 25.8 fmol/g

R0 540.7 fmol/mg

Estimated Parameter Model Unit

k sm All l/nmol/h
k dm All l/nmol/h

l/nmol/h
S or IC 50 All or

fmol/mg
k sBSm C l/nmol/h
k dBSm C l/nmol/h
k sBS C, DE l/nmol/h
k dBS C l/nmol/h

l/nmol/h
S bs or IC 50bs C, DE or

fmol/mg
S dr C l/nmol/h

mRNA BS0 C fmol/mg
BS0 DE fmol/mg

in Figure 1 (right). The original five pharmacogenomic pathways [2] have the
same elements as the core pharmacokinetic pathway, DR and DR(N), and rep-
resent relationships between corticosteroid and its downstream genes. However,
more variations can be considered as candidates of pharmacogenomic pathway
of corticoid. Therefore, from these five models, we automatically constructed 53
models with the following three rules.

(i) If a regulator, DR(N), DR or BS, activates (represses) the synthesis (degra-
dation) of mRNA, a revised model tests to repress (activate) the degradation
(synthesis) of mRNA. However, we do not consider combination effects of
them.

(ii) If two regulators regulate the same element, we also consider either two
regulator model or one regulator model that is defined by removing one of
two edges.

(iii) If two regulators regulate the same element, we consider either independent
regulation model that employs additive form or cooperative regulation model
with the product of the regulators.

We create these rules for generating simulation models that covers all patterns
of regulations when we do not change the number of elements such that mRNAs
and proteins in each simulation model.

From Model A: One model with three parameters (“k sm”, “k dm” and “S
or IC 50”) was generated by applying the rule (i). These models include only
mRNA and can simply represent activation of mRNA expression.

From Model B: One model with three parameters (“k sm”, “k dm” and “S
or IC 50”) was generated by applying the rule (i). These models include only
mRNA and can simply represent repression of mRNA expression.
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Fig. 2. Six representative pharmacogenomic simulation models (From top left to right,
Model A, B, C12, DE10, DE12 and DE20). These models have high predictive power
for many of 8799 rat liver genes. These models are described by Cell Illustrator 5.0.

From Model C: First, 15 models with 11 or 10 parameters (“k sm”, “k dm”,
“S or IC 50”, “k sBSm”, “k dBSm”, “k sBS”, “k dBS”, “S bs or IC 50bs”, “S dr”,
and “initial values of mRNA BS” and “BS”) were generated by applying the rule
(i) and (ii). These models include mRNA, BS, and mRNA BS. Since DR is in-
cluded only in Model C, we evaluate the necessity of the presence of DR by creat-
ing models without DR (rule (ii)). Therefore, 16 models that do not have DR were
additionally created and finally we have 31 models from Model C.

From Model DE: 20 models with 5 or 6 parameters (“k sm”, “k dm”, “S or
IC 50”, “k sBS”, “S bs” or “IC50 bs”, and “initial value of BS”) were generated
by applying the rules (i), (ii) and (iii). These models include mRNA and BS.
We unified the notation of Model D and E, because these two models are similar
and the extended models are hard to be separated. We constructed 16 models,
4 models and 2 models according to rule (i), (ii) and (iii) respectively. In these
simulation models, the parameters, “k sBSm”, “k sBS”, “k sm”, “BS0 (initial
concentration of BS)” and “mRNA0

BS (initial concentration of mRNABS)” were
fixed in the original work [2], but we estimate these five parameters together
with the other parameters.

For these 53 and original 5 pharmacogenomic models, we estimate the values
of parameters by using time-course microarray gene expression data from liver
cells of rats received glucocorticoid. We also evaluate which models can predict
the expression profiles of each gene; it enables us to find better pharmacogenomic
models for each gene. For this purpose, a mathematical technique called data
assimilation for parameter estimation and model selection is described in the
next section.
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2.2 Data Assimilation for Parameter Estimation and Model
Selection

To perform simulations by the pharmacogenomic models described in the pre-
vious section, we implemented them using Cell Illustrator [8], a software for
biological pathway simulation based on hybrid functional Petri net with exten-
sions. Six representative models in Cell Illustrator are shown in Figure 2.

Let yj [t] be the expression value of jth gene at time t and let f(x, θ) be a
simulation model, where x is a vector of variables in the simulation model and θ
is a parameter vector described in the previous section. For example, x includes
the concentration of drug-recepter complex, DR. The simulation variable x will
be updated by a system model:

xt = f(xt−1, θ) + vt , t ∈ N , (6)

where xt is the vector of values for the simulation variables at time t, vt rep-
resents innovation noise and N is the set of simulation time points and set
N = {1, ..., T}. To connect the simulation model with the observed data, we
formulate an observation model:

yj [t] = h(xt) + wt, t ∈ Nobs, (7)

where h is a function that maps simulation variables to the observation and wt is
an observation noise. Here, Nobs is the set of time points that we measured gene
expression data. We should note that Nobs is a subset of N . In our case, since xt

contains a variable representing the abundance of mRNA of the gene, i.e., the
jth gene in Eq. (7), the function h takes out the element of xt corresponding to
yj [t]. The model constructed by combining Eq.s (6) and (7) is called a nonlinear
state space model. To simplify the notation, we assume Nobs = N , however, it
is easy to generalize the theory described below to the case of Nobs ⊂ N .

The parameter vector θ is estimated by the maximum likelihood method that
chooses the values of θ that maximize the likelihood

L(θ|YjT ) =
∫

p(x0)
T∏

t=1

p(yj [t]|xt)p(xt|xt−1, θ)dx1 · · ·dxT ,

where YjT = (yj [1], ..., yj [T ]). For the computation of the likelihood, we use
the particle filter algorithm [9]. For details of the particle filter algorithm for
biological pathway model, we refer Nagasaki et al. [8] and Koh et al. [4]. In the
parameter estimation, we restricted the values of parameters so that they take
positive and not so large from a biological point of view.

For the comparison of multiple simulation models f1, ..., fM , we employ
Bayesian information criterion (BIC) [10]. For the mth model, fm, BIC is defined
by

BIC(fm) = −2 logL(θ̂m|YjT ) + νm log T,
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where θ̂m is the maximum likelihood estimate of the vector of parameters in
fm and νm is the dimension of θm. Therefore, for the jth gene, the optimal
simulation model, f∗, can be obtained by

f∗ = argmin
fm

BIC(fm).

The model ranking for a gene can also be determined by the values of BIC.

3 Pharmacogenomic Pathway Screening for
Corticosteroid 58 Models

3.1 Time-Course Gene Expressions

We analyze microarray time-course gene expression data of rat liver cells [2].
The microarray data were downloaded from GEO database (GSE487). The time-
course gene expressions were measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12,
18, 30, 48 and 72 hours (16 time-points) after receiving glucocorticoid. The data
at time 0 hour are control (non-treated). The number of replicated observations
is 2, 3 or 4 at a time point.

3.2 Results of Pathway Screening with Data Assimilation

First, we focused on 197 genes that were identified by the previous work [2] as the
drug-affected genes by the clustering analysis. For the genes in each cluster, we
explored which simulation models have better prediction power and the results
are summarized in Figure 3. According to the results obtained previously [2, 12],
the genes in the clusters 1, 2, 3, 4, 5 and 6 were reported to be well predicted
by the Models “A”, “A”, “C”, “D or E”, “cell-cell interaction model”and “B, D
or E”, respectively. This result indicated that the genes in the cluster 1, 2 have
almost same expression profiles. We should note that the cell-cell interaction
model is not included in the five prototype models.

Figure 3 shows the results for each cluster and the gene expression profiles.
We can summarize the results as follows:

Cluster 1: The previous research [2] suggested that these genes are well pre-
dicted by Model A. However, interestingly, in our results, Model A was selected
few times. On the other hand, Models D and E and their extended models were
selected many times. We presume the reason is that, particularly in the first
part, the profiles of these genes are not so simple.

Cluster 2: These genes are also suggested to be suitably predicted with Model
A. Like cluster 1, similar results, however, were obtained; for these genes, Model
A was not selected in many times.

Cluster 3: The previous research [2] suggested that these genes fitted to
Model C. However, in our results, not so many genes in cluster 3 are well pre-
dicted by Model C, but they fit to Models D and E and their extended models.
We guess the reason is that Model C has more parameters than necessary. There-
fore, in BIC, the second term, i.e., penalty for the number of parameters, takes
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large value and BIC cannot be small, so Model C and its extended versions were
not selected. The same things can be said from the other works [1, 14].

Cluster 4: These genes were suggested to be fit with Models D or E. In our
results, Model B and its extension and extension of Model A fit well, and Model
E is especially fit, but Model D is not selected much. Instead, some extended
versions of Models D and E fit well. The genes in cluster 4, we can see that some
expression profiles do not vary widely. Such genes are well fit to Models A, B
and its extensions, because of these simplicity. On the other hand, Models D and
E and their extended models can follow complex behaviors and were selected in
many times for other genes.

Cluster 5: Since these genes were judged to be fitted with the cell-cell in-
teraction model that is not included in the five prototypes, these genes are not
covered by our prepared models. However, in practice, the extended models of
Model DE showed high predictive power for these genes. The expression pro-
files of these genes show sudden increasing patterns. Actually, our models can
represent such dynamic patterns of gene expression profiles.

Cluster 6: These genes were suggested to be fit with Models B, D and E,
but most genes were selected as the extended models of Models D and E. We
presume the reason is that Models D and E are flexible and can follow various
types of complex expression patterns.

We next illustrate the results of pharmacogenomic pathway screening for
whole 8799 rat liver genes. Figure 4 shows the results with heatmap of the
selected top 5 models for each gene and time-course expression profiles of genes
that are specific for Models C6, C12, DE10 and DE12. For each gene, we test
the significance of the top ranked simulation model by using Smirnov–Grubbs
test. If the expression profile of a gene was predicted very well by several simula-
tion models, we cannot find pharmacogenomic mechanism specific for the gene.
However, if only one model could predict the behavior of a gene, the model is a
strong candidate that represents corticosteroid’s mode-of-action for the gene. In
such a case, we say the gene is specific for the above model.

Unlike the genes from the clustering analysis, two prototype models, Models
A and B, were selected as top 5 in many times. We presume the reason is that, in
the whole gene, there are some genes whose expression patterns are somewhat
flat (not show clear dynamic patterns) and Models A and B can follow them
with a small number of parameters. Although the prototype D and E models
were not selected many times, their extended models were frequently selected as
top 5. This suggests that Models D and E can work well as the seed models for
generating other simulation models with higher predictive power. The amount
of genes obtained by this test varied widely depending on the models. From
ModelA1, B1, C6, C12, C16, DE2, DE10, DE12 and DE20, we can obtained
some specific genes. Interestingly, the number of genes fitting to Model C is
relatively low, but many specific genes are obtained by Model C. It suggest that
there are some expression profiles that can be represented by only the one of
Model C. We then perform a functional analysis in order to reveal enriched gene
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Fig. 3. Top 5 simulation models for each gene in a cluster defined by Jin et al. [2] are
represented by a heat map. The green elements means that the model well fits to the
gene expression profiles. The histograms of the frequencies of the models selected as
top 5 are shown in the middle panels, and gene expression profiles are also shown in
the right panels.

functions for each set of Model-specific genes. For the functional analysis, we
used Ingenuity and the results can be summarized as follows:

ModelC 6: These genes have function of “Cellular Assembly and Organiza-
tion” and “RNA Post–Transcriptional Modification” and relate to “Protein Ubiq-
uitination Pathway”.ModelC 12: These genes are most interesting genes. These
have “Amino acid Metabolism”, “Nucleic Acid Metabolizm”, “Cell Death”, “Cel-
lular Grows and Proliferation”, “Drug Metabolism” and “Lipid Metabolism” and
so on. Additionally, these genes relate to “Aldosterone Signaling Epithelial Cells”
and “Glucocorticoid Recepter Signaling”. Beneficial effects of Corticosteroid is
inhibition of immune system and adverse effect is numerous metabolic side ef-
fects, including osteoporosis, muscle wasting, steroid diabetes, and others. There-
fore, these result in ModelC 12 is biologically significant because these genes may
have a function concerning metabolic side effects. ModelDE 10: These genes are
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Fig. 4. The result of comprehensive pharmacogenomic pathway simulation model
screening. Heat map for top 5 models is shown from 58 simulation models for 8799
rat liver genes. Time-course expression profiles are shown for genes that are specific for
Models C6, C12, DE10 and DE12.

also interesting. The functions are “Neurological Disease”, “Organismal Injury
and Abnormalities” and “Immunological Disease”, and are affected by “Graft–
versus–Host Disease”, “Autoimmune Thyroid Disease, “T Helper Cell Differenti-
ation” and so on. Because of the above therapeutic and adverse effects of CS, the
function of these genes are also significant concerning immune system function.
ModelDE 12: The functions of these genes are “Cellular Development”, “Car-
diovascular Disease”, and “Hematological Disease”. These are also affected by
“EIF2 signaling”.

We consider that such genes are important among 8799 genes, because these
were estimated to have a similar pathway and it may be difficult to collect these
genes by clustering analysis simply using the gene expression profile.

4 Discussion

In this paper, we proposed a computational strategy for automatic generation
of pharmacogenomic pathway simulation models from the prototype simulation
models that are built based on literature information. The parameters in the con-
structed simulation models were estimated based on the observed time-course
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gene expression data measured by dosing some chemical compound to the tar-
get cells. We constructed totally 58 pharmacogenomic simulation models on a
pathway simulation software, Cell Illustrator, and used data assimilation tech-
nique for parameter estimation. For pathway screening, we introduce Bayesian
information criterion for pathway model selection in the framework of data as-
similation. We performed comprehensive pathway screening for constructed 58
pharmacogenoimc simulation models with gene expression data of rat liver cells
treated with glucocorticoid.

The prototype five models fit to somewhat large number of genes well. How-
ever, there are more extended models that can predict the dynamic patterns
of gene expressions better than the prototypes. This suggests that, from the
prototype simulation models, we can automatically construct various extended
simulation models and some of them could have higher prediction ability than the
originals. Also, we performed a functional analysis to the sets of Model-specific
genes identified by the Smirnov-Grubbs test. As shown above, some meaningful
functions were found. We would like to discuss the relationship between Model-
specific genes and enriched function in future paper with biological evidences.

We consider the followings as our future research topics. We simply use the
pharmacokinetic model described in Section 2. However, we can generated many
candidates and may construct true model from observed data by data assim-
ilation technique. Also, we may combine multiple simulation models to create
bigger one. As we mentioned before, data analysis based on statistical methods
like Bayesian networks can produce network information that would be affected
by a chemical compound. It should be useful if we combine the results from
statistical data analysis with pharmacogenomic pathway simulations.
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