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Abstract

Kernel supervised learning methods can be unified by utilizing the tools from
regularization theory. The duality between regularization and prior leads to inter-
preting regularization methods in terms of maximum a posteriori estimation and
has motivated Bayesian interpretations of kernel methods. In this paper we pursue
a Bayesian interpretation of sparsity in the kernel setting by making use of a mix-
ture of a point-mass distribution and prior that we refer to as “Silverman’s g-prior.”
We provide a theoretical analysis of the posterior consistency of a Bayesian model
choice procedure based on this prior. We also establish the asymptotic relationship
between this procedure and the Bayesian information criterion.

1 Introduction

We address a supervised learning problem over a set of training data {xi, yi}n
i=1 where xi ∈ X ⊂ Rp

is a p-dimensional input vector and yi is a univariate response. Using the theory of reproducing
kernels, we seek to find a predictive function f(x) from the training data.

Suppose f = u + h ∈ ({1}+HK) where HK is a reproducing kernel Hilbert space (RKHS). The
estimation of f(x) is then formulated as a regularization problem of the form

min
f∈HK

{
1
n

n∑

i=1

L(yi, f(xi)) +
g

2
‖h‖2HK

}
, (1)

where L(y, f(x)) is a loss function, ‖h‖2HK
is the RKHS norm and g > 0 is the regularization

parameter. By the representer theorem [7], the solution for (1) is of the form

f(x) = u +
n∑

j=1

βjK(x,xj), (2)

where K(·, ·) is the kernel function. Noticing that ‖h‖2HK
=

∑n
i,j=1 K(xi,xj)βiβj and substituting

(2) into (1), we obtain the minimization problem with respect to (w.r.t.) the βi as

min
u,β

{
1
n

n∑

i=1

L(yi, f(xi)) +
g

2
β′Kβ

}
, (3)

where K = [K(xi,xj)] is the n×n kernel matrix and β = (β1, . . . , βn)′ is the vector of regression
coefficients.



From the Bayesian standpoint, the role of the regularization term g
2β′Kβ can be captured by assign-

ing a design-dependent prior Nn(0, g−1K−1) to the regression vector β. The prior Nn

(
0, K−1

)
for β was first proposed by [5] in his Bayesian formulation of spline smoothing. Here we refer to the
prior β ∼ Nn

(
0, g−1K−1

)
as the Silverman g-prior by analogy to the Zellner g-prior [9]. When

K is singular, by analogy to generalized singular g-prior (gsg-prior) [8], we call Nn

(
0, g−1K−1

)
a generalized Silverman g-prior.

Given the high dimensionality generally associated with RKHS methods, sparseness has emerged as
a significant theme, particularly when computational concerns are taken into account. For example,
the number of support vectors in support vector machine (SVM) is equal to the number of nonzero
components of β. That is, if βj = 0, the jth input vector is excluded from the basis expansion in
(2); otherwise the jth input vector is a support vector. We are thus interested in a prior for β which
allows some components of β to be zero. To specify such a prior we first introduce an indicator
vector γ = (γ1, . . . , γn)′ such that γj = 1 if xj is a support vector and γj = 0 if it is not. Let
nγ =

∑n
j=1 γj be the number of support vectors, let Kγ be the n×nγ submatrix of K consisting of

those columns of K for which γj = 1, and let βγ be the corresponding subvector of β. Accordingly,
we let βγ ∼ Nnγ

(
0, g−1K−1

γγ

)
where Kγγ is the nγ×nγ submatrix of Kγ consisting of those rows

of Kγ for which γj = 1.

We thus have a Bayesian model choice problem in which a family of models is indexed by an
indicator vector γ. Within the Bayesian framework we can use Bayes factors to choose among these
models [3]. In this paper we provide a frequentist theoretical analysis of this Bayesian procedure.
In particular, motivated by the work of [1] on the consistency of the Zellner g-prior, we investigate
the consistency for model choice of the Silverman g-prior for sparse kernel-based regression.

2 Main Results

Our analysis is based on the following regression model Mγ :
y = u1n + Kγβγ + ε (4)

ε ∼ Nn(0, σ2In), βγ |σ ∼ Nnγ

(
0, σ2(gγKγγ)−1

)
,

where y = (y1, . . . , yn)′. Here and later, 1m denotes the m×1 vector of ones and Im denotes
the m×m identity matrix. We compare each model Mγ with the null model M0, formulating the
model choice problem via the hypotheses H0 : β = 0 and Hγ : βγ ∈ Rnγ .

Throughout this paper, for any nγ , it is always assumed to take a finite value even though n → ∞.
Let K̃γ = [1n,Kγ ]. The following condition is also assumed:

For a fixed nγ < n, 1
nK̃′

γK̃γ is positive definite and
converges to a positive definite matrix as n →∞.

(5)

Suppose that the sample y is generated by model Mν with parameter values u, βν and σ. We
formalize the problem of consistency for model choice as follows [1]:

plim
n→∞

p(Mν |y) = 1 and plim
n→∞

p(Mγ |y) = 0 for all Mγ 6= Mν , (6)

where “plim” denotes convergence in probability and the limit is taken w.r.t. the sampling distribu-
tion under the true model Mν .

2.1 A Noninformative Prior for (u, σ2)

We first consider the case when (u, σ2) is assigned the following noninformative prior:

(u, σ2) ∝ 1/σ2. (7)
Moreover, we assume 1′nK = 0. In this case, we have 1′nKγ = 0 so that the intercept u may be
regarded as a common parameter for both Mγ and M0.

After some calculations the marginal likelihood is found to be

p(y|Mγ) =
Γ(n−1

2 )

π
n−1

2
√

n
‖y − ȳ1n‖−n+1|Qγ |− 1

2 (1− F 2
γ )−

n−1
2 , (8)



where ȳ = 1
n

∑n
i=1 yi, Qγ = In + gγ

−1KγK−1
γγ K′

γ and

F 2
γ =

y′Kγ(gγKγγ + K′
γKγ)−1K′

γy
‖y − ȳ1n‖2 .

Let RSSγ = (1−R2
γ)‖y − ȳ1n‖2 be the residual sum of squares. Here,

R2
γ =

(y − ȳ1n)′Kγ(K′
γKγ)−1K′

γ(y − ȳ1n)
‖y − ȳ1n‖2 =

y′Kγ(K′
γKγ)−1K′

γy
‖y − ȳ1n‖2 .

It is easily proven that for fixed n, plimgγ→0 F 2
γ = R2

γ and plimgγ→0(1−F 2
γ )‖y− ȳ1n‖2 = RSSγ ,

and RSSγ = y′(In − H̃γ)y where H̃γ = K̃γ(K̃′
γK̃γ)−1K̃′

γ . As a special case of (8), it is also
immediate to obtain the marginal distribution of the null model as

p(y|M0) =
Γ(n−1

2 )

π
n−1

2
√

n
‖y − ȳ1n‖−n+1.

Then the Bayes factor for Mγ versus M0 is

BFγ0 = |Qγ |− 1
2 (1− F 2

γ )−
n−1

2 .

In the limiting case when gγ → 0 and both n and nγ are fixed, BFγ0 tends to 0. This implies that a
large spread of the prior forces the Bayes factor to favor the null model. Thus, as in the case of the
Zellner g-prior [4], Bartlett’s paradox arises for the Silverman g-prior.

The Bayes factor for Mγ versus Mκ is given by

BFγκ =
BFγ0

BFκ0
=
|Qγ |− 1

2

|Qκ|− 1
2

(1− F 2
γ )−

n−1
2

(1− F 2
κ )−

n−1
2

. (9)

Based on the Bayes factor, we now explore the consistency of the Silverman g-prior. Suppose that
the sample y is generated by model Mν with parameter values u, βν and σ2. Then the consistency
property (6) is equivalent to

plim
n→∞

BFγν = 0, for all Mγ 6= Mν .

Assume that under any model Mγ that does not contain Mν , i.e, Mγ +Mν ,

lim
n→∞

β̃
′
γK̃

′
ν(In − H̃γ)K̃νβ̃γ

n
= cγ ∈ (0,∞), (10)

where β̃
′
γ = (u, β′γ). Note that In − H̃γ is a symmetric idempotent matrix which projects onto

the subspace of Rn orthogonal to the span of K̃γ . Given that (In − H̃γ)1n = 0 and 1′nKν = 0,
condition (10) reduces to

lim
n→∞

β′νK
′
ν(In −Hγ)Kνβν

n
= cγ ∈ (0,∞),

where Hγ = Kγ(K′
γKγ)−1K′

γ . We now have the following theorem whose proof is given in
Sec. 3.

Theorem 1 Consider the regression model (4) with the noninformative prior for (u, σ2) in (7).
Assume that conditions (5) and (10) are satisfied and assume that gγ can be written in the form

gγ =
w1(nγ)
w2(n)

with lim
n→∞

w2(n) = ∞ and lim
n→∞

w′2(n)
w2(n)

= 0 (11)

for particular choices of functions w1 and w2, where w2 is differentiable and w′2(n) is the first
derivative w.r.t. n. When the true model Mν is not the null model, i.e., Mν 6= M0, the posterior
probabilities are consistent for model choice.



Theorem 1 can provide an empirical methodology for setting g. For example, it is clear that g = 1/n
where w1(nγ) = 1 and w2(n) = n satisfies condition (11).

It is interesting to consider the (asymptotic) relationship between the Bayes factor and Bayesian
information (or Schwartz) criterion (BIC) in our setting. Given two models Mγ and Mκ, the
difference between the BICs of these two models is given by

Sγκ =
n

2
ln

RSSκ

RSSγ
+

nκ − nγ

2
ln(n).

We thus obtain the following asymptotic relationship (the proof is given in Sec. 3):

Theorem 2 Under the regression model and the conditions in Theorem 1, we have

plim
n→∞

lnBFγν

Sγν + nν−nγ

2 ln w2(n)
= 1.

Furthermore, if Mν is not nested within Mγ , then plimn→∞
ln BFγν

Sγν
= 1. Here the probability

limits are taken w.r.t. the model Mν .

2.2 A Natural Conjugate Prior for (u, σ2)

In this section, we analyze consistency for model choice under a different prior for (u, σ2), namely
the standard conjugate prior:

p(u, σ2) = N(u|0, σ2η−1)Ga(σ−2|aσ/2, bσ/2) (12)

where Ga(u|a, b) is the Gamma distribution:

p(u) =
ba

Γ(a)
ua−1 exp(−bu), a > 0, b > 0.

We further assume that u and βγ are independent. Then

β̃γ ∼ Nnγ+1(0, σ2Σ−1
γ ) with Σγ =

[
η 0
0 gγKγγ

]
. (13)

The marginal likelihood of model Mγ is thus

p(y|Mγ) =
b
aσ/2
σ Γ(n+aσ

2 )
πn/2Γ(aσ

2 )
|Mγ |− 1

2
[
bσ + y′M−1

γ y
]− aσ+n

2 , (14)

where Mγ = In + K̃γΣ−1
γ K̃′

γ . The Bayes factor for Mγ versus Mκ is given by

BFγκ =
[ |Mκ|
|Mγ |

] 1
2
[
bσ + y′M−1

κ y
bσ + y′M−1

γ y

] aσ+n
2

.

Because M−1
γ = In − K̃γΘ−1

γ K̃′
γ and |Mγ | = |Θγ ||Σγ |−1 = η−1g

−nγ
γ |Kγγ |−1|Θγ | where

Θγ = K̃′
γK̃γ + Σγ , we have

BFγκ =
g

nγ/2
γ

g
nκ/2
κ

[ |Kγγ ||Θκ|
|Kκκ||Θγ |

] 1
2
[
bσ + y′

(
In−K̃κΘ−1

κ K̃′
κ

)
y

bσ + y′
(
In−K̃γΘ−1

γ K̃′
γ

)
y

] aσ+n
2

.

Theorem 3 Consider the regression model (4) with the conjugate prior for (u, σ2) in (12). Assume
that conditions (5) and (10) are satisfied and that gγ takes the form in (11) with w1(nγ) being a
decreasing function. When the true model Mν is not the null model, i.e., Mν 6= M0, the posterior
probabilities are consistent for model choice.

Note the difference between Theorem 1 and Theorem 3: in the latter theorem w1(nγ) is required
to be a decreasing function of nγ . Thanks to the fact that gγ = w1(nγ)/w2(n), such a condition
is equivalent to assuming that gγ is a decreasing function of nγ . Again, gγ = 1/n satisfies these
conditions. Similarly with Theorem 2, we also have



Theorem 4 Under the regression model and the conditions in Theorem 3, we have

plim
n→∞

lnBFγν

Sγν + nν−nγ

2 ln w2(n)
= 1.

Furthermore, if Mν is not nested within Mγ , then plimn→∞
ln BFγν

Sγν
= 1. Here the probability

limits are taken w.r.t. the model Mν .

3 Proofs

In order to prove these theorems, we first give the following lemmas.

Lemma 1 Let A =
[

A11 A12

A21 A22

]
be symmetric and positive definite, and let B =

[
A−1

11 0
0 0

]

have the same size as A. Then A−1 −B is positive semidefinite.

Proof The proof follows readily once we express A−1 and B as

A−1 =
[

I −A−1
11 A12

0 I

] [
A−1

11 0
0 A−1

22·1

] [
I 0

−A21A−1
11 I

]
,

B =
[

I −A−1
11 A12

0 I

] [
A−1

11 0
0 0

] [
I 0

−A21A−1
11 I

]
,

where A22·1 = A22 −A21A−1
11 A12 is also positive definite.

The following two lemmas were presented by [1].

Lemma 2 Under the sampling model Mν: (i) if Mν is nested within or equal to a model Mγ , i.e.,
Mν j Mγ , then

plim
n→∞

RSSγ

n
= σ2

and (ii) for any model Mγ that does not contain Mν , if (10) satisfies, then

plim
n→∞

RSSγ

n
= σ2 + cγ .

Lemma 3 Under the sampling model Mν , if Mν is nested within a model Mγ , i.e., Mν ⊂ Mγ ,

then n ln
(

RSSν

RSSγ

)
d−→ χ2

nγ−nν
as n →∞ where d−→ denotes convergence in distribution.

Lemma 4 Under the regression model (4), if limn→∞ gγ(n) = 0 and condition (5) is satisfied, then

plim
n→∞

(1− F 2
γ )‖y − ȳ1n‖2 − RSSγ = 0.

Proof It is easy to compute
(1− F 2

γ )‖y − ȳ1n‖2 − RSSγ

σ2
=

y′Kγ [(K′
γKγ)−1 − (K′

γKγ + gγ(n)Kγγ)−1]K′
γy

σ2
.

Since both K′
γKγ/n and Kγγ are positive definite, there exists an nγ×nγ nonsingular matrix An

and an nγ×nγ positive diagonal matrix Λnγ such that K′
γKγ/n = A′

nΛnγAn and Kγγ = A′
nAn.

Letting z = σ−1(nΛnγ )−1/2(A′
n)−1K′

γy, we have

z ∼ Nnγ (σ−1(nΛnγ )1/2Anβ, Inγ )
and

f(z) ,
(1− F 2

γ )‖y − ȳ1n‖2 − RSSγ

σ2
= z′z− z′nΛnγ

[
nΛnγ + gγ(n)Inγ

]−1
z

=
nγ∑

j=1

gγ(n)
nλj(n) + gγ(n)

z2
j .



Note that z2
j follows a noncentral chi-square distribution, χ2(1, vj), with vj =

nλj(n)(aj(n)′β)2/σ2 where λj(n) > 0 is the jth diagonal element of Λnγ and aj(n) is
the jth column of An. We thus have E(z2

j ) = 1 + vj and Var(z2
j ) = 2(1 + 2vj). It follows from

condition (5) that
lim

n→∞
K′

γKγ/n = lim
n→∞

A′
nΛnγAn = A′ΛγA,

where A is nonsingular and Λγ is a diagonal matrix with positive diagonal elements, and both are
independent of n. Hence,

lim
n→∞

E
( gγ(n)

nλj(n) + gγ(n)
z2
j

)
= 0 and lim

n→∞
Var

( gγ(n)
nλj(n) + gγ(n)

z2
j

)
= 0.

We thus have plimn→∞ f(z) = 0. The proof is completed.

Lemma 5 Assume that Mκ is nested within Mγ and gγ is a decreasing function of nγ . Then

y′(In − K̃κΘ−1
κ K̃′

κ)y ≥ y′(In − K̃γΘ−1
γ K̃′

γ)y.

Proof Since Mκ is nested within Mγ , we express K̃γ = [K̃κ,K2] without loss of generality. We

now write Σγ =
[

Σ11
γ Σ12

γ

Σ21
γ Σ22

γ

]
where Σ11

γ is of size nκ×nκ. Hence, we have

Θ−1
γ =

[
K̃′

κK̃κ + Σ11
γ K̃′

κK2 + Σ12
γ

K′
2K̃κ + Σ21

γ K′
2K2 + Σ22

γ

]−1

.

Because 0 < gγ ≤ gκ, K̃′
κK̃κ+Σκ− (K̃′

κK̃κ+Σ11
γ ) =

[
0 0
0 (gκ−gγ)Kκκ

]
is positive semidef-

inite. Consequently, (K̃′
κK̃κ+Σ11

γ )−1 − (K̃′
κK̃κ+Σκ)−1 is positive semidefinite. It follows from

Lemma 1 that Θ−1
γ −

[
(K̃′

κK̃κ+Σκ)−1 0
0 0

]
is also positive semidefinite. We thus have

y′(In − K̃κΘ−1
κ K̃′

κ)y − y′(In − K̃γΘ−1
γ K̃′

γ)y

= y′K̃γ

( [
K̃′

κK̃κ+Σ11
γ K̃′

κK2+Σ12
γ

K′
2K̃κ+Σ21

γ K′
2K2+Σ22

γ

]−1

−
[

(K̃′
κK̃κ+Σκ)−1 0

0 0

])
K̃′

γy ≥ 0.

3.1 Proof of Theorem 1

We now prove Theorem 1. Consider that

lnBFγν =
1
2

ln
|Qν |
|Qγ | +

n−1
2

ln
(1− F 2

ν )
(1− F 2

γ )
.

Because

|Qγ |− 1
2 =

gγ

nγ
2 |Kγγ |1/2

|gγKγγ + K′
γKγ |1/2

,

we have

ln
|Qν |
|Qγ | = ln

w1(nγ)nγ

w1(nν)nν
+ ln

|Kγγ |
|Kνν | + ln

∣∣ w1(nν)
nw2(n)Kνν + 1

nK′
νKν

∣∣
∣∣w1(nγ)
nw2(n)Kγγ + 1

nK′
γKγ

∣∣ + (nν−nγ) ln(nw2(n)).

Because

α = lim
n→∞

ln

∣∣ w1(nν)
nw2(n)Kνν + 1

nK′
νKν

∣∣
∣∣w1(nγ)
nw2(n)Kγγ + 1

nK′
γKγ

∣∣ = lim
n→∞

ln
| 1nK′

νKν |
| 1nK′

γKγ |
∈ (−∞,∞),



it is easily proven that

lim
n→∞

1
2

ln
|Qν |
|Qγ | =

{ ∞ nγ < nν

−∞ nγ > nν

const nγ = nν ,
(15)

where const = α
2 + 1

2 ln |Kγγ |
|Kνν | . According to Lemma 4, we also have

plim
n→∞

n−1
2

ln
(1−F 2

ν )
(1−F 2

γ )
= plim

n→∞
n−1

2
ln

(1−F 2
ν )‖y−ȳ1n‖2

(1−F 2
γ )‖y−ȳ1n‖2 = plim

n→∞
n−1

2
ln

RSSν

RSSγ
.

Now consider the following two cases:

(a) Mν is not nested within Mγ :
From Lemma 2, we obtain

plim
n→∞

ln
RSSν

RSSγ
= plim

n→∞
ln

RSSν/n

RSSγ/n
= ln

σ2

σ2+cγ
.

Moreover, we have the following limit

lim
n→∞

n−1
2

[
ln

( σ2

σ2+cγ

)
+

nν−nγ

n−1
ln(nw2(n))

]
= −∞

due to limn→∞
nν−nγ

n−1 ln(nw2(n)) = limn→∞(nν−nγ)w2(n)+nw′2(n)
nw2(n) = 0 and

ln
(

σ2

σ2+cγ

)
< 1. This implies that limn→∞ ln BFγν = −∞. Thus we obtain

limn→∞ BFγν = 0.
(b) Mν is nested within Mγ :

We always have nγ > nν . By Lemma 3, we have (n−1) ln(RSSν/RSSγ) d−→ χ2
nγ−nν

.

Hence, (RSSν/RSSγ)(n−1)/2 d−→ exp(χ2
nγ−nν

/2). Combining this result with (15) leads
to a zero limit for BFγν .

3.2 Proof of Theorem 2

Using the same notations as those in Theorem 1, we have

Cγν =
ln BFγν

Sγν + nν−nγ

2 ln w2(n)
=

n−1
n ln (1−F 2

ν )
(1−F 2

γ ) + nν−nγ

n ln(nw2(n)) + 2
nConst

ln RSSν

RSSγ
+ nν−nγ

n ln(nw2(n))
.

(a) Mν is not nested within Mγ :
From Lemma 4, we obtain

plim
n→∞

Cγν = lim
n→∞

ln σ2

σ2+cγ
+ nν−nγ

n ln(nw2(n))

ln σ2

σ2+cγ
+ nν−nγ

n ln(nw2(n))
= 1.

In this case, we also have

plim
n→∞

lnBFγν

Sγν
= lim

n→∞

ln σ2

σ2+cγ
+ nν−nγ

n ln(nw2(n))

ln σ2

σ2+cγ
+ nν−nγ

n ln n
= 1.

(b) Mν is nested within Mγ :
We obtain

plim
n→∞

Cγν = plim
n→∞

(n−1) ln (1−F 2
ν )

(1−F 2
γ ) + (nν−nγ) ln(nw2(n)) + 2× Const

n ln RSSν

RSSγ
+ (nν−nγ) ln(nw2(n))

= 1

due to nγ > nν and n ln(RSSν/RSSγ) d−→ χ2
nγ−nν

.



3.3 Proof of Theorem 3

We now sketch the proof of Theorem 3. For the case that Mν is not nested within Mγ , the proof
is similar to that of Theorem 1. When Mν is nested within Mγ , Lemma 5 shows the following
relationship

ln
[
bσ + y′

(
In−K̃νΘ−1

ν K̃′
ν

)
y

bσ + y′
(
In−K̃γΘ−1

γ K̃′
γ

)
y

]
≤ ln

[
y′

(
In−K̃νΘ−1

ν K̃′
ν

)
y

y′
(
In−K̃γΘ−1

γ K̃′
γ

)
y

]
.

We thus have

plim
n→∞

aσ+n

2
ln

[
bσ + y′

(
In−K̃νΘ−1

ν K̃′
ν

)
y

bσ + y′
(
In−K̃γΘ−1

γ K̃′
γ

)
y

]
≤ plim

n→∞
aσ+n

2
ln

[
y′

(
In−K̃νΘ−1

ν K̃′
ν

)
y

y′
(
In−K̃γΘ−1

γ K̃′
γ

)
y

]

= plim
n→∞

aσ+n

2
ln

[
y′

(
In−H̃ν

)
y

y′
(
In−H̃γ

)
y

]
∈ (0,∞).

From this result the proof follows readily.

4 Conclusions

In this paper we have presented a frequentist analysis of a Bayesian model choice procedure for
sparse regression. We have captured sparsity by a particular choice of prior distribution which we
have referred to as a “Silverman g-prior.” This prior emerges naturally from the RKHS perspective.
It is similar in spirit to the Zellner g-prior, which has been widely used for Bayesian variable selec-
tion and Bayesian model selection due to its computational tractability in the evaluation of marginal
likelihoods [6, 2]. Our analysis provides a theoretical foundation for the Silverman g-prior and
suggests that it can play a similarly wide-ranging role in the development of fully Bayesian kernel
methods.
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