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Posterior Consistency of Bayesian Quantile
Regression Based on the Misspecified

Asymmetric Laplace Density

Karthik Sriram *, R.V. Ramamoorthi � and Pulak Ghosh �

Abstract. We explore an asymptotic justification for the widely used and em-
pirically verified approach of assuming an asymmetric Laplace distribution (ALD)
for the response in Bayesian Quantile Regression. Based on empirical findings,
Yu and Moyeed (2001) argued that the use of ALD is satisfactory even if it is
not the true underlying distribution. We provide a justification to this claim by
establishing posterior consistency and deriving the rate of convergence under the
ALD misspecification. Related literature on misspecified models focuses mostly on
i.i.d. models which in the regression context amounts to considering i.i.d. random
covariates with i.i.d. errors. We study the behavior of the posterior for the mis-
specified ALD model with independent but non identically distributed response in
the presence of non-random covariates. Exploiting the specific form of ALD helps
us derive conditions that are more intuitive and easily seen to be satisfied by a
wide range of potential true underlying probability distributions for the response.
Through simulations, we demonstrate our result and also find that the robustness
of the posterior that holds for ALD fails for a Gaussian formulation, thus providing
further support for the use of ALD models in quantile regression.

Keywords: Asymmetric Laplace density, Bayesian Quantile Regression, Misspec-
ified models, Posterior consistency

1 Introduction

Quantile Regression is a way to model different quantiles of the dependent variable as
a function of covariates (see Koenker and Bassett Jr 1978; Koenker 2005). Given the
response variable Yi and covariate vector Xi (i = 1, 2, . . . , n), this involves solving for
β in the following problem.

min
β

n∑
i=1

ρτ (Yi −XT
i β),

where ρτ (u) = u(τ − I(u≤0)) with I(·) being the indicator function and 0 < τ < 1.
This can be formulated as a maximum likelihood estimation problem by assuming an
asymmetric Laplace distribution (ALD) for the response, i.e. Yi ∼ ALD(., µτ

i , σ, τ),
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where

ALD(y;µτ , σ, τ) =
τ(1− τ)

σ
exp

{
− (y − µτ )

σ
(τ − I(y≤µτ ))

}
, (1)

for −∞ < y <∞.

The ALD is a generalization of the Laplace double-exponential distribution, which is
obtained as a special case by taking τ = .5. It is a skewed distribution for τ ̸= 0.5.
The parameter µτ happens to be the τ th quantile of the ALD. For some other prop-
erties of ALD, see Yu and Zhang (2005). Yu and Moyeed (2001) proposed the idea
of Bayesian quantile regression by assuming ALD for the response. Based on empiri-
cal findings, they argued that the use of ALD is satisfactory even if it is not the true
underlying distribution. Since then, this method has been used in many problems in-
volving Bayesian quantile regression (e.g. Yu et al. 2005; Yue and Rue 2011). However,
to our knowledge, no theoretical justification has been put forward in support of this
empirical finding. In this paper, we bridge the gap. We look at the problem where the
likelihood is specified to be ALD in the presence of covariates, while the true underlying
distribution may be different. We focus on the case of non-random covariates and study
posterior consistency of the parameters under misspecification. The arguments can be
easily extended to the case of random covariates. While the empirical findings of Yu
and Moyeed (2001) restrict to the case of location models with i.i.d. errors, we do not
impose such a restriction and attempt to derive more general conditions on the true
underlying distribution. In other words, we allow the distribution of the response to be
independent but non-identically distributed (i.n.i.d.).

More formally, suppose for observations i = 1, 2, . . . , n, Yi is the univariate response
and Xi is the vector of p-dimensional covariates, whose components are non-random.
Let τ ∈ (0, 1) be fixed. The specified model for the response conditional on Xi is
given by Yi ∼ ALD(., µτ

i , σ, τ) with µτ
i = α +XT

i β, where α is univariate and β is p-
dimensional. We denote by f(i,α,β,σ)(yi), the density function of ALD(., α+XT

i β, σ, τ)
at yi. However, the true (but unknown) probability distribution of (Yi given Xi) is P0i

with the τ th conditional quantile given by Qτ (Yi|Xi) = α0 + XT
i β0. This also means

that (α0,β0) are the true values for the parameters (α,β). We note that the other
quantiles and hence the distributions P0i need not have an identical form across i as
illustrated in section 3.3. We fix the parameter σ to be constant and without loss of
generality at 1. We later comment on the case when σ is also endowed with a prior.
Let Π(·) be a prior on the parameters (α,β) ∈ Θ where Θ ⊆ ℜ1+p (i.e. the (p+1)
dimensional Euclidean space).

Typically in misspecified models the posterior distribution concentrates on a neigh-
borhood of f(i,α∗,β∗,1) that has the minimum Kullback-Leibler (KL) divergence from
the true density p0i. It will be seen in proposition 1 that in the ALD case, the minimum
Kullback-Leibler divergence is attained at α = α0 and β = β0, which in turn yields
consistency for the parameters of interest, namely, (α,β). Suppose Un ⊂ Θ, n ≥ 1 are
open sets such that (α0,β0) ∈ Un. Then the posterior probability of the set U c

n (i.e.
the complement of Un) under the specified likelihood is given by,
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Π (U c
n|(Y1,X1), (Y2,X2), . . . , (Yn,Xn)) =

∫
Uc

n

∏n
i=1 f(i,α,β,1)(Yi)dΠ(α,β)∫

Θ

∏n
i=1 f(i,α,β,1)(Yi)dΠ(α,β)

.

In this paper, we derive sufficient conditions under which

Π (U c
n|(Y1,X1), (Y2,X2), . . . , (Yn,Xn))→ 0 a.s. [P ], (2)

where P is the true product measure (P01 × P02 × · · · × P0n × . . . ).

Taking Un = U,∀ n, (i.e. a fixed neighborhood for all n) gives posterior consis-
tency and choosing a suitable sequence of Un shrinking to (α0,β0) gives the rate of
convergence. We establish the main results by writing

Π (U c
n|(Y1,X1), (Y2,X2), . . . , (Yn,Xn)) =

∫
Uc

n

∏n
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α,β)∫

Θ

∏n
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α,β)

. (3)

The idea is to then show that under certain conditions, ∃ d > 0 such that the
following inequality holds.

∞∑
n=1

E
[
(Π (U c

n|(Y1,X1), (Y2,X2), . . . , (Yn,Xn)))
d
]
<∞.

Markov’s inequality along with Borel-Cantelli lemma would then imply that

Π (U c
n|(Y1,X1), (Y2,X2), . . . , (Yn,Xn))→ 0 a.s. [P ].

Most studies of posterior consistency of model parameters under misspecification
have been in i.i.d. models, which in the regression context amounts to considering
random covariates with i.i.d. errors. An early work on this topic is Berk (1966). An
exhaustive study of misspecification is carried out by Bunke and Milhaud (1998) and
Kleijn and van der Vaart (2006). Bunke and Milhaud (1998) study parametric models.
Kleijn and van der Vaart (2006) study L1 convergence of the posterior, again in the
i.i.d. case. Shalizi (2009) considers general non i.i.d. case. Since his results are in a
general context, his conditions for the special model considered in this note turn out
to be stringent. Besides, his results do not hold for the case of improper priors, which
arise in the ALD models naturally as non-informative priors. More recently, Kleijn and
van der Vaart (2012) have studied the Bernstein-von-Mises theorem for misspecified
models.

In this note our focus is on the ALD model. This model is widely used and empirical
studies support consistency of the posterior, or the formal posterior in the case of
improper priors, even when ALD is not the true model. We study the behavior of



482 Posterior Consistency of Bayesian Quantile Regression

the posterior for the misspecified ALD model with i.n.i.d. response in the presence
of non-random covariates. The specific form of the ALD likelihood allows for a more
direct derivation leading to simpler, more intuitive conditions and easily extends to the
case of improper priors. We thus provide justification for the use of ALD models in
quantile estimation and also provide an explanation for the consistency phenomenon
observed empirically. Our note extends the earlier results to the non i.i.d. case in the
context of ALD models. Our choice of ALD models was dictated by their wide use in
applications. Besides, its mathematical tractability provides simple conditions on the
“true distributions”.

Our methods do have points of contact with Kleijn and van der Vaart (2006) and
Ghosal and van der Vaart (2007) but do not directly follow from them. The fixed design
misspecified model introduces some complexities. Another issue of interest is when there
is a prior on σ. At a technical level, the KL minimizer now depends on i and a suitable
point of posterior concentration is not obvious. We believe that the result in this case
suggests a possible point of consistency in misspecified models in the general non i.i.d.
case.

In what follows, we will first present our key assumptions and the main results
in section 2. In section 3, we discuss some applications and demonstrate our results
through simulations in section 4. We provide the detailed proof of our results in section
5. We briefly discuss the case of the σ parameter in section 6 and then conclude in
section 7.

2 Assumptions and Main Results

In this section, we present our assumptions and the main results. By way of notation,
probabilities P (·) and expectations E(·) will always be with respect to the true under-
lying product measure. To keep the exposition simple, we will work with the case of a
univariate non-random covariate. The result is easily extendable to the case of multiple
covariates as we remark later. The density function of ALD(., α + βXi, σ, τ) at yi will
be denoted by f(i,α,β,σ)(yi) and Xi will be a univariate non-random covariate. Again,
for clarity of exposition we work with σ = 1 and later discuss the case when a prior may
be imposed on σ. Π(·) is a prior on the parameters (α, β) and the parameter space is
denoted by Θ. Without loss of generality, we consider open neighborhoods for (α, β) of
the form Un = {(α, β) : |α−α0| < ∆n, |β− β0| < ∆n}, where ∆n > 0. The dependence
of the neighborhood on the data size n allows for the derivation of posterior convergence
rates along with posterior consistency.

Our assumptions broadly fall into three categories: assumptions on the prior, as-
sumptions on the covariates and assumptions on the true model P . The first assumption
is on the prior. As to be expected, the assumption on the prior for obtaining the rate
of convergence needs to be a bit stronger than that for just posterior consistency. For
clarity, it further helps to separate out the case of posterior consistency under improper
priors. Hence, we split the assumption into three parts to cover these cases.
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Assumption (1a) (posterior consistency under proper prior): Π(·) is proper and
every open neighborhood of (α0, β0) has positive Π measure.

Assumption (1b) (posterior consistency under improper prior): Π(·) is im-
proper, but with a proper posterior and every open neighborhood of (α0, β0) has
positive Π measure.

Assumption (1c) (posterior consistency rate): Π(·) is proper with a probability
density function with respect to Lebesgue measure, that is continuous and positive
in a neighborhood of (α0, β0).

The next assumption is on the covariates.

Assumption 2: ∃ M > 0, such that |Xi| ≤M ∀ i ≥ 1.

Such an assumption is not unreasonable in most practical situations. For example, in a
clinical trial, Xi may be capturing different levels of an administered drug.

The rest of the assumptions involve both the true distribution and the covariates.
The next assumption essentially assumes that the quantile is unique. Since the ob-
jective of the model is to estimate the τ th quantile, it is reasonable to make such an
assumption. Otherwise, the model will not be estimable. A possible way to state
uniqueness would be to say that, ∀ ∆ > 0, P (0 < Yi − α0 − β0Xi < ∆) ̸= 0. Similarly,
if the Xi’s are all constant, then again the model will not be estimable. Therefore,
it is reasonable to require that {Xi, for i ≥ 1} take on at least two distinct values
each infinitely many times. Without loss of generality (by adjusting the location of the
Xi’s) this would mean that ∃ ϵ0 > 0 such that lim infn→∞

1
n

∑n
i=1 I(Xi>ϵ0) > 0 and

lim infn→∞
1
n

∑n
i=1 I(Xi<−ϵ0) > 0. Such a condition is used by Amewou-Atisso et al.

(2003). It so happens that we need a combination of the above two types of assump-
tions. These ideas are captured in assumption 3.

Assumption 3: The below conditions hold.

(i) ∃ ϵ0 > 0 such that

lim inf
n→∞

1

n

n∑
i=1

I(Xi>ϵ0) > 0 and lim inf
n→∞

1

n

n∑
i=1

I(Xi<−ϵ0) > 0.

(ii) ∃ C > 0 such that for all sufficiently small ∆ > 0,

P (0 < Yi − α0 − β0Xi < ∆) > C∆, ∀ i

and

P (−∆ < Yi − α0 − β0Xi < 0) > C∆, ∀ i.
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If the random variable (Yi − α0 − β0Xi) has a density that is continuous and positive
in a neighborhood of 0, then ∃ Ci > 0 such that

P (0 < Yi − α0 − β0Xi < ∆) > Ci∆

for small enough ∆. The second condition in assumption 3 is a stronger requirement
where such an inequality needs to hold uniformly across i. However, such a condition
will be satisfied if the density of (Yi − α0 − β0Xi) turns out to be a nice function w.r.t.
Xi. For example, it is satisfied if the density can be bounded below by a positive con-
tinuous function in Xi.

The next assumption is somewhat technical and enables the application of Kol-
mogorov’s Strong Law of Large Numbers (SLLN) for independent random variables.

Assumption 4: For Zi = Yi − α0 − β0Xi,

(a) lim sup
m→∞

1

m

m∑
i=1

E (|Zi|) <∞

(b)
∞∑
i=1

E
(
|Zi|2

)
i2

<∞.

The last assumption is to ensure that the Kullback-Leibler divergence is well de-
fined between the ALD family and the true probability distribution. Interestingly, this
assumption mainly comes into play when we extend the result to the case of improper
priors. The true conditional density of Yi given Xi is denoted by p0i.

Assumption 5: E
(
log p0i(Yi)

f(i,α0,β0,1)(Yi)

)
<∞, ∀ i.

Now, we state the main theorems of our paper. For both the theorems, the set
up is as follows. {Yi, i = 1, 2, . . . , n} are independent observations of a univariate
response and {Xi, i = 1, 2, . . . , n} are 1-dimensional non-random covariates. P0i denotes
the true (but unknown) probability distribution of Yi, with the true τ th conditional
quantile given by Qτ (Yi|Xi) = α0 + β0Xi. Suppose however that the specified model
for Yi is ALD(., µτ

i , σ = 1, τ), where µτ
i = α+ βXi. Π(·) is a prior on (α, β).

Theorem 1. Under the set up described above, let U = {(α, β) : |α−α0| < ∆, |β−β0| <
∆}. Let assumptions 2, 3 and 4 hold. Also, suppose either

A. assumption (1a) holds, or

B. assumption (1b) holds along with assumption 5.

Then Π(U c/Y1, Y2, . . . , Yn)→ 0 a.s. [P ].
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Theorem 2. Under the set up described above, let Un = {(α, β) : |α− α0| < ∆n, |β −
β0| < ∆n}. The following hold.

(a) Let ∆n = Mn−δ where 0 < δ < 1/2. Then under assumptions (1c), 2, 3 and 4,
we have

Π(U c
n/Y1, Y2, . . . , Yn)→ 0 a.s. [P ].

(b) Let ∆n =Mn/
√
n, where Mn →∞ under assumptions (1c), 2, 3 and 4, we have

Π(U c
n/Y1, Y2, . . . , Yn)→ 0 in probability [P ].

The proofs of the theorems and the accompanying lemmas are presented in detail in
section 5.

Remark 1. It is straight forward to generalize the theorems to accommodate multiple
non-random covariates. The conclusions will hold with the same assumptions as in
section 2 with some minor modifications. Say, Xi = (Xi1, Xi2). In assumption 2, we
just need to bound each component of the covariate vector. Assumption 3 needs to be
written as follows.

(i) ∃ ϵ0 > 0 such that lim infn→∞
1
n

∑n
i=1 I(Si) > 0 , where I(·) is the indicator

function and (Si) denotes any one of the conditions: (Xi1 > ϵ0, Xi2 > ϵ0) or
(Xi1 > ϵ0, Xi2 < −ϵ0) or (Xi1 < −ϵ0, Xi2 > ϵ0) or (Xi1 < −ϵ0, Xi2 < −ϵ0).

(ii) ∃ C > 0 such that for all sufficiently small ∆ > 0,

P
(
0 < Yi − α0 −XT

i β0 < ∆
)
> C∆, ∀ i

P
(
−∆ < Yi − α0 −XT

i β0 < 0
)
> C∆, ∀ i.

3 Applications

In this section, we will demonstrate that the results of the previous section will work
for a wide range of possiblities for the true underlying likelihood. Basically, we will
investigate part (ii) of assumption 3 and assumption 4. Assumptions 1, 2 and part (i)
of assumption 3 are either on the prior or the covariates, which we will assume to hold
for the purpose of this discussion. It is worth noting that the required assumptions are
typically satisfied if the probabilities and expectations involved turn out to be bounded
smooth functions of the non-random covariates. Here we analyze two classes of models,
namely location models and scale models. We also look at an example of a model that
is both a location and scale model.
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3.1 Location Models

Let Yi = α0 + β0Xi + ei, where the error terms {ei, i = 1, 2, . . . , n} are i.i.d. from
some true unknown distribution P0 with density p0 and its τ th quantile at 0. Note that
Zi = Yi − α0 − β0Xi = ei are i.i.d. Assumption 3 (ii) will be satisfied if the P0 has
a density that is continuous and positive in a neighborhood of 0. In particular, the
normal distribution with location shifted so as to make the τ th quantile zero or even
mixtures of such distributions would satisfy this condition. Similarly, one can consider
location shifted gamma, beta, etc. Assumption 4 is satisfied if the distribution P0 has
finite variance.

3.2 Scale Models

An important feature of our result is that it can cover cases beyond location models
for the true underlying likelihood. To demonstrate this, let us consider the case where

the density function of Yi conditional on Xi is given by p0

(
yiµ0

l(Xi)

)
· µ0

l(Xi)
, where p0 is

a probability density function on (0,∞) with τ th quantile=µ0 and l(Xi) = α0 + β0Xi.
We assume that l(Xi) > 0. Note that the τ th quantile of Yi given Xi is l(Xi). A gamma
density would be an example of such a model.

We will investigate assumption 3 (ii) by considering one of the sub conditions, since
the other one would be similar. Since assumption 2 implies l(Xi) ≤ |α0| + |β0|M , we
have,

P (0 < Yi − l(Xi) < ∆)

= P0

(
µ0 < U <

∆µ0

l(Xi)
+ µ0

)
≥ P0

(
µ0 < U <

∆µ0

|α0|+ |β0|M
+ µ0

)

where U ∼ P0 whose density is p0. Clearly, assumption 3 (ii) will be satisfied if p0
is continuous and positive in a neighborhood of µ0. For assumption 4, we just note
that Zi = (U − µ0) l(Xi)/µ0 and hence |Zi| ≤ |U − µ0| · (|α0|+ |β0|M)/µ0. Hence, the
condition is satisfied if U has a finite second moment.

3.3 A Normal Location Scale Model

Here we demonstrate that the true likelihood can be more complicated than a purely
location or purely scale model. Let Yi ∼ P0i = N(l(Xi) − ρτσi, σ

2
i ), where l(Xi) =

α0 + β0Xi and ρτ is the τ th quantile of the standard normal distribution. We assume
that the σi can in general vary across i but are bounded, i.e., 0 < σi < σ ∀ i. Then the
τ th quantile of Yi is l(Xi).

For assumption 3 (ii), we again argue with one of the sub conditions since the
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argument for the other is similar.

P (0 < Yi − l(Xi) < ∆)

= Φ

(
∆

σi
+ ρτ

)
− Φ(ρτ )

≥ Φ

(
∆

σ
+ ρτ

)
− Φ(ρτ )

where Φ(·) is the standard normal distribution function. Since the standard normal
density is continuous and positive in any neighborhood of ρτ , assumption 3 (ii) is
satisfied. To check assumption 4, note that Zi = (S − ρτ )σi, where S is the standard
normal random variable. Since σi is bounded, assumption 4 would be satisfied.

4 Simulation

We empirically verify the results of this paper by simulating from four different models
and checking whether ALD based quantile regression indeed leads to reasonable results.
We include two covariates (X1, X2) with X1 being continuous and X2 being 0-1 valued.
For each model, conditional on (X1, X2) the τ = 75th quantile is given by α0+β01X1+
β02X2 where (α0, β01, β02) = (1, 2, 3). For the Bayesian estimation, a normal prior with
mean =0 and variance=100 is used for each of the quantile regression coefficients. This
kind of a weakly informative prior is commonly used in practice. The four models
conditioned on X1, X2 can be described as follows:

1. Location shifted normal : Y ∼ N(α0+β01X1+β02X2−ρτ , 1) where ρτ = ρ.75
is the 75th percentile of standard normal distribution.

2. Location shifted gamma : Y = α0 + β01X1 + β02X2 − ρτ + e, where e ∼
Gamma(scale = 1, shape = 1) and ρτ is the τ th quantile of e.

3. Scaled gamma : Y ∼ Gamma(scale = ρτ

α0+β01X1+β02X2
, shape = 2) where ρτ is

the τ th quantile of Gamma(scale = 1, shape = 2).

4. Location shifted and scaled normal : Y ∼ N(α0 + β01X1 + β02X2 − ρτ |α0 +
β01X1 + β02X2|, |α0 + β01X1 + β02X2|2).

Bayesian estimation of the ALD model with the above mentioned prior can be done
by formulating a Markov Chain Monte Carlo (MCMC) scheme. To facilitate a simple
formulation of the MCMC scheme, we use the representation of ALD as a scaled mixture
of normals (see Kozumi and Kobayashi 2011). Table 1 shows the 2.5th percentile, mean
and the 97.5th percentile of the posterior distribution of the intercept term, covariates
X1 and X2. In order to get a feel for the convergence of the estimates to the true
parameter value, the estimation is done for different data sizes starting from as small
as 100 data points to 25000 data points. For each case, the estimation is based on 1000
MCMC simulations after the burn-in period.
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Table 1: Bayesian estimation using ALD

Intercept X1 X2 N
Model Actual Q2.5 Mean Q97.5 Actual Q2.5 Mean Q97.5 Actual Q2.5 Mean Q97.5

1.00 0.32 1.03 1.53 2.00 1.86 2.03 2.26 3.00 2.79 3.15 3.51 100
1.00 0.42 0.70 1.01 2.00 1.99 2.09 2.18 3.00 2.67 2.83 2.98 500

Location 1.00 0.99 1.16 1.34 2.00 1.90 1.96 2.01 3.00 2.94 3.06 3.19 1,000
Shifted 1.00 0.82 0.91 0.98 2.00 2.02 2.04 2.07 3.00 2.88 2.94 3.00 5,000
Normal 1.00 1.06 1.12 1.19 2.00 1.95 1.97 1.99 3.00 2.95 2.99 3.04 10,000

1.00 1.01 1.06 1.11 2.00 1.97 1.99 2.00 3.00 2.95 2.99 3.03 15,000
1.00 0.96 1.01 1.05 2.00 1.99 2.00 2.02 3.00 2.96 2.98 3.01 25,000
1.00 0.18 0.80 1.34 2.00 1.95 2.10 2.27 3.00 2.21 2.63 3.08 100
1.00 0.98 1.30 1.62 2.00 1.78 1.88 1.97 3.00 2.79 3.02 3.26 500

Location 1.00 1.05 1.27 1.51 2.00 1.84 1.91 1.98 3.00 2.68 2.81 2.94 1,000
Shifted 1.00 0.91 1.02 1.12 2.00 1.97 2.00 2.03 3.00 2.90 2.97 3.04 5,000
Gamma 1.00 1.03 1.11 1.19 2.00 1.94 1.97 2.00 3.00 2.95 3.00 3.05 10,000

1.00 0.91 0.98 1.04 2.00 1.99 2.01 2.03 3.00 2.94 2.98 3.02 15,000
1.00 1.02 1.06 1.11 2.00 1.96 1.98 1.99 3.00 2.98 3.01 3.05 25,000
1.00 -3.68 -0.10 3.68 2.00 1.48 2.64 3.82 3.00 -0.47 1.60 3.66 100
1.00 -1.75 -0.51 0.87 2.00 2.17 2.61 3.04 3.00 1.52 2.24 2.94 500

Scaled 1.00 0.74 1.59 2.45 2.00 1.34 1.61 1.90 3.00 3.29 3.96 4.71 1,000
Gamma 1.00 0.60 0.98 1.38 2.00 1.87 1.99 2.13 3.00 3.10 3.42 3.73 5,000

1.00 0.79 1.07 1.35 2.00 1.93 2.02 2.12 3.00 2.98 3.23 3.46 10,000
1.00 0.70 0.95 1.20 2.00 1.93 2.01 2.10 3.00 2.98 3.17 3.35 15,000
1.00 0.82 1.00 1.22 2.00 1.91 1.98 2.04 3.00 2.91 3.05 3.18 25,000
1.00 -2.89 1.92 6.19 2.00 0.74 2.10 3.52 3.00 0.23 2.93 6.12 100
1.00 -1.32 1.32 3.76 2.00 1.60 2.30 3.08 3.00 0.04 1.88 3.71 500

Location 1.00 0.00 1.30 2.63 2.00 1.37 1.81 2.25 3.00 1.65 2.76 3.95 1,000
and 1.00 0.25 0.89 1.50 2.00 1.87 2.07 2.29 3.00 2.52 2.97 3.47 5,000
Scale 1.00 0.86 1.35 1.81 2.00 1.77 1.93 2.09 3.00 2.35 2.72 3.07 10,000
Normal 1.00 0.72 1.10 1.48 2.00 1.87 1.99 2.12 3.00 2.62 2.93 3.23 15,000

1.00 0.86 1.12 1.43 2.00 1.89 1.98 2.07 3.00 2.73 2.96 3.19 25,000

For smaller data sizes, as expected, we see that the distance between the extreme
percentiles is larger. However, as the data size increases the distance between the
extreme percentiles narrows down towards the true parameter value. The location shift
model is the simplest form for the true likelihood. In these cases (models 1 and 2), the
convergence happens much faster. This is the type of misspecification considered by Yu
and Moyeed (2001) in their empirical analysis. However, our results go beyond location
models. We can see that posterior estimates from Bayesian quantile regression based on
ALD converge to the true values even in the case when the true underlying likelihood
is a scale or location-scale model (models 3 and 4).

Finally, we demonstrate the importance of the property from proposition 1, that
the minimum Kullback-Leibler divergence of ALD from the true likelihood is achieved
at the true parameter values (α0,β0). In order to see this, we carried out Bayesian
quantile regression using a Gaussian likelihood instead of ALD. The approach is to
assume that the likelihood of Yi is a standard normal density with location adjusted
so that its τ th quantile is α0 +XT

i β0. Bayesian estimation of models 1 to 4 was done
with this new likelihood specification instead of ALD. Table 2 shows the estimate of
intercept, covariates X1 and X2 under the Gaussian formulation. Clearly, for model 1
this formulation is indeed correct and in that case the parameter estimates do converge
to the true value showing more or less similar performance as the ALD case. However,
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Table 2: Bayesian estimation using Gaussian likelihood (instead of ALD)

Intercept X1 X2 N
Model Actual Q2.5 Mean Q97.5 Actual Q2.5 Mean Q97.5 Actual Q2.5 Mean Q97.5

1.00 0.62 1.23 1.82 2.00 1.79 1.96 2.15 3.00 2.63 3.02 3.36 100
1.00 0.57 0.85 1.13 2.00 1.97 2.06 2.15 3.00 2.55 2.75 2.91 500

Location 1.00 1.00 1.20 1.41 2.00 1.89 1.96 2.02 3.00 2.74 2.87 3.01 1,000
Shifted 1.00 0.84 0.93 1.03 2.00 1.99 2.02 2.05 3.00 2.96 3.02 3.08 5,000
Normal 1.00 0.93 1.00 1.06 2.00 1.98 2.00 2.02 3.00 2.98 3.03 3.07 10,000

1.00 0.96 1.02 1.08 2.00 1.97 1.99 2.01 3.00 2.98 3.01 3.05 15,000
1.00 0.97 1.01 1.06 2.00 1.98 2.00 2.01 3.00 2.98 3.01 3.03 25,000
1.00 0.37 0.94 1.50 2.00 1.95 2.12 2.28 3.00 2.38 2.75 3.09 100
1.00 1.21 1.53 1.81 2.00 1.84 1.93 2.03 3.00 2.84 3.03 3.22 500

Location 1.00 1.18 1.40 1.60 2.00 1.92 1.98 2.04 3.00 2.78 2.93 3.06 1,000
Shifted 1.00 1.20 1.29 1.38 2.00 1.96 1.99 2.02 3.00 2.92 2.98 3.04 5,000
Gamma 1.00 1.22 1.29 1.36 2.00 1.98 2.00 2.02 3.00 2.95 3.00 3.04 10,000

1.00 1.28 1.33 1.39 2.00 1.97 1.99 2.01 3.00 2.92 2.95 2.99 15,000
1.00 1.30 1.34 1.38 2.00 1.97 1.99 2.00 3.00 2.97 3.00 3.03 25,000
1.00 -1.26 0.36 1.95 2.00 1.51 2.06 2.63 3.00 0.07 1.38 2.67 100
1.00 -0.12 0.92 2.01 2.00 1.17 1.51 1.83 3.00 1.81 2.51 3.24 500

Scaled 1.00 0.46 1.24 2.00 2.00 1.28 1.52 1.76 3.00 1.53 2.12 2.71 1,000
Gamma 1.00 0.66 1.07 1.49 2.00 1.48 1.60 1.73 3.00 1.77 2.05 2.32 5,000

1.00 0.98 1.29 1.61 2.00 1.44 1.54 1.63 3.00 2.19 2.38 2.57 10,000
1.00 1.28 1.51 1.73 2.00 1.39 1.46 1.53 3.00 2.03 2.17 2.31 15,000
1.00 1.13 1.32 1.51 2.00 1.46 1.52 1.58 3.00 2.09 2.21 2.32 25,000
1.00 -1.31 0.51 2.25 2.00 0.51 1.15 1.77 3.00 -0.95 0.67 2.18 100
1.00 -1.20 0.26 1.70 2.00 0.21 0.68 1.18 3.00 -1.70 -0.55 0.59 500

Location 1.00 -1.48 -0.13 1.20 2.00 0.61 1.04 1.49 3.00 0.20 1.20 2.15 1,000
and 1.00 -0.28 0.38 1.05 2.00 0.66 0.87 1.09 3.00 0.63 1.11 1.58 5,000
Scale 1.00 0.35 0.87 1.38 2.00 0.56 0.71 0.87 3.00 0.34 0.69 1.02 10,000
Normal 1.00 0.38 0.79 1.27 2.00 0.58 0.73 0.86 3.00 0.53 0.80 1.08 15,000

1.00 0.64 1.01 1.38 2.00 0.53 0.65 0.76 3.00 0.73 0.96 1.18 25,000

unlike ALD, for the misspecified normal likelihood in the case of models 2, 3 and 4,
the Kullback-Leibler divergence is not minimized at the true parameter values. For
model 2, it can be checked that the Kullback-Leibler divergence is minimized for the
true values of the slope parameters but not the intercept. Correspondingly, we see that
the parameter estimates for the intercept do not converge to the true value while those
of the slope parameters do. While the estimates for X1 and X2 converge to the true
parameter values in the case of models 1 and 2, they break down for the case of scale and
location-scale models (3 and 4). Therefore, the Kullback-Leibler divergence minimizing
property of ALD seems to play a crucial role.

5 Details of the Proof of the Main Results

Here, we present the proof of the theorems presented in section 2. To keep the ex-
position simple, we will work with the case of a univariate non-random covariate. In
the discussion that follows, we will often work with the log-ratio of ALD likelihood.
The first lemma gives some identities and inequalities involving this ratio that are used
throughout the paper.
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Lemma 1. Let bi = (α − α0) + (β − β0)Xi, Zi = Yi − α0 − β0Xi, Z
+
i = max(Zi, 0)

and Z−
i = max(−Zi, 0). Then, the following identities and inequalities hold true.

(a) log
(

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)

= 1
σ .


−bi(1− τ), if Yi ≤ min(α+ βXi, α0 + β0Xi)

(Yi − α0 − β0Xi)− bi(1− τ), if α0 + β0Xi < Yi ≤ α+ βXi

biτ − (Yi − α0 − β0Xi), if α+ βXi < Yi ≤ α0 + β0Xi

biτ, if Yi ≥ max(α+ βXi, α0 + β0Xi)

(b)
∣∣∣log ( f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)∣∣∣ ≤ |bi|/σ
(c) log

(
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)
≤ |Zi|/σ

(d) If |Xi| <=M then
∣∣∣log ( f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)∣∣∣ ≤ (|α− α0|+ |β − β0|M)/σ

(e) log
(

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)
= 1

σ ·

{
−bi(1− τ) + min(Z+

i , bi), if bi > 0

biτ +min(Z−
i ,−bi), if bi ≤ 0

We skip the proof of lemma 1 as it easily follows after some algebra. Note that
lemma 1 holds for any (α′, β′) in place of (α0, β0).

Lemma 2. Let bi = (α − α0) + (β − β0)Xi and Zi = Yi − α0 − β0Xi. The following
identities and inequalities hold true.

(a) E

{
log

(
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)}
= E

(
(Zi − bi)

σ
I(0<Zi<bi)

)
+ E

(
(bi − Zi)

σ
I(bi<Zi<0)

)
.

(b) E

{
log

(
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)}
≤ 0.

Further, equality is achieved if α = α0 and β = β0.

(c) E

{
log

(
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)}
≤ − bi

2σ
P

(
0 < Zi <

bi
2

)
I(bi>0) +

bi
2σ
P

(
bi
2
< Zi < 0

)
I(bi<0).

Proof. It follows from lemma 1(a) that when α0 + β0Xi < α+ βXi,

log

(
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)

)
= −bi(1− τ)

σ
I(Yi≤α0+β0Xi) +

(Yi − α− βXi)

σ
I(α0+β0Xi<Yi≤α+βXi)

+
biτ

σ
I(Yi>α0+β0Xi).
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Taking the expectation given Xi on both sides of the above equation and noting that
α0 + β0Xi is the τ th quantile of P (Yi|Xi) and a change of variable gives the result in
(a). The argument is similar for the case α0 + β0Xi > α + βXi. (b) follows from (a)
since the expressions inside the expectation in both terms are negative. For (c), note
that, if bi > 0,

(Zi − bi)I(0<Zi<bi) < (Zi − bi)I(0<Zi<
bi
2 )
< −bi

2
I
(0<Zi<

bi
2 )
.

The case bi < 0 follows similarly. 2

Lemma 2 leads to the interesting consequence that for the family of ALD densities
{f(i,α,β,1), (α, β) ∈ Θ}, the Kullback-Leibler divergence w.r.t. the true likelihood p0i is
minimized for α = α0 and β = β0. This is recorded in the next proposition.

Proposition 1. If assumption 5 holds then,

inf
(α,β)∈Θ

E

{
log

(
p0i(Yi)

f(i,α,β,1)(Yi)

)}
≥ E

{
log

(
p0i(Yi)

f(i,α0,β0,1)(Yi)

)}
.

Proof. The result is an immediate consequence of lemma 2 and the following identity

E

{
log

(
p0i(Yi)

f(i,α,β,1)(Yi)

)}
= E

{
log

(
p0i(Yi)

f(i,α0,β0,1)(Yi)

)}
+ E

{
log

(
f(i,α0,β0,1)(Yi)

f(i,α,β,1)(Yi)

)}
.

2

Next is another easy lemma to approximate the numerator of equation (3) over
compact sets.

Lemma 3. Let E be a compact subset of Θ ⊆ ℜ2 and assumption 2 hold. For a δ > 0,
0 < d < 1, let {Aj : 1 ≤ j ≤ J(δ)} be squares of area ( δ

1+M )2 required to cover E. Then
for (αj , βj) ∈ Aj, the following inequality holds.

E


(∫

E

n∏
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α, β)

)d


≤
J(δ)∑
j=1

E
(

n∏
i=1

f(i,αj ,βj ,1)(Yi)

f(i,α0,β0,1)(Yi)

)d

· endδ · (Π(Aj))
d

 .

Proof. Let (αj , βj) ∈ Aj . Then ∀ (α, β) ∈ Aj using part (d) of lemma 1 (with (αj , βj)
in place of (α0, β0)) we get

log

(
f(i,α,β,1)(Yi)

f(i,αj ,βj ,1)(Yi)

)
≤ |α− αj |+ |β − βj |M < δ.
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Therefore, we have, for each j,∫
Aj

∏n
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α, β) =

∏n
i=1

f(i,αj,βj,1)
(Yi)

f(i,α0,β0,1)(Yi)
·
∫
Aj

∏n
i=1

f(i,α,β,1)(Yi)

f(i,αj,βj,1)
(Yi)

dΠ(α, β)

≤
∏n

i=1

f(i,αj,βj,1)
(Yi)

f(i,α0,β0,1)(Yi)
· enδ ·Π(Aj).

We thus have,

E
{∫

E

∏n
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α, β)

}d

≤ E
{∑

j

(∏n
i=1

f(i,αj,βj,1)
(Yi)

f(i,α0,β0,1)(Yi)

)
· enδ ·Π(Aj)

}d

≤
∑J(δ)

j=1

{
E
(∏n

i=1

f(i,αj,βj,1)
(Yi)

f(i,α0,β0,1)(Yi)

)d
· endδ · (Π(Aj))

d

}
.

The last inequality follows because (
∑
ti)

d ≤
∑
tdi for 0 < d < 1, ti > 0. 2

To establish the desired convergence result for Π(U c
n|Y1, . . . , Yn) we split the set U c

n

as U c
n =

∪8
j=1Wjn (similar to Amewou-Atisso et al. 2003), where

W1n = {(α, β) : α− α0 ≥ ∆n, β ≥ β0}
W2n = {(α, β) : α− α0 ≥ ∆n, β < β0}
W3n = {(α, β) : α− α0 < −∆n, β ≥ β0}
W4n = {(α, β) : α− α0 < −∆n, β < β0}
W5n = {(α, β) : α ≥ α0, β − β0 ≥ ∆n}
W6n = {(α, β) : α < α0, β − β0 ≥ ∆n}
W7n = {(α, β) : α ≥ α0, β − β0 < −∆n}
W8n = {(α, β) : α < α0, β − β0 < −∆n}.

Then, it is enough to show the result for each of Π(Wjn|Y1, . . . , Yn). Towards this,
we split the parameter space of (α, β) into two parts as G∪Gc such that G is a compact
set and Π(Gc|Y1, . . . , Yn)→ 0 a.s.[P ].

We will prove the result for W1n. The argument is similar for other Wjn.

Let B
(1)
in = −∆n · P

(
0 < Zi <

∆n

2

)
· I(Xi>ϵ0), with ϵ0 as in assumption 3.

Lemma 4. Let G ⊆ Θ be compact and assumption 2 hold. Then ∃ 0 < d < 1 such
that ∀ (α, β) ∈ G ∩W1n,

E

{
n∏

i=1

(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)d
}
≤ ed·

∑n
i=1 B

(1)
in .

Proof. From the inequality ∀ t < 1, et < 1/(1 − t) we have for t < 1/2, et − 1 <
t/(1− t) < 2t.
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Since G is compact, |α − α0| and |β − β0| are bounded. Hence using lemma 1 (d)
and assumption 2, ∃ d > 0 such that

d ·
∣∣∣∣log( f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)∣∣∣∣ < 1/2 ∀ i.

Therefore, we get

E

{(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)d}
≤ Ee

d·log
(

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)

< 1 + 2d · E
[
log
(

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)]
.

When Xi > ϵ0 and (α, β) ∈ W1n, we have bi > 0 and using the bound from part (c) of
lemma 2,

E
{
log
(

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)}
≤ B

(1)
in

2
.

Also from (b) of lemma 2, E
{
log
(

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)}
≤ 0 for all Xi. Therefore, we get

E

{(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)d}
≤ 1 + dB

(1)
in .

Note that B
(1)
in < 0. The result follows by taking product of the left hand side (L.H.S.)

over i, using independence of Y1, Y2, . . . , Yn and the inequality 1 + t ≤ et for t < 0. 2

The next two lemmas help construct a specific compact subset of the parameter
space outside of which the posterior probability goes to zero almost surely.

Lemma 5. Let Π(·) be proper and assumptions 2, 3 and 4 hold. Then for j =
1, 2, . . . , 8, ∃ a compact set Gj ⊂ Θ, uj > 0 such that for sufficiently large n,∫

Gc
j∩Wjn

e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β) ≤ e−nuj .

Proof. We will prove the result for the set W1n. The argument is similar for other sets
Wjn for j=2,. . . ,8. Recall that W1n = {(α, β) : α − α0 ≥ ∆n, β ≥ β0}. Let ϵ0 be as in
assumption 3 and Zi = Yi − α0 − β0Xi.

Let C0 =
4 lim supm→∞

1
m

∑m
i=1E(|Zi|)

(1− τ) lim infm→∞
1
m

∑m
i=1 I(Xi>ϵ0)

.

Note that assumption 3 in particular implies that the denominator is well defined
and assumption 4 ensures that the numerator is well defined. Now let A = Bϵ0 = 2C0

and define

G1 = {(α, β) : (α− α0, β − β0) ∈ [0, A]× [0, B]}.
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Clearly G1 is compact. Now if (α, β) ∈ Gc
1 ∩ W1n then either (α − α0) > A or

(β − β0) > B. Further, if Xi > ϵ0 then in the former case we have bi = (α − α0) +
(β − β0)Xi > A and in the latter case we would have bi > Bϵ0. So, in either case when
Xi > ϵ0, we have bi > 2C0. We can write

n∑
i=1

log

(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)

=

n∑
i=1

log

(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)
I(Xi>ϵ0) +

n∑
i=1

log

(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)
I(Xi≤ϵ0).

Now, applying part (e) of lemma 1 to the first term in the right hand side (R.H.S.)
and part (c) to the second term (for (α, β) ∈ Gc

1 ∩W1 ), for sufficiently large n we have,

n∑
i=1

log

(
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)

)

≤

(
−2C0(1− τ)

n∑
i=1

I(Xi>ϵ0) +

n∑
i=1

Z+
i I(Xi>ϵ0) +

n∑
i=1

|Zi|I(Xi≤ϵ0)

)

≤ −nC0(1− τ) lim inf
m→∞

1

m

m∑
i=1

I(Xi>ϵ0) + 2n lim sup
m→∞

1

m

n∑
i=1

E {|Zi|}

≤ −nC0(1− τ)
2

lim inf
m→∞

1

m

m∑
i=1

I(Xi>ϵ0).

The last but one inequality follows by using assumption 4, which allows the application
of the SLLN on the sequence {|Zn|} and the last step follows due to our specific choice
of C0. Now, the result follows by using propriety of prior and taking

u1 =
C0(1− τ)

2
lim inf
m→∞

1

m

m∑
i=1

I(Xi>ϵ0).

2

Lemma 6. Let assumptions 2, 3 and 4 hold. Also suppose either assumption 1a or
1c holds. Then for each j = 1, 2, . . . , 8, ∃ a compact set Gj ⊂ Θ such that

Π(Wjn ∩Gc
j |Y1, . . . , Yn)→ 0 a.s. [P ].

Proof.

Π(Wjn ∩Gc
j |Y1, . . . , Yn) =

∫
Gc

j∩Wjn
e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β)∫
Θ
e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β)

.
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Lemma 5 implies that enuj/2I ′1n → 0 a.s. [P ]. To prove the lemma, it is therefore
enough to show that enuj/2I ′2n → ∞ a.s. [P ].

Let ϵ = uj/4 and M > 0 be as in assumption 2. Define

Vϵ = {(α, β) : |α− α0| < ϵ/(1 +M), |β − β0| < ϵ/(1 +M)}.

Using part (d) of lemma 1, note that for (α, β) ∈ Vϵ, we have

n∑
i=1

log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
> −nϵ.

If follows that I ′2n >
∫
Vϵ
e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β) > e−nϵΠ(Vϵ). Note that Π(Vϵ) >
0 holds under either of the assumptions 1a and 1c. Hence,

enuj/2I ′2n = e2nϵI ′2n > enϵΠ(Vϵ)→ ∞ a.s. [P ].

2

We summarize the final results as a proposition.

Proposition 2. Let assumption 2 hold and either assumption 1a or 1c hold. Let
δn > 0 and Vδn = {(α, β) : |α − α0| < δn/(1 +M), |β − β0| < δn/(1 +M)}. Suppose
G ⊆ Θ is compact and W1n = {(α, β) : α − α0 ≥ ∆n, β ≥ β0}. Then, the following
inequalities hold.

1. ∃ 0 < d < 1 and some constant R > 0 such that

E


(∫

W1n∩G

n∏
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α, β)

)d
 ≤ ed∑n

i=1 B
(1)
in · endδn ·R2/δ2n

where B
(1)
in = −∆n · P

(
0 < Zi <

∆n

2

)
· I(Xi>ϵ0).

2. ∫
Θ

e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β) ≥ e−nδn ·Π(Vδn).

Proof. From lemma 3 and lemma 4, we have

E


(∫

W1n∩G

n∏
i=1

f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi)
dΠ(α, β)

)d
 ≤ ed·∑n

i=1 B
(1)
in · endδn · J(δn).

The last step uses the propriety of prior from assumptions 1a or 1c. Further, we can
choose R > 0 to be large enough such that G is contained within a square of area
R2/(1 +M)2 with J(δn) < R2/δ2n.

(2) follows a similar argument as in the proof of lemma 6. 2
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Now, we prove the main theorems in the paper.

Proof of theorem 1.

We first prove it when Π is a proper prior. Taking ∆n = ∆, δn = δ for all n, lemma 5
shows that we can restrict to the case W ∩G where W =W1n and G is compact. From
proposition 2, we have that ∃ 0 < d < 1 such that, for sufficiently large n,

E
{
(Π(W ∩G|Y1, . . . , Yn))d

}
≤ R2

δ2(Π(Vδ))d
· e−d∆·

∑n
i=1{P(0<Zi<

∆
2 )·I(Xi>ϵ0)} · e2ndδ.

Note that Π(Vδ) > 0 by assumption (1a). Without loss of generality, we can assume
∆ to be sufficiently small, so that we have P

(
0 < Zi <

∆
2

)
> C∆

2 from assumption 3

(ii). So, by setting L = C
2 lim infm→∞

1
m

∑m
i=1 I(Xi>ϵ0) and choosing δ = L∆2

8 , we get
(for sufficiently large n),

E
{
(Π(W1n ∩G1|Y1, . . . , Yn))d

}
≤ C ′e−

ndL∆2

4 , for some constant C ′.

The R.H.S. of the above inequality is summable. Hence Markov’s inequality along with
the Borel - Cantelli lemma gives posterior consistency .

If we further make assumption 5, posterior consistency generalizes easily to the case
when the prior Π is improper but has a formal posterior and Π(U) > 0 for all neigh-
borhoods U of (α0, β0). Recall the formal posterior density using a single observation
is given by

f(1,α,β,1)(Y1)dΠ(α, β, 1)∫
Θ
f(1,α,β,1)(Y1)dΠ(α, β, 1)

and for any set U , the probability given by the formal posterior is

Π(U |Y1) =

∫
U
f(1,α,β,1)(Y1)dΠ(α, β, 1)∫

Θ
f(1,α,β,1)(Y1)dΠ(α, β, 1)

.

We argue that with P measure 1, the posterior density Π(·|Y1) exists and satisfies
assumption (1a). The set E, where the formal posterior is undefined has measure 0
under the “marginal” distribution of Y1 and hence has measure 0 under some f(1,α,β,1).
Since the ALD densities are positive, this set also has 0 measure under all f(1,α,β,1) and
in particular when α = α0, β = β0. Assumption 5 ensures that f(1,α0,β0,1) dominates p.
Thus on Ec, a set of P measure 1, the formal posterior given by the above expression
exists. Next, if U is a neighborhood of (α0, β0) then since Π(U) > 0 and the posterior
density is positive everywhere, Π(U |Y1) > 0 whenever Y1 ∈ Ec.

2
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Remark 2. The result for improper priors is particularly interesting in view of theorem
1 of Yu and Moyeed (2001) where it is shown that the posterior based on ALD is always
well defined for a flat prior w.r.t. (α, β) (i.e. Π(α, β) ∝ 1 ). Therefore, this would
imply in particular that posterior consistency in theorem 1 will hold when the prior
w.r.t. (α, β) is flat.

Proof of theorem 2.
Note that

Π(U c
n|Y1, . . . , Yn)→ 0 ⇐⇒ Π(Wjn|Y1, . . . , Yn)→ 0 ∀ j = 1, 2, . . . , 8.

We will work with the case of W1n. The argument is similar for j = 2, . . . , 8. Further
by lemma 6, it is enough to work with W1n ∩G1 where G1 is compact. Let,

Π(W1n ∩G1|Y1, . . . , Yn) =
∫
W1n∩G1

e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β)∫
Θ
e
∑n

i=1 log
f(i,α,β,1)(Yi)

f(i,α0,β0,1)(Yi) dΠ(α, β)

.

Let δn ↓ 0 be a sequence (to be chosen later). Define

Vδn = {(α, β) : |α− α0| < δn/(1 +M), |β − β0| < δn/(1 +M)}.

Under assumption (1c), Π(·) has a density function that is positive and continuous
in a neighborhood of (α0, β0). We can conclude that the density of Π is bounded away
from 0 in a small neighborhood of (α0, β0) and hence for some constant K > 0,

Π(Vδn) > Kδ2n for sufficiently large n. (4)

Now, proposition 2 implies that there exists 0 < d < 1 such that, for sufficiently large
n,

E
{
(Π(W1n ∩G1|Y1, . . . , Yn))d

}
≤ R2

Kdδ2+2d
n

· e−d∆n·
∑n

i=1{P(0<Zi<
∆n
2 )·I(Xi>ϵ0)} · e2ndδn .

Further, by assumption 3 (ii), we have that for sufficiently large n,

E
{
(Π(W1n ∩G1|Y1, . . . , Yn))d

}
≤ R2

Kdδ2+2d
n

· e−
d∆n

2 ·C∆n

∑n
i=1 I(Xi>ϵ0) · e2ndδn

≤ R2

Kdδ2+2d
n

· e−
n∆2

ndL

2 · e2ndδn

where L =
C

2
lim inf
m→∞

1

m

m∑
i=1

I(Xi>ϵ0).
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By choosing δn =
L∆2

n

8 (for sufficiently large n and some constant C ′), we get

E
{
(Π(W1n ∩G1|Y1, . . . , Yn))d

}
≤ C ′

(n∆2
n)

2+2d
e−

dL·n∆2
n

4 .

When ∆n =Mn−δ for 0 < δ < 1/2, the R.H.S. of the above inequality is summable.
Hence by Markov’s inequality and the Borel-Cantelli lemma, we can reach conclusion
(a) of theorem 2, which is Π(W1n ∩G1|Y1, . . . , Yn)→ 0 a.s.[P ].

When ∆n = Mn/
√
n where Mn → ∞, we can assume without loss of general-

ity that Mn/
√
n → 0. Hence for sufficiently large n, we will still have the above

inequality. In this case we can conclude that the R.H.S. of the above inequality con-
verges to zero. Hence by Markov’s inequality, we can reach conclusion (b) , which is
Π(W1n ∩G1|Y1, . . . , Yn)→ 0 in probability [P ]. 2

6 Posterior Consistency with a Prior on σ

In applications involving Bayesian quantile regression using ALD, it is not uncommon
to endow the parameter σ with a prior (e.g. Yue and Rue 2011; Hu et al. 2012). Since
our focus is the estimation of a particular quantile of the true underlying distribution,
the specific choice of σ parameter within the misspecified ALD has no direct interpre-
tation. The advantages or disadvantages of using priors for σ are not well documented
in literature and may be worthy of further research. However, in this paper, we seek
to answer the question as to whether endowing a prior on σ would still preserve pos-
terior consistency for (α, β). At a technical level, this provides an interesting example
for the study of posterior consistency in the i.n.i.d. set up where the Kullback-Leibler
divergence minimizing density from the specified family varies with i. There are two
natural approaches to this problem. One way would be to work with a marginal like-
lihood obtained by integrating out the ALD density with respect to the prior on σ.
Another approach would be to work out the consistency property of the combined vec-
tor (α, β, σ). We prefer the latter approach as it would allow us to exploit the form of
the ALD density.

Let Π(·) be a prior on the parameters (α, β, σ) ∈ ℜ2 × (0,∞) which we write as
Π(α, β|σ)Π(σ). We denote the support of Π(σ) by Θσ and write Θ for the parameter
space of (α, β). In misspecified models we would expect that the posterior distribution
concentrates on a neighborhood of f(i,α∗,β∗,σ∗) that has the minimum Kullback -Leibler
divergence from the true density p0i. It has been seen in proposition 1 that in the ALD
case with a fixed σ, the minimum Kullback-Leibler divergence is attained at α = α0

and β = β0. It can be easily checked that the minimum KL is attained at (α0, β0) even
if the parameter space is expanded to include σ. However, the parameter σ itself poses
a challenge as the Kullback-Leibler minimizing value would depend on i. It turns out
that the appropriate choice for the point of consistency for σ is given by

σ0 = arg max
σ∈Θσ

{
lim

m→∞

1

m

m∑
i=1

E (log fi,α0,β0,σ(Yi))

}
. (5)
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Note that

lim
m→∞

1

m

m∑
i=1

E (log fi,α0,β0,σ(Yi)) = log

(
τ(1− τ)

σ

)
− C∗

σ
(6)

where C∗ = lim
m→∞

1

m

m∑
i=1

E(Zi(τ − I(Zi≤0))).

It is easy to check that C∗ and hence σ0 is well defined if part (a) of assumption 4 is
strengthened as below.

Assumption 4′: For Zi = Yi − α0 − β0Xi,

(a) lim
m→∞

1

m

m∑
i=1

E (|Zi|) and lim
m→∞

1

m

m∑
i=1

E (Zi) are finite

(b)

∞∑
i=1

E
(
|Zi|2

)
i2

<∞.

We consider neighborhoods of the form U = U1×U2, where U1 = {(α, β) ∈ Θ : |α−α0| <
∆, |β − β0| < ∆} and U2 = {σ ∈ Θσ : |σ − σ0| < ϵ(∆)}. Note that the neighborhood of
σ is expressed in terms of a specific monotonic function ϵ(·), such that ϵ(δ) ↓ 0 as δ ↓ 0.
This is of course without loss of generality and is done to simplify the arguments. The
function ϵ(·) is defined as follows. Let

η(σ) = log
(σ0
σ

)
− C∗

(
1

σ
− 1

σ0

)
where C∗ is as in equation (6). Note that η(σ) takes the value 0 at σ = σ0 and is
decreasing on either side of σ0. Hence we can define a monotonic function ϵ(δ) such
that

|σ − σ0| > ϵ(δ) ⇐⇒ η(σ) < −δ. (7)

Our interest is in establishing convergence of the posterior probability, which we
write as follows.

Π ((U1 × U2)
c|Y1, Y2, . . . , Yn)

=

∫
(U1×U2)c

∏n
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β, σ)∫

Θ×Θσ

∏n
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β, σ)

. (8)

The assumption on the prior needs to be modified to include the σ parameter as follows.

Assumption (1′a): Π(·) is a proper prior and for any σ′ in the support of Π(σ),
every open neighborhood of (α0, β0) has positive Π(·, ·|σ′) measure.



500 Posterior Consistency of Bayesian Quantile Regression

Recall that the key to establishing the main theorems was proposition 2. Hence, we just
state and outline the proof of a proposition analogous to proposition 2. Then consistency
for the case involving a prior on σ would follow. For simplicity, we restrict to a compact
subset G of Θ and to Θσ of the form [σ1, σ2] where 0 < σ1 ≤ σ2 < ∞. As in lemma
6, one can construct a compact set G outside of which the posterior probability goes
to zero. Similarly, for the case Θσ = (0,∞), the idea would be to construct a compact
interval outside of which the posterior probability goes to zero.

Before stating the proposition it helps to note the following simple facts. Firstly, we
have the following inequality for 0 < d < 1.

E


(∫

((U1×U2)c∩(G×Θσ))

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β)

)d


≤ E


(∫

(Uc
1∩G)×Θσ

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β)

)d


+ E


(∫

G×(Uc
2∩Θσ)

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β)

)d
 .

Therefore, to obtain a bound on the L.H.S., we can focus on each of the terms on the
R.H.S. of the above inequality. Secondly, as before, we can write U c

1 = ∪8j=1Wj . Hence,
we can obtain a bound on the first term of the R.H.S. by looking at each of the sets Wj

separately. Now, we state proposition 3, which is analogous to proposition 2. Again,
we state it for the case of W1. Arguments are similar for other Wj . The parameter κ
mentioned in proposition 3 is arbitrary. Its role is to help in choosing an appropriate
δ > 0 as done in the proof of theorem 1.

Proposition 3. Let G ⊆ Θ be compact, W1 = {(α, β) : α − α0 ≥ ∆, β ≥ β0},
Θσ = [σ1, σ2], 0 < σ1 ≤ σ2 < ∞. Let assumptions 1′a, 2 and 4′ hold. Let U1 and U2

be as defined above. Let δ > 0 and Vδ = {(α, β) : |α − α0| < δ/(1 +M), |β − β0| <
δ/(1 +M), |σ− σ0| < ϵ(δ)}, where the function ϵ(·) is as defined in (7). Also, let κ > 0
be arbitrary. Then, the following inequalities hold.
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1. ∃ 0 < d < 1 and some constant R > 0 such that

(a) E


(∫

(W1∩G)×Θσ

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β, σ)

)d


≤ e
d
∑n

i=1
B

(1)
i

σ2 · e
ndδ
σ1 · endκδ ·R2/δ2

where B
(1)
i = −∆ · P

(
0 < Zi <

∆

2

)
· I(Xi>ϵ0).

(b) E


(∫

G×(Uc
2∩Θσ)

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)
dΠ(α, β)

)d


≤ e−nd∆ · endκδ.

2. ∫
Θ×Θσ

e
∑n

i=1 log
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi) dΠ(α, β) ≥ e−
nδ
σ1 · e−nδ · e−nκδ ·Π(Vδ).

Outline of the Proof: Note that

1

m

m∑
i=1

log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)
= log

σ0
σ
−
(
1

σ
− 1

σ0

)
· 1
m

m∑
i=1

(Zi · (τ − IZi≤0)) .

Assumption 4′ along with Kolmogorov’s SLLN for independent random variables would
imply

1

n

n∑
i=1

(Zi · (τ − IZi≤0)− E {Zi · (τ − IZi≤0)})→ 0 a.s. [P ].

Since σ ∈ [σ1, σ2], we can conclude that

1

n

n∑
i=1

(
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)
− E

{
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)})
→ 0 a.s. [P ] (uniformly in σ).

Therefore, for any given κ > 0, for sufficiently large n, we have∣∣∣∣∣
n∑

i=1

log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)
− n lim

m→∞

1

m

m∑
i=1

E

[
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)]∣∣∣∣∣ (9)

< nκδ.
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For parts 1(a) and 1(b) of the result, from equation (9) we note that

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

= e
∑n

i=1 log
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi) · e
∑n

i=1 log
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

≤ e
∑n

i=1 log
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi) · e
n limm→∞

1
m

∑m
i=1 E

[
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)]
· enκδ.

Part 1(a) can then be derived by first noting from definition (5) that

lim
m→∞

1

m

m∑
i=1

E

[
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)]
≤ 0

and then using a similar approach that leads up to proposition 2 for a fixed σ, along
with the fact that σ1 ≤ σ ≤ σ2.

For Part 1(b), we note from the definition of ϵ(·) in (7) that for σ ∈ U c
2 ,

lim
m→∞

1

m

m∑
i=1

E

[
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)]
≤ −∆.

Then the inequality follows by choosing an appropriate d > 0, using an approach similar
to lemmas 3 and 4, so that

E


(∫

(W1∩G)

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi)
dΠ(α, β|σ)

)d
 ≤ 1 ∀ σ ∈ [σ1, σ2].

For part 2 note that for (α, β, σ) ∈ Vδ, for sufficiently large n,

n∏
i=1

f(i,α,β,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

= e
∑n

i=1 log
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi) · e
∑n

i=1 log
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

≥ e
∑n

i=1 log
f(i,α,β,σ)(Yi)

f(i,α0,β0,σ)(Yi) · e
n limm→∞

1
m

∑m
i=1 E

[
log

(
f(i,α0,β0,σ)(Yi)

f(i,α0,β0,σ0)(Yi)

)]
· e−nκδ

≥ e−
nδ
σ1 · e−nδ · e−nκδ.

The first term in the product of the last expression uses part (d) of lemma 1 and the
fact that σ ∈ [σ1, σ2]. The second term follows by the definition of ϵ(·) as given in (7)
and the third term from equation (9). 2

7 Conclusion

The main contribution of this paper has been to provide an asymptotic justification for
assuming ALD for the response in Bayesian Quantile Regression, although it could be
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a misspecification. The method is justified under some reasonable conditions on the
covariates, the prior and the underlying true distribution. This is significant given the
fact that this approach has been used extensively since the work of Yu and Moyeed
(2001), but to our knowledge has only been checked empirically. We find that the use of
ALD works for a variety of possibilities for the true likelihood, including location mod-
els, scale models, location-scale models and in fact any case where the probabilities and
expectations appearing in the assumptions 1 to 4 are nicely behaved. ALD has the nice
property (proposition 1) that the Kullback-Leibler divergence is minimized at the true
values of the regression parameters. This is not true in general for any distribution. For
example, if instead of ALD, we use a normal density function whose location is adjusted
to make the τ th quantile = α0 +XTβ0, this property is sometimes violated depending
on the true underlying distribution. In such cases, Bayesian quantile regression based
on such a normal likelihood does not necessarily lead to correct results.
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Making predictions

We will be interested in making draws from the posterior predictive distribution of the
model. To do so, we need to make draws from a multivariate normal that preserve the
sum-to-zero property of the Wi vectors. As above, we operate on w∗i , though this time
conditioning only on its last element, which is defined to be w̄i. Doing so, we see that
our draws should be from a normal distribution with mean {Xiβ}−p−p−1(J ′pXiβ)Jp−1
and variance Ip−1 − p−1Jp−1J ′p−1. A single draw from this distribution can be used to
impute the areal identifier; repeated draws give Monte Carlo estimates of the assignment
probabilities.
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