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0. ABSTRACT

The Kalman filter is used to derive updating equations for the Bayesian data density in
discrete time linear regression models with stochastic regressors. The implied "Bayes model"
has time varying parameters and conditionally heterogeneous error variances. A o-finite
"Bayes model" measure is given and used to produce a new model selection criterion (PIC)
and objective posterior odds tests for sharp null hypotheses like the presence of a unit root.
This extends earlier work in Phillips-Ploberger (1991). Autoregressive-moving average
(ARMA) models are considered and a general test of trend statioparity versus difference
stationarity is developed in ARMA models allowing for automatic order selection of the sto-
chastic regressors and the degree of the deterministic trend. The tests are completely consis-
tent in that both type I and type II errors tend to zero as the sample size tends to infinity,

Simulation results and an empirical application are reported. The simulations show that
the new model selection criterion "PIC" works very well and is generally superior to the
Schwarz criterion BIC even in stationary systems. Empirical application of our methods to
the Nelson-Plosser (1982) series show that three series (unemployment, industrial production
and the money stock) are level or trend stationary. The other eleven series are found to be
stochastically nonstationary.
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1. INTRODUCTION

Reasons for the apparent divergence of classical and Bayesian statistical inference in time
series applications have been explored in very recent work by the authors that gives attention
to the role of both prior distributions and data conditioning in the practical implementation of
Bayesian methods. The impact of prior distributions on Bayesian inference with time depen-
dent data was considered in Phillips (1991), which addressed the issue of determining
"impartial” or "objective" priors for the parameters in simple time series models and showed
the sensitivity of Bayesian posteriors to both priors and model specification in that context.
The role of data conditioning in Bayesian analysis of time series was studied in Phillips-
Ploberger (1991). The operation of the likelihood principle that underlies Bayesian inference
ensures that Bayesian time series analysis is conducted conditional on the realized history of
the process. The Phillips-Ploberger paper examines the first order autoregressive model
(AR(1)) and shows that the mathematical effect of this data conditioning in inference is to
translate the model (and its reference probability measure) to what we call in that paper a
"Bayes model" (and, respectively, "Bayes model' measure) in which the parameters are time
varying and data dependent. Methodologically, the Bayesian approach involves no commit-
ment to any "true" value of a parameter (unlike the classical approach). But, given a particu-
lar historical trajectory, we show in Phillips-Ploberger (1991) that the use of the likelihood
principle in fact commits the investigator to a new model in which the parameters evolve
according to the latest best estimate from the data available to that point on the trajectory.
Phillips-Ploberger use this conceptunal framework to construct a new test of one "Bayes model"
against another. The test is a special type of posterior odds test and is based on the Radon
Nikodym (RN) derivative of the respective "Bayes model" measures of the two models. The
test can be used to test point null hypotheses (like that of a unit root), it has good finite
sample performance and it has interesting asymptotic properties because both type I and type

II errors tend to zero as the sample size tends to infinity.



The main purpose of the present paper is to extend the Phillips-Ploberger analysis to a
general class of linear discrete time series models that includes ARMA(p, ¢) models with
deterministic trends. Recursive least squares (or Kalman filter) methods are used to derive
updating equations for the Bayesian data density. These equations determine the precise
form of the "Bayes model" and "Bayes model" probability measure for this general class of
time series models. The "Bayes model" measure is used to produce a new model selection
criterion (which we term "PIC") that picks the model with the highest posterior density as
given by the RN derivative of the "Bayes model' measure of that model with respect to a
general "reference model" measure in the class of competing models. This new criterion is, in
fact, a generalization of the BIC criterion due to Schwarz (1978) and, indeed, is asymptotically
equivalent to BIC in stationary time series models. The PIC criterion is used to select both
lag order and deterministic trend degree in the class of ARMA(p, g) models with determinis-
tic trends. We show how to apply this procedure in the context of a recursion that is based
on the one suggested originally by Durbin (1962) and Hannan-Rissanen (1982) for the consis-
tent estimation of ARMA models. Following model selection, the posterior odds (PIC) cri-
terion is nsed again to compare the selected "Bayes model" against the same model with a unit
autoregressive root. The procedure provides a completely consistent test for the presence of a
unit root in this general class of discrete time series models and gives an algorithm that leads
to a data-coherent, parsimonious model choice within this class.

The paper is organized as follows. Section 2 studies a general class of linear discrete time
models, derives the respective "Bayes models" and "Bayes model" measures in this class; and
explores the martingale structure of these measures. Section 3 develops our new model selec-
tion criterion "PIC", gives its asymptotic properties, and shows how it can be used for model
selection and for testing point null hypotheses like that of a unit root. Section 4 gives a
general application of our methodology to the problem of testing difference versus trend sta-
tionarity and provides an algorithm that incorporates both model selection principles and tests
of point null hypotheses. Programs for the implementation of this methodology have now

been written in GAUSS-386i and Section 5 reports some simple simulation exercises that illus-



trate the performance of the procedure in determining the presence of a unit autoregressive
root in models that include AR(p) and ARMA(p, g) models with and without deterministic
trends, Overall, these results are considered by the authors to be very encouraging. Section 6
reports an empirical application of our methodology 1o the Nelson-Plosser data set. The
empirical results are striking, Only two series (industrial production and money) are found to
have a deterministic trend, only one series (unemployment) is stationary and the remaining

eleven series are found to be stochastically nonstationary.

2. "BAYES MODELS" AND "BAYES MODEL" MEASURES IN DISCRETE TIME

The model we consider is a linear regression
1) y,=PBx +e, t=12.)
whose dependent variable y, and error ¢, are real valued stochastic processes on a probability
space (Q2, #, P). Accompanyingy, is a filtration 7, < #(t = 0, 1, 2, ... ) to which both y, and ¢,
are adapted. The regressors x, (k x 1) in (1) are defined on the same space and are assumed
to have the property that x, is #_,-measurable. The standard example of (1) will be the
autoregression (with k = p lags) given by
(2) = ZioBiy. + gy,
which it will often be more convenient to write as
3) Ay, = hyy + Zhaeby + 8,
We will also consider an augmented version of model (3) with intercept and trend, viz.
(4) Ay =hy+ Tledy,+u+ytte,

ARMA models also fit into the general framework of (1), although in this case the
regressors are not all observable, Extending (4) by the inclusion of moving average errors we

have (with k = p+g+2)

() Ay, = hy,, + Zi 104y, + Tlpe, +p Yt g



giving an ARMA(p, q) process with trend. In all these examples we will suppose that
E(e,|%,.)) = 0. In (4) and (5) the parameterization accommodates a unit autoregressive root
when h = 0. This parameterization is especially convenient when testing for the presence of a
unit root. It is also useful in setting up Bayes model alternatives to models like (4) and (5)
with a unit root. We shall be explicit about such possibilities later in our discussion.

We introduce the régression notation Y, = [y, .., y), X, = [x, .., x,], and set
A, =XX,. Lete, =iid N(0, 0®) and let us assume for the time being that the error variance
o’ is known. Then the inference problem presented by (1) is linear in parameters. This facili-
tates an exact development of our theory and the necessary extensions for o? unknown will be
given after this development.

Conditional on %, and B the joint density of ¥, with respect to Lebesgue measure (v) is

6)  pii(Y.|%, B) = dPidv = (2n0’)"exp{-(11207) L}y, - B'x)}

= (210%) " exp{-(120%)[8,2, + (B, - BYA.(B, - P}
where U, = Y, - X,8,, B, = (X;X,)'X,Y, and P’ is the probability measure of Y,. The cor-
responding measure when p = 0 will be denoted by P, and will serve as a possible reference

measure in the analysis that follows. The likelihood ratio process is then the ratio of these

densities, i.e.

) L(B) = dP/dP, = exp{-(1/20*)[-2B'X,Y, + P'A,p]}
exp{(1/26%)[B,A4.B, - (B, - B)4.(B. - B)]} .

Combining (6) with a prior density =(B) for p we have the joint density of (B, Y,) conditional

on 7, ie.
pdi(B, Y,|7) = n(B)pdi(Y,|#, B)

= [(21-; " %14 | '”"’exp{ ~(126)0 0..}]

(®)
« (5B om 014, [exp{ (1720, - By (B, - )] .

For n(B) = n, = constant, this expression gives a marginal posterior density process for B of

the form



©)  T(B) = 2no? "4, |exp{-(1/207)(f, - BY'A4,(B,- B)} = N(B,, 0?4") .

This is the usual Gaussian posterior density for the parameters in the linear regression model
with known error variance. The density is centered on the maximum likelihood estimator B,,,
based on the data Y,, and has variance matrix 024,

If we integrate B in (8) we obtain the data density for Y,, viz.
(10)  pdf(Y,|7) = mf2nod |4, |Rexp{-(11207) 0,0} .
Let Q, be the (probability) measure whose densiiy with respect to v is (10). Then
an g, = [ =(BPdp

and thus

B
dg, @ g

ap, fm“(ﬁ)dpu
= [ m(BL(BXB
= 1:0(21':02)"2 lA"|'mexp{(1/202)fin’A"ﬁ"} .

Next observe that (taking expectation with respect to the reference measure P,)
{0
E[;}-,: |f] - [ FOEL®)17.)dB

Using (7), we can compute the conditional expectation of the likelihood directly as

E(L,(B)I#.1) = exp{~(120°)(-2'X, Y, 1 + B'A,B)}E(exp{(1/0*)B 'xy,} | 7,.,)
= exp{-(1/26%)(-2p'X, 1Y, + B'A,B)rexp{(1/0°)B'xx,B}
= exp{-(1/20*)(-2B'X,.,Y,., + B'A..B)}
=L,.(B),

using the fact that y,|#, , = N(0O, o%) under P,. Hence,

do,
dP,

dQn -1
dP

n-1

E|

b

7, = [ n(B)L, (B)dB =
Rk



and dQ,/dP, satisfies the martingale property under the probability measure P,. Notice that
this conditional expectation is finite even though E(dQ,/dP,) is not finite (and dQ /dP, is
therefore not integrable) when n(B) = =, is constant.

Collecting these results together, we have:

2.1. THEOREM: Under the uniform prior n(B) = n, = (2n)™?, the (probability) density of the
data Y, = [y,, ..., y,) generated by the model (1), conditional on F,, and taken with respect to the

reference measure P, is given by

jg" = kl/o’)An

n

(12) Pexp{(1/2098,'4,8,} .

The density process dQ,/dP, is a local P, martingale. Although dQ,/dP, is not integrable it has

finite conditional expectation and satisfies the martingale property

dQ a9,
o TV it &
ap | " ap . "

under the reference measure P,. O

2.2. REMARKS

() Expression (12) is the likelihood ratio of the measure Q, with respect to the base
measure P,. It may be used for both hypothesis testing and model selection purposes, as we
will explain below.

(i) The density dQ,/dv = pdf(Y,|#) given by (10) is not integrable over the space R
which supports the variate matrix Y, and thus Q, is a o-finite measure rather than a proper
probability measure on R". Hence, the use of the parentheses around the word "probability"
in the statement of the theorem. This feature of Q, is the consequence of the use of an
improper prior n{f) = n, on B over R*, As we shall show below, the conditional measures
based on @, are, in contrast to Q, itself, proper probability measures and it is the sequence of
conditional measures that defines the characteristics of the Bayesian solution to the problem

of inference in the model (1). We shall use these conditional measures to construct a model,



which we call the "Bayes model" of the data, that Bayesian inference implicitly uses in place of
(1)

(iii) The general form of the RN derivative dQ,/dP, that is given in (12) is invariant in
large samples to the use of a wide class of continuous prior densities n( ). To see this, we
note that if the excitation condition (ie. A,,.(4,) -~ = as n - =) holds we may apply the
Laplace approximation to the integral defining dQ,/dP, giving

dQ,
dP,

- [ FOLBMP - w(B)enof 1, | exp{(12078;4,8,}

Since n(B,) —.. 7(B) asn - = when the excitation condition applies, dQ,/dP, is asymptotically
proportional to the formula given in (12). This argnment continues to hold in quite general
nonlinear models, leading to the same general formula (12). A complete treatment of the
general case is presently being written up and will be reported in a later paper (see Phillips-

Ploberger, 1992a), O

First, it is of interest to define the model of the data for which Q, is the (probability)
measure. From (11) it is apparent that this measure is actually a weighted average of the
measures P? (whose density dP!/dv is given in (6)) with weights delivered by the prior density
n{f). The measure Q, is, as we have remarked above, a o-finite measure for the data Y,.
Note that (12) becomes undefined when there is insufficient data (ie., n < k) to determine 8,
and in such cases |4, = |[XX,| = 0. It is therefore appropriate to regard (12) as defining
an admissible measure for the data provided a minimal amount of information has already
accumulated so that n 2 k and |4, = |XX,| > 0. As we shall see, conditional on the
accumulation of such minimal information to initialize the process, Q, as given by (12) leads
to a proper conditional probability measure and this conditional measure defines a new
(Bayesian) model for the data that replaces the classical model (1).

Consider the data density pdf(Y,|#,) given by (10). An alternative way of writing this

density is to employ the prediction error decomposition, viz.



pdi(Y,|7) = [T pdf0,17,.)pdtCY, %)
(1 3) ruk+l

= (2n)" 2 f[l [f?‘”eXP{-(lﬂﬁ)Vf}}pdf(Yk 17 -
In this decomposition

Vi =0 -fylr-l =Y - ﬁ:—rxr , = k+1, vy 1

are the prediction errors and ¥,,., is the best forecast of y, using information available up to
time ¢-1, ie. information in %_,. The forecast error variance conditional on 7, in (13) is

given by
f =01 +xA!x), t = k+1, ..,n

and the conditional distribution of v, given 7, is
vz, = N(@Of).

Expression (13) is simply derived from the formulae for recursive least squares (see Brown,

Durbin and Evans (1975)). Note that

Mol = Wy v x5 = A0+ x4,05)

=TT (@ + x47x)

pnk 4l

el

and
0,0,=(@, -X8)Q, - X,B)
= 0,0, + 0, - x/B, 01 - x40
=0,.0,, + O, - x,'B,.0/¢,/0)
0,0, + =5, Vi /0%
I vifleY)
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since U, = ¥, - X,8, = 0. To establish equivalence between (10) and (13) we simply set the

initial conditional density of Y, to be
pAf(Y,|%) = mol4,|™?,
which is uniform on R*,

Next, observe that

dQ,dv = pdf(Y, 17) = pAY, 17 2m) =TT | exp{-cuzpyv})],

tukal

so that

dQJdQ, | = (2nf)exp{-(U2A W2} = N(O, f) ,

giving the conditional density of the data at the latest observation, », using information on the
trajectory up to the time period n-1. This conditional density is proper and holds for all

n > k, leading to the following general statement of the result.

2.3. THEOREM: The Bayesian conditional density of the observation y, given ¥, , (i.e. information
on the historical trajectory up to time t-1) is

(14) dQ/dQ,., = pdi(Y,|7.) = (@nf) Vexp{-(1/2f w2} = N(O,f),t = k+1, k+2, ...

The "Bayes model” corresponding to this data density is

(15)  y, = B/.x, + v,, where vig_ =N, )

that is,

(16) EW,|%.) =0,E0 7)) =f = ol + x/A;}, x}

and ﬁ =X ,’_,X,_,)"1 X/ Y, is the least squares estimate based on information in 7,_,, [

2.4. REMARKS
(i) In contrast to (1), the Bayes model (15) is a time varying parameter model where B,,
evolves according to the best estimate of the slope coefficient that is available from the latest

data. Note that the error process in (15) is conditionally heterogeneous with conditional vari-
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ance f,, as given in (16), explicitly dependent on the past data. The form of the conditional
heterogeneity is nonlinear in {x, : s = ¢, ¢t-1, .., 1}. As information about the process y,
accumulates (i.e., as A.;,(4,) ~ ), the conditional variance f, tends to a constant value o2
This formulation of the Bayes model for the data extends the one developed in Phillips-
Ploberger (1991) for the AR(1) model.

(i) The prediction error decomposition of the density pdf(Y,|#), from which (14) is
derived, is closely related to the traditional prediction error formulation of the likelihood
function that is based on the Kalman filter (see, e.g. Harvey (1989)). There is, however, a
major difference in the use of the Kalman updating algorithm in these two cases. In the tra-
ditional use of the updating algorithm, it is the likelihood function (as a function of the
parameter vector B) that is extracted. In that case the optimal predictor of y, from 7, , would

be y,,.; = B'x, and, in place of (15), we would have
y, = P'x, + v, , where v,[j;1 = N, 0%) ,t = k+1, ..., n.

That is, the Kalman filter produces the exact likelihood (conditional on #, and B) of the
classical statistical model (1) that we started with. By contrast, in our use of the updating
algorithm it is the Bayesian data density pdf(y,[#_,) that is generated by the algorithm. It is
this data density, given by (14), that prescribes the implied "Bayes model" of the data.

(iif) The data density (14) is exact, as is the "Bayes model" (15). When we relax the
Gaussian error assumption and the uniform prior assumption in (1), under both of which the
density pdi(Y,|#) given in (10) is derived, the data density (14) holds only approximately.
The same is true when the error variance o in (1) is treated as an unknown parameter. In
these cases a large sample approximation theory for the likelihood leads to an asymptotic
density and "Bayes model" that have the same form as (14) and (15). In the latter case, since
it is assumed in the development of the asymptotics that A (4,) - « as ¢ ~ «, the conditional
variance of the prediction error in the approximate "Bayes model" is E(v}|#_) = o? rather
than (15), which applies exactly in the Gaussian case. A general theory that covers these cases

will be reported elsewhere (see Phillips-Ploberger (1992a)).
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(iv) The "Bayes model" (15) can be interpreted as a simple "location model" in which
f,, x, provides the best estimate using data from #,_, of the location of the latest observa-
tion y, Another way to express this idea is as follows. Bayesian analysis proceeds by condi-
tioning on the observed historical trajectory. As we move along such a trajectory, the best
Bayesian estimate (delivered by the posterior mean of the conditional predictive density of y,)
given the data record in %,., is ¥,,., = /. x. Thus, Bayesian inference about y, is centered
on B/, x. Under Gaussian assumptions about the errors in the model and a uniform prior
on the coefficients we get, in place of the original time series model (1), the simple location
model (15) with Gaussian errors v,, The only complication is that this model evolves period
by period and is conditional on the historical record to 7,.,.

(v) We call (15) the "Bayes model" because it is the exact model for the data that is
implied by the use of traditional Bayes methods under a Gaussian likelihood and (improper)
uniform prior. Such methods lead to the Gaussian posterior density N(B,, 024;") given by (9)
above when working with the full sample of data Y,. This density is obtained by taking the
product of the prior and the likelihood (viz. n(B)L,.(B)) and by rescaling to achieve a proper

density; i.e. the posterior density (9) is
A7) O(B) = n(B)L,(BY/[px n(B)L,(B)IB = m(B)L(BV(@QJdP,) ,
where the last equality follows from (12). Noting that L,(B) = dP%/dP,, we deduce that

0,(B) = n(B)dPLdQ, .

Thus, the posterior density I,(8) = N(f,, 0%4;’) is the direct outcome of employing the like-
lihood ratio L2(p) = dP?/dQ,. This is the density of the measure P of the model (1) taken
with respect to the measure Q, of data Y, generated by the time varying parameter model
(15). Under this mnsforﬁation of the measures, the reference measure P, is replaced by the
"Bayes model" measure Q, in constructing the likelihood. With this new reference measure,
associated with model (15), it is natural that inference about § be centered on A, when it is
conducted through the posterior II,(B). In this respect Bayesian analysis of the time series

regression model (1) is identical to Bayesian analysis on the linear regression model with fixed
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regressors. The equivalence is the result of data conditioning and the implicit use of the

measure Q, in constructing the likelihood.

2.5. THEOREM
(a) The least squares estimator B, is a local Q-martingale, has finite conditional expectation under

the measure Q, and satisfies the martingale property
EQ,(Brl-ﬁ-l) = ﬁl-l .

(b) Under the Bayes measure Q, the conditional distribution of §, given #,_, is normal with mean

B:_l and covariance matrix UZ(A;}1 _ A;’), ie.
B' l}--l gd N( B!-P OZ(A'-'II - A’—l)) = N( Bl-l’ f]‘A;lx[x;'-fql-l) .

(c) Under the Bayes measure Q,, the posterior distribution I, = N(B,, 0°4;") is a local martingale,

has finite conditional expectation and satisfies the martingale property

EQ'[N(E:» UZA;I) |f;—1] = N(ﬁ,-l, UZA;}O .

2.6. PROOF OF THEOREM 2.5
(a) From recursive least squares formulae (e.g. Brown-Durbin-Evans, 1976, lemma 2) we

have
6! = 6]‘-1 + (XI"XI)_IXI(YI - x.l" 6!—]) = ﬁ!'l + A;l xl' vl’ .

Under Q, we have Eg (B,|7.,) = 0 by Theorem 2.3 and hence

EQ,(ﬁll-ﬂ-l) = ﬁr-l s

as required. The process f3, is a local Q,-martingale because Q, is o-finite and thus §, is not Q,
integrable, i.e. Eg (B,) does not exist.

(b) From Theorem 2.3 we have v, | 7., = N(0, f,) and hence
BilZis =a Ny AT 2,247 .

Next, observe that
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A= (A, +xx) = A - A xx] A e,
whereg, = 1 + x/ A}, x,. Also

AL = (A -xx) = A7 + Al x,x] AR,
where h, = 1 - x/ A;' x, Now

1- x,’A,_lx, + (xr’A:-l xl)zlgl
= (llg,){g, -x/A,x8 + (x;A:—l xn)z}
= 1/g, .

h,

Hence,

Al A =g A xx[AT
and since f, = o, we deduce that
ﬁrl};_l =4 N(Br—b UZ(A:I - A;l))

as required.

(¢) The characteristic function of the posterior distnbution I, is

ef(s) = explis'B, - (1/2)o% 4%} .
Now
Eg (cf(s)|7..)) = explis'B,, - (1/2)0%A;'s}Eg [exp(is ‘47" x, v,) | 7,..]
= expl{is'B,., - (1/2)c% A;'stexp{-(1/2)f, s ‘A" x, x] A}'s}
= exp{is'B,., - (1/2)0%A,., 5} |
= cf,.;(s) .
This shows that under the measure Q, the characteristic function cf,(s) satisfies the martingale

property. It follows that cf,(s) and hence the posterior distribution II, are local Q,-martingales.

2.7. REMARKS
(i) Theorem 2.5(a) tells us that f, evolves as a martingale under the measure Q,. Part (b)

of the theorem shows that f3, is a Gaussian process with conditional variance matrix
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var(B,|7,.)) = o*(A;} - A7) = [, 4] 5 x4
This is the conditional variance of the martingale difference ﬁ, - fi,-l. Observe that this
variance matrix is singular when & > 1. In the time period from ¢-1 to ¢ only one additional
observation, viz. x,, on the regressor is available. The increase in precision with which §, is
determined depends on this extra observation and is measured by o’(ﬁ;fl -AM
=f,A;'x,x/A;'. Ast - =, the variance matrix 0%(4;!, - A;') ~ 0 when the excitation
condition A, (4,) - = holds. In this case i, —,, P and the conditional distribution B/
converges to a point process with unit mass at p.
(i) Part (c) of the theorem shows that the posterior distribution I, also evolves like a
martingale under Q,. As new information accumnlates the mean and variance matrix of the
Gaussian measure TI, evolve according to the processes (f,) and (0%4;'). The best estimate

(under the Bayes measure Q,) of the posterior I, given #,_, is simply II,_,.

3. MODEL SELECTION AND HYPOTHESIS TESTING

Trajectory dependent location models like the Bayes model (15) can be expected to be
hard models to beat, precisely because they rely so intimately on the existing data record.
One important element in assessing how satisfactory such models are in practical applications
is the dimension of the respective parameter spaces that they require. In fitting the historical
time series trajectory improvements in fit are (almost) always possible by raising the dimen-
sion of the parameter space. This is certainly true in the present context where Yrp1
= B, x, in (15) is the best predictor of y, given data in 7, ,.

General model selection principles introduce penalties for increasing the number of esti-
mated parameters. Among the most popular of these in time series contexts are the order
estimation criteria AIC of Akaike (1969, 1977) and BIC of Schwarz (1978) and Rissanen
(1978). The statistical properties of these criteria have been intensively investigated in both
statiopary and nonstationary autoregressive and autoregressive-moving average models.
Hanpan and Deistler (1988, Ch. 5) provide a recent detailed discussion of the subject. A

general treatment which is suited to the present context and which establishes strong consis-
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tency of order estimates for variants of the BIC criterion applied to the regressor selection
problem in stochastic regression models is given in Potscher (1989). Applied to (1), order

estimates by BIC of the dimension k of P are obtained by minimizing the quantity
(Cl) BIC, =in(5;) + k In(n)in ,

where 47 is the maximum likelihood estimate of ¢ from the model with order k. Consistency
of BIC order estimates have been obtained for statiomary autoregressive-moving average
models by Hannan (1980, 1981) and nonstationary autoregressive and stochastic regressor
models by Paulsen (1984), Tsay (1984) and Potscher (1989).

In our context a natural measure of model adequacy is provided by the data density
dQ,/dP, given in (12). The principle we use, which seems appealing in this case, is to choose
the model with the greatest data density, that is the model with the greatest likelihood ratio
or posterior density in the general model class. We now proceed to develop this criterion.

Let O* be the "Bayes model" measure given by (11) for a model with k parameters (i.e.
B € R*in (1)). We rewrite (1) and our later notation to incorporate the index "k" signifying

the number of regressors. Thus, we set

(18) Y, = X,(B(k) + E, , A,k) = X,()X,(K) ,

19) Bk = X)X E)VXK)Y,, Ek) =Y, - X(K)BK) , SS, = E(kYE(K) .

Then

(20)  dQldP, = (170,00 exp{(120%) B, (Kk)'A, () B, ()

(k =1, 2, ..., K) is a sequence of alternative densities for Y, taken with respect to the refer-
ence measure P, of the null model in which ¥, = E,. We let K be some maximum number of
regressors and suppose that if k, is the number of regressors in the true model then k;, s K.
Of course, if k, = = then we will need to allow K ~ = as n ~ o« to accommodate this possibil-
ity (just as in the application of AIC and BIC model selection principles).

We may proceed directly to maximize (20) over k. However, in general it will be useful

to employ a more relevant reference measure than P,. One such measure with nice properties
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is QF since this corresponds with the "least restricted" option in the class. Multiplying the RN

derivatives we obtain
dQy/dQ} = (dQy/dP ) (dP,/dQ})

(21) 2 " _ o ,
= kot (o “Yarona, )| “exp{(1207)18, 064,00 B,() - B,K)A,EB,®} .

This expression is the likelihood ratio of the measures corresponding to the two "Bayes
models";

H(QY: Yus1 = Bulk)%uur(k) + Viyy 5

H(QY): Yarr = BulK)'%pei(K) + V5, .
The first model has k regressors x,(k); the second, which is the reference model, has K regres-
sors x,(K). The likelihood ratio dQ%/dQ¥ measures the support in the data, as it is embodied
in the data density, for the restricted model against the base model with K regressors. If we
assign equal prior odds to the two models we may actually test H(Q*) against H(QY) using the
criterion
(C2)  Accept H(QY) in favor of H(QF) if dQYdQ* > 1.
This criterion, as we discuss below, gives a completely consistent "Bayes model" test in that the
probabilities of both types of error tend to zero as n -~ «,

The following partitioned regression notation will be helpful in formulating some alterna-

tive representations of (21),

Y, =X (K)BK) + E =X (K)B(k) + X,(«)B(*) + E_,

A(*) = X (=)X (+),

A (* k) = X (+)X (k) ,

A(*x5.k) = A,(x) - A (% ), (k) Ak, +),

B.(+) = [X,(0)X () X, (o)X, ()X, ()%, ()X, (kY X, ()]
< X (»)Y, -X,(+)' X, ()X, (k) X, ()X, (k)'Y,)] ,
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B.(k)| &
E,.(ks K) = ’
o {K-k

ss, = (Y, -X,(0)B,(6)) (¥, -X,()B,(K)) , 53y = (¥, -X, () B,(K)) (¥, ~X,(K)B,(K)) .

The expressions given in Lemma 3.1 below follow from standard regression manipulations.

3.1. LEMMA

dQ,

20 = |(1/oz)An(*-.k)|-mexp{(1f202)(ssk - ssx)} ,

(22)

do¥ - . .
(23) dg: = k1/ona, (=) Cexp{(11209)8,(xy A (s B)B ()}
do* . . .
(24) dg'; = k109, (= » k)| Cexp{(1207)(B, () - B (k. K))'A,K) (B, (K) -B k. K)} . O

3.2. REMARKS

i} One advantage of using the reference measure @ is that it provides a general model
g g n P g

for the estimation of the error variance o, giving
6% = (U -K)(Y, - X, (KB, (K)' (Y, - X (K)B,(K)) = ssf(n-K} ,

which is the least squares estimator of o” in (1) when there are K regressors. This estimate of

o? can be used in formulae (21)-(24) and leads to our model selection criterion
(C3)  PIC, = (@QNAQA(S}) = KUapA, (++. k)| exp{(125D)B, ()4, (++ K)B, ()}
and order estimator

(25) &k = argmin, PIC, .

In minimizing PIC, we are maximizing the reciprocal 1/PIC, = dQ*dQ¥ and thereby choosing

the model, H(Q?), that we favor most over H(Q¥) according to the data density.
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The properties of this new order estimator will be studied systematically in another paper.
We note here that the procedure is asymptotically equivalent to BIC in stationary autore-
gressive and statiopary autoregressive-moving average models. In models with some auto-
regressive unit roots, however, the PIC criterion (C3) is asymptotically different from BIC.
The PIC criterion attaches a greater penalty than BIC for additional regressors in this case,
and involves a penalty that is asymptotically of the form d(k, & )in(n)/n where d(k, k,)
=k, + ku(k,; + 1), k, is the number of stationary regressors and k, is the number of autore-
gressive unit roots in the system, The BIC criterion (C1) may be regarded as a specialization
of PIC to the case of stationary regressors. Both criteria produce consistent order estimates
but as the simulations in Section 5 show, PIC outperforms BIC in terms of correct model
choice even in stationary autoregressive systems.

(ii) An alternative version of the PIC criterion can be obtained directly from the condi-

tional "Bayes model" measure (14). We have the density (conditional on %)

dQtdv = pdi(Y, |7 = (2n)eexpl-2 (v of ., £

The idea is now to compare the "Bayes models" H(Q) and H(Q*) in terms of their densities

over the same subsample, viz. n > K. We then have (conditional on %)

dgk/dor - (I, ﬁ"/ﬂ‘)‘”exp{z;.l[(vf)zfzf," - (v,")’fzﬁ]}

where ff = o*{1 + x(k)'4,,(k)x,(k)}. If we now estimate o® using the reference model
with K parameters (ie. the most complex model), this leads us to the following alternative

form of the PIC criterion.

(C¥)  PIC; = dQ/dQ(5}) = (I, ff/f{‘)‘“exp{z;u[(vf)’/zf,‘ - (v,*)’/zf,*]}

where

Fo= 031 + x(0)'A, () %K) , FF = 821 + x(K)'A, ,(K) "X (K)) ;

vy =Y, - é,-l(k)'x,(k) ’ v‘!K =Yy, - B,-l(K)’x.(K) .
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The form of PIC’ has the distinct advantage (over PIC) that it is invariant to linear trans-
formations of the regressors x,(k) and x,(K). Since PIC’ is constructed from the measures of
the competing Bayes models over the same subsample of data, the criterion is free from ini-
tialization differences and (implicitly) prior distributions on the parameters. The criterion is
as close to an "objective” Bayes criterion as we can hope to get -- it is dependent only on the
data history over the subsample from ¢ = K+1, ..., n.

(iii) When this paper was in the final stages of write up we learnt of some related work
‘on model selection by Wei (1992). Wei suggests a criterion (called "FIC") based on the use of
the "Fisher information" |4,(k)| as a penalty rather than a sample parameter count. Wei's

criterion is to select the model (i.e. k) that minimizes
FIC, = né; + 6 Inj4 (k)| ,
(see equation (5.1.1) of Wei, 1992). Using (22) and (C3) our criterion can be transformed to
2n(PIC,) = (s5, - ssx)lﬁi ~ ln(lA,,(**.k)lﬁil)
= &;fss, + 0% In|A (k)/5%|] - s5, /6% - In|4, (K)/6)] .

The quantity in square parentheses above is asymptotically equivalent to FIC, when the
penalty term /nl|A4,(k)| in FIC, is replaced by the scale invariant term In|A,(k)/5;| (as sug-
gested in Remark 5.3 of Wei (1991)). Wei’s justification for the FIC, criterion is that it is
more meaningful to use statistical information that is relevant to the model (i.e. In|A4,(k){) as
a penalty rather than the dimension of the parameter space (k). Our justification for PIC, is
that it is actually the posterior odds in favor of the model with k parametei‘s over the refer-
ence model in the given class. Our justification shows that PIC (and the asymptotically equiv-
alent FIC) are Bayesian criteria that are founded on the principle that one should choose the
mdoel that is most favored by the data a posteriori (i.e. in terms of its posterior odds). Devel-
opment of the respective "Bayes model" measures Qf and Qf for competing models in the
class is the essential element in deriving the criterion PIC and this idea is capable of sub-
stantial generalization beyond the present context.

(iv) The exponent in (C3) is one half times the quantity
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W, = B,(+)'4,(s+ 0)B(s)/5% ,
which is the Wald statistic for testing the hypothesis that B(+) = 0 in the partitioned model

Y, = X, (k)B(k) + X,(#)B(+) + E, .
Let us now assume that the model is autoregressive or autoregressive with trend as in (2), (3)
or (4) with possibly some unit roots. Then, using the asympiotic theory developed in the
Park-Phillips (1988, 1989) papers it is easy to show that W, = O,(1) as n ~ = when the null
hypothesis

Hy(»): B(*) = 0
is correct. Now & -, o® and |4,(++.k)| = O,(n™) for some integer m > K-k, again under
the null. Hence

(dQ Q) (8%) -, 0

as n - o under H(+). On the other hand, when H(#) is false we have W, = O,(n") for some

¢ 2 1 and hence (dQ)/dQ%)(6}) diverges as n - =. Stating this result formally we have:

3.3. THEOREM: Let the true model (1) be autoregressive or autoregressive with trend as in (2)-(4)
with stable roots and possibly one or more unit roots. A "Bayes model” test of
Ho(+) : B(+) = 0, against H,(s): B(*) # 0
is based on the criterion
(C4)  Accept H(*) in favor of H (») if (dQNdQ")(82) < 1.

This test is completely consistent in the sense that both type I and type II errors tend to zero as

n-«w 3d

34. REMARK. The above theory can be applied directly to test for the presence of a unit
root. For instance, in model (4) we set K = p+2, k = p+1, B(+) = h (the coefficient of y, )
and x(k) = (1, ¢, Ay.y .., Ay,,.1). The criterion (C4) then determines which of the

following two "Bayes models" the data favors:
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H(Q:."z) . Ay”ol = ﬁ'yn + El?l-llq)hAynol-i + '1“ + ?"(n +1) + 8"0]

or
H(Q:-’d) : Aynol = Ef:llwhAynd-i * nn + Tn(" +1) + Euol *

The second model explicitly incorporates a unit root. Both have data-determined and time-
evolving coefficients. The only reason for not preferring H(QX“7*?) is that it carries the cost
of an additional parameter. The criterion (C4) assesses this cost through the penalty that is
incorporated in the denominator of (dQX/dQy)(6z). If this cost outweighs the gain that is
measured in terms of the reduction in the error sum of squares (ie. (ss, - ssx)/6Z, as in the
formulation (22)) from the inclusion of the additional regressor then the criterion favors the
presence of a unit root in the model. When the cost does not outweigh the gain, then

H(Q%*7*?) is chosen and the unit root rejected.

4. TESTING DIFFERENCE STATIONARITY VERSUS TREND STATIONARITY

Bayes model tests of the form given in (C4) may be used to test any sharp null hypothesis
(like that of a unit root) about a model. As our discussion makes clear, the test compares
one Bayes model with another and the outcome of the test depends on the balance of the
gains versus the costs of additional regressors. The testing apparatus will be employed in this
section to assess evidence for trend versus difference stationarity. In such cases we must give
attention to the gains and costs of including a deterministic trend as well as additional lagged
variables. As pointed out in the Introduction, our approach as well as our methodology is
different in this respect from existing work on this problem.,

Our Bayesian model selection criteria will be used to determine not only the stochastic
regressor components of the model but also the form of any deterministic polynomial trend.
We therefore do not maintain the presence of a polynomial trend function in the model as in
(4) but instead rely on our selection criteria to decide whether it should be included and, if so,
in what form.

In addition, we wish to allow for more general stochastic regressor models than
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autoregressions. The reference model we use for assessing evidence in favor of the presence
of a unit root is the ARMA(p, q) + trend model given earlier in (5) (and repeated here for

convenience):
(5) Ay, = hy, + 2‘:;{%‘3}’:4 + 2?-1‘]’,"‘3;-; +p +yt +eg,,

where e, = iid N(0, 0”). To deal with the MA error components in (5) we propose employing
the first two stages of the so-called Hannan-Rissanen (1982, 1983) procedure. This involves
the use of a (possibly) long first stage autoregression in place of (5) to estimate the error
process ¢, The residuals from the first stage autoregression are then used to replace the
lagged errors e, in the MA component of (5) in the second stage. In both first and second
stages a consistent model selection procedure (like BIC or PIC) is used to determine the
appropriate order of the regression. In addition, we apply a model selection procedure to
determine the order of the accompanying trend polynomial.

The precise steps in our procedure are detailed in full in the algorithm that follows:

4.1. MODEL SELECTION ALGORITHM AND DATA-BASED UNIT ROOT TEST
STEP 1. Set maximum orders for the stochastic and deterministic components of the model as
follows:

K = maximum autoregressive lag,

J = maximum moving average lag,

L = maximum degree of polynomial time trend.

STEP 2. Run a sequence of long autoregressions with a fitted time trend of the form
(26) By, =ay,, + T 4,8y, + ELob 1t + residual

fork = 0, 1, .., K. Choose K > K to be large in this step (for example, we might choose
K = 10 or 15 when the sample size n = 100). (When k = 0 the regression is 'y, = Ei_ b ¢
+ residual” and there is no autoregressive component.) Select the order of the autoregression
using the PIC or BIC criteria. If PIC is used it is helpful to run regression (26) with k = K

first to set the reference measure. Let k be the selected order of this regression.,
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STEP 3. Run a sequence of autoregressions with fitted time trends of variable degree of the

form

(27) Ay =ay,_, + Elasy, . + B!

' j=0

B’. t/ + residual

for¢ = -1,0,1, ..,L. (When ¢ = -1, no intercept is included in (27).) Select the order of
the trend polynomial using the PIC or BIC criterion. (Again, if PIC is used, run the regres-
sion (27) with ¢ = L first to set the reference measure.) Let ¢ be the selected degree of the
polynomial time trend from this regression. Compute the residuals from this regression and

call them &,

STEP 4. Run a double sequence (or array) of regressions with lagged residual regressors &,_

of the form

(28) Ay, =&y, , + Zijady,, + I;

i q 2= .
! i=1 Fijt + E:-lc,e,.\, + residunal

for(k = 0,1, .., k = max(k, K); g = 0, 1, ..., J). Select the orders of the moving average and
autoregressive components simultaneously from this array of regressions using the PIC or BIC
criterion, If PIC is used, the regression (28) can be run with k = k and g =7 first to set the
reference measure. If BIC is used it is preferable to compute the estimate of o that is utiliz-

ed in the criterion (C1) from the second stage regression (28) by means of the recursion

e = Ay -4y, - Ef_l a by, - 2},0 bt/ + 27 ¢ ¥

] =]l *y

with the initialization e * = y, = 0 for ¢t < 0. Kavalieris (1991) shows that this method leads to
improved estimates of the autoregressive-moving average orders. lLet p and § be the respec-
tive order of the autoregressive and moving average components selected from this array of

regressions.

STEP 5. Run the regression (28) with selected orders §, 4, ? of the autoregressive, moving

average and trend components giving

(29) Ayr = ao y:-l + E‘:’-‘l‘\‘ a’i a yl-i + 21"-0 s=1 “3 - H

Ejt"-v-zq TE +E.
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STEP 6. (a) f > 0, compute the "Bayes model" test criterion (C4) to assess the support for

the presence of a unit root in the selected model (29). Writing (29) in the regression notation
Ay=2!'oy_1+23 + 7,

the test criterion has the simple form
Iy a A2y, 3 -12 . , =
(30)  BLR(@,) = (dQYEQY™)(5}) = {(Weiy. Py, exp{areday ., Py},

where M =p + § + ¥+1, P, = I - Z(ZZ)'Z’, and 62 = ¥'%/(n-M). The Bayes model
with a unit root is favored over (29) when BLR(@,) < 1.
(b) H p = 0, we accept that there is no autoregressive component in the model and, hence,

no autoregressive umit root. [l

The order estimators (5, §, {) are consistent estimators of the true orders, provided the
latter are finite (see Hannan (1980), Hannan-Rissanen (1982), Hannan-Diestler (1988, Ch. 5)
and Kavalieris (1991) for details in the case of the BIC criterion). Also the fitted residuals
€,., are consistent estimators of ¢, in (29). (If the true model has an MA component the
residuals are still consistently estimated in the first stage regression (26) with k = K because K
is selected to be large and allowed to tend to infinity with n, so that the selected AR order
k - « in this case.) It follows that (29) is asymptotically correctly specified and
@, - a0, P, y.) = O,(1) where a, is the true value of a, Furthermore, y/, P, y_,
diverges as n - « so that the statistic BLR(a,) -, 0 as n - = when a, = 0, whereas BLR(a,)

diverges to infinity when a;, # 0. We have:

4.2. THEOREM. The Bayes model likelihood ratio criterion BLR(a,) given by (30) provides a
completely consistent test of the hypothesis of a unit root in the class of finite parameter

ARMAX(p, q, 0) models with trend polynomials as exogenous regressors.

4.3. REMARKS. (i) The sequence of model selecting regressions in Algorithm 4.1 can be used
for a variety of ultimate purposes. Here we have focussed on obtaining a data-based unit root

test using our "Bayes model" test criterion (C4). This relies on the BLR(a,) statistic given in
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(30). We could also use the algorithm to extract a Dickey-Fuller type t-test for a unit root as
Said-Dickey (1984) do in terms of a long autoregression (leading to the so-called ADF or
augmented Dickey-Fuller test); but in our procedure a general ARMAX system would be con-
sidered and our order selection methods would be employed to determine the best model
before attempting to test for the presence of a unit root. Work on this alternative procedure
is now proceeding and will be explored in a later paper.

(ii) A major difference between our procedure and the ADF procedure as it is used in
practice is that we allow the data to select the order of the trend polynomial. As a result, our
test procedure is not invariant to the presence of trend or the trend coefficients themselves,
We view this as an advantage. Indeed, the stronger is the trend the more likely is our pro-
cedure to find a trend to be present in the data in finite samples. Moreover, if the true
model has a unit root with drift then our procedure will asymptotically select a model with a
unit root and intercept ie. model (29) with q, = 0 and ? = 0. In this sense, our statistical
procedure will be economical on the number of parameters and, unlike the Dickey-Fuller pro-
cedure, will not always include parameters and variables that are unnecessary under the null
hypothesis.

(iii) We may also be interested in the "Bayes model" produced by 4.1, for example, if we
wish to use the model for forecasting. In such cases we may wish to proceed with the third
stage of the Hannan-Rissanen procedure (see Hannan-Rissanen (1982) and Hannan-Deistier

(1988, Ch. 5)) in order to obtain asymptotically efficient estimates of the coefficients. O

All of the procedures outlined in this section of the paper have been programmed in
GAUSS-386i (Version 2.2). When n = 100, K= 10, K = 3,7 = 3, L = 1 the computation

time taken by the algorithm on a 486-33 PC is approximately 0.85 seconds.
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5. SIMULATION EVIDENCE

Simulations were conducted to evaluate the performance of our model selection criterion
PIC and our data-based algorithm for detecting the presence of a unit root. We shall discuss

these experiments ipn turn.

(a) Model selection by PIC

The model chosen for this experiment was the AR(p) given by (2) with p = 3 and
e, = iid N(0, 1). In the PIC criterion the reference model used in the construction of PIC, in
(C3) was an AR(K) with K = 10. The BIC criterion given in (C1) and the AIC criterion of
Akaike (1969) were also used for comparative purposes. A sample size of n = 100 was used
and a large grid of autoregressive coefficients were considered giving a range of models from
three unit roots to a nearly iid process. In terms of the roots (1, i = 1, 2, 3) of the charac-
teristic equation of the autoregression we took a grid of values in increments of 0.20 for each

root A; in the interval [-0.8, 1].

The results are graphed in Figure 1, which gives a surface that displays the difference
between the estimated probability (based on 10,000 replications) of a correct model choice by
PIC and BIC, respectively. The surface shows that PIC outperforms BIC almost uniformly
over the parameter space considered here. The probability of a correct model choice by PIC
exceeds that of BIC by over 0.06 in some cases and on average by more than 0.02. Observe
that PIC improves BIC not only in the nonstationary and near-nonstationary region but also
in the stationary region of the parameter space.

Table 1 gives detailed model choice statistics for AIC, BIC and PIC for eight specific par-
ameter configurations of (4,, 4,, 4,) including stationary and nonstationary cases. Only in the
case where (4;, 4,, ;) = (0.4, 0.4, 0.4) does BIC choose the correct model more times than
PIC and then the estimated difference P(correct model choice by BIC) - P(correct model

choice by PIC) = 0.005. In this case all the criteria favor the more parsimonious AR(2) over
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TABLE 1: MODEL SELECTION BY AIC, BIC AND PIC IN AN AR(3)

Lagorder | i, = &, = 4, = 100 Ay = A, = A; =080 Ay = Ay = 4y = 0.60 Ay = Ay = Ay =040
chosen in
AR(p) AIC  BIC PiC AIC BIC PIC AIC BIC PIC | AIC BIC PIC
1 0 0 0 0 0 0 H 0 0 108 453 331
2 0 0 0 17 63 60 3462 6178 5775 | 7476 8924 9063
3 7904 9537 9630 8014 9492 9626 | 4974 3557 4014 | 1449 537 483
4 1123 387 303 1123 365 261 841 223 180 | 453 64 51
5 464 57 54 394 59 34 337 33 21 225 13 18
] 218 13 8 229 16 16 186 7 9 123 7 4
7 117 6 3 105 5 3 87 2 0 75 1 0
B 82 0 0 35 0 0 58 0 1 46 1 0
9 60 0 2 41 ¢ 0 39 0 0 29 0 0
10 32 0 0 22 0 0 16 0 0 16 0 0
A= 1,00, i; = 0.60, A, =100, i, =060, | A, =100, 4, =060, | A = 080, 2, = 0.80,
i; = 0.40 Ay =020 iy = 0.00 Ay, = 0.40
AIC  BIC PIC AIC BIC PIC AIC BIC PIC | AIC BIC PIC
1 0 0 0 o 0 0 0 0 0 0 0 0
2 2650 5163 4770 6226 8550 8449 | 8004 9582 9637 | 2332 4717 4319
3 5621 4543 4992 2551 1319 1429 | 1101 340 299 | 5916 4984 5427
4 940 242 186 610 104 93 431 54 46 968 255 205
5 377 41 40 270 18 22 197 19 11 376 36 37
6 172 8 10 161 9 7 105 2 2 172 6 10
7 107 2 0 85 0 0 69 0 0 107 2 1
8 60 1 2 46 0 0 44 0 0 56 0 1
9 4 0 0 30 0 0 28 0 0 41 0 0
10 29 0 0 21 0 0 21 0 0 32 0 0
Notes: Number of replications = 10,000; sample size n = 100

an AR(3) and BIC underestimates the order by choosing an AR(1) more frequently than PIC.
For the other parameter values PIC clearly dominates BIC in terms of correct model choice
by as much as 10% in some instances (e.g. A, = 0.80, 4, = 0.80, 4; = 0.40). The tendency

towards overestimation of model order by AIC is evident in all cases.

(b) Posterior odds data-based tests for a unit root

Tables 2(a) and 2(b) show estimated rejection probabilities for the data-based unit root
test described in the algorithm of Section 4.1. An ARMA(S, §) + trend (?) model is con-
structed with estimated orders §, ¢ and { using Steps 1-6 of the algorithm. The estimated
rejection probabilities given in these tables are obtained from 1,000 replications. The unit
root test is based on the posterior odds ratio given by (30) when p > 0. The odds favor the
presence of a unit root when the statistic satisfies BLR(@,) < 1. When 5 = 0, a unit root

model is automatically rejected as there is no autoregressive component in the selected model.
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TABLE 2(a): SIMULATION ESTIMATES OF UNIT ROOT REJECTION PROBABILITIES

ARMA(1,1) model;

AR(2) model:

Sar.nple YV, =ay,., + ¢ + B, y=ay, fu i, = pu., + e
Size 6 1.00 0.95 0.90 0.85 0.80 p 1.00 9.95 0.90 0.85 0.80
-0.80 | 0.173 0664 0954 0,998 1000 | -0.80 | 0021 0.179 0.605 088 0.982
-060 | 0058 0291 0561 0786 0911 | -0.60 | 0.017 0.170 0531 0838 0.955
-0.40 | 0048 0271 0536 0.702 0813 | -040 | 0.026 0.157 0456 0738 0851
-0.20 | 0040 0268 0641 0846 0923 | -0.20 | 0.036 0230 0.612 0843 0900
n=100 000 | 0.020 0.118 0402 0774 0945 0.00 0020 0112 0437 0798 0.960
020 | 0.019 0.112 0336 059 0.828 0.20 0009 0095 0274 0582 0788
040 | 0042 0233 0579 0©CB05 0902 0.40 0017 0091 0310 0573 0.766
060 | 0,076 0340 0720 0886 0932 0.60 | 0011 0059 0.193 ©.375 0.630
080 | 0095 0435 0767 0837 0920 080 | 0.009 0024 0074 0170 0298
-0.80 | 0.064 0455 0883 0995 1.000 | -0.80 | 0.015 0267 0817 098¢ 1.000
-060 | 0022 0.170 0377 0589 0826 | -0.60 ] 0.082 0255 0782 0981 1.000
=040 | 0020 ©0.220 0424 0576 068 | -0.40 { 0.015 0214 0737 0978 1.000
-0.20 | 0028 0346 0750 0.865 0898 | -0.20 | 0.020 0323 0.816 0962 0999
n=150 000 | 0.010 0.175 0.691 0972 0995 0.00 0017 0181 0703 0971 0999
020 | 0018 0.18 0575 0866 0977 0.20 0011 0095 0460 0.807 0976
0.40 0035 0408 0812 0954 (.98 0.40 0006 0119 0466 0802 0958
060 §: 0058 0576 0906 0940 0.969 0.60 0001 0085 0351 0.683 0.864
080 | 0085 0649 0882 0949 0944 0.80 0.003 0031 0154 0352 0468

Number of replications = 1,000

TABLE 2(b);: SIMULATION ESTIMATES OF UNIT ROOT REJECTION PROBABILITIES

ARMA(1,1) + trend model: y, = dr + x,

AR(2) + trend model: y, = dt + x,

Sample d=0025x =ay,_ + e + 0e,, d=0025x=ay_, +u,u =pu_, +e¢
Size 6 1.00 0.95 0.90 0.85 0.80 P 1.00 0.95 0.90 0.85 0.80
-0.80 | 0804 0906 0987 0999 1.000 { -080 | 0.188 0216 0.615 0906 0.982
-0.60 | 0371 0486 0700 0874 0949 | -060 | 0.164 02483 0567 0.851 0.968
-040 | 0325 0.409 0544 0.688 0862 | -0.40 | 0.184 0.225 0512 0756 0861
-020 | 0.28% 0.370 0.542 0.654 0817 | -0.20 | 0246 0.347 0.672 0866 0936
n=1001 000 | 0.147 0.167 0323 0477 0.652 000 | 0177 0208 0458 0.803 0.961
0.20 | 0.162 0168 0322 0420 0528 020 | 0142 0.137 0356 0.562 0.803
040 | 0226 0303 0529 0.668 0.781 0.40 | 0.154 0.154 0314 0632 0796
0.60 | 0.279 0439 0.643 0.831 0.855 060 | 0129 0.143 0241 0.442  0.647
080 | 0310 0470 0726 0.832 0.857 080 | 0.100 0.101 0.149 0212 0.299
-G.80 | 0489 0.769 0972 0998 1000 { -0.80 | 0.131 0.192 0439 0.728 0931
-0.60 | 0.147 0285 0514 0755 0902 | -060 | 0.122 0219 0398 0.68 0903
-0.40 | 0.148 0261 0462 0.631 0.793 | -040 | 0.131 0.187 0325 0594 0,786
-0.20 | 0.213 0354 0594 0771 0884 | -020 | 0175 0312 0514 0696 0.861
n=150§ 000 | 0.090 0.205 0340 0.609 0.845 000 | 0102 0.192 0330 0.582 0815
020 | 0123 0195 0328 0508 0.653 020 | 0.103 0.184 0266 0.443 0592
040 | 0202 0357 0619 0.780 0.856 040 | 0207 0.169 0364 0.581 0.703
0.60 | 0.227 0476 0750 0.841 0.850 060 | 0098 0117 0329 0498 0.652
080 | 0252 0599 0814 0.885 0.843 0.80 | 0.071 0.069 0.198 0.324 0.462

Number of replications = 1,000
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For the first case, given in Table 2(a), we considered models with no trend and the maxi-
mum degree of the polynomial trend was set at L = -1 in Step 1 of the algorithm. Results
for both ARMA(1,1) and AR(2) models are shown m the table. For the ARMA (1,1) model
and n = 100 the rejection probability under the null (when & = 1.00) is in the range 0.06-0.09
for all values of the MA coefficient 8 except 6 = -0.8. At 8 = -0.8 the rejection probability
is 0.173 and in this case the algorithm more frequently selects a model with no autoregressive
(and moving average) component giving § = 0. The rejection probabilities rise rapidly for all
values of 0 as @ departs from unity. When n = 150, the rejection probabilities at the null are
noticeably smaller than when n = 100, corresponding to the fact that the type I error for this
test goes to zero as n increases. Again, rejection probabilities (or power) increase rapidly for
a # 1. Similar observations apply to the AR(2) model. In this case the size characteristics of
the test are more stable at n = 100, although rejection under the null decreases as the second
AR coefficient p - 1.00, as would be expected since there are now almost two unit roots in
the model. The power in this case is substantial for all parameter values except p = 0.80
(again, since the second root is pear to unity). Size decreases and power increases when n
increases to 150, as in the ARMA(1,1) case.

Table 2(b) shows corresponding results for the same models and parameter values but has
a linear trend in the generating mechanism and allows the algorithm to select the trend
degree as well as the lag orders. In this case, the rejection probabilities under the null are
much higher than in Table 2(a), as would be expected. In finding the best mode! for the data,
the algorithm frequently favors a Bayes model with evolving trend and transient dynamic coef-
ficients even when there is a unit root. When n increase from 100 to 150 the probability of
rejecting the presence of a unit root under the null falls and the procedure clearly has more
discriminating power for sﬁmples of this size. For the AR(2) + trend model the rejection
probabilities under the null are lower and more uniform than for the ARMA(1,1) + trend
model. Power increases rapidly in this case except when p = 0.80, in which case the presence
of the two positive and large autoregressive roots leads to somewhat lower rejection probabil-

_ities (e.g. 0.46 fora = p = 0.8 whenn = 150).
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Overall, the authors find the results of these simulation exercises to be quite encouraging.
Even for cases where classical unit root tests have serious size distortion, like the ARMA(1,1)
model with a s;trong negative moving average effect, the data-based procedure seems to work
quite well. As in the case of classical tests, the presence of trends generally reduces discrim-
inatory power but when » = 150 the data-based procedure gives results that we find very
acceptable, especially given the complexity of this problem and the disappointing performance

of other methods. For AR models with trend the procedure seems to work rather well.

6. EMPIRICAL ILLUSTRATION

The methods of Sections 3 and 4 were applied to the fourteen historical US time series
studied by Nelson-Plosser (1982). For each of the fourteen series we applied the algorithm
described in Section 4. We set the maximum polynomial time trend degree at L = 1 in Step
1, the long autoregressive lag parameter in Step 2 at K = 10 and the maximum ARMA lag
lengths in Step 4 at K = J = 3. Both ARMA + trend and AR + trend models were employ-
ed. We used our model selection criterion PIC to choose the trend degree and AR order and
the BIC criterion to choose the ARMA lag lengths in Step 4, The BIC criterion was used in
the latter step as it was simpler to program. In later work we plan to use the PIC criterion
throughout, once the software is written to accommodate ARMA specifications,

The empirical results are shown in Table 3. Real GNP, nominal GNP and per capita
GNP are all found to have AR(2) specifications with no deterministic trend but with a unit
autoregressive root. The posterior odds in favor of the unit root for these series ranges from
60:1 to 400:1. Note that these are odds in favor of the "Bayes model" with a unit root against
the corresponding "Bayes model" without the umit root -- see Remark 3.4 above. This result
provides strong Bayesian confirmation of the earlier classical results of Nelson-Plosser.

Only two series (money stock and industrial production) are found to have linear deter-
ministic trends. For these two series the odds against the presence of a unit root in the
"Bayes models” are around 6:1 and 3:1 respectively. Unemployment is found to be stationary

with a nonzero mean (i.e. the model with fitted intercept is selected in favor of a model with a



linear trend and a model with no trend and no intercept).

TABLE 3: EMPIRICAL RESULTS FOR NELSON-PLOSSER DATA

31

Block A Block B
Mode! clam = ARMA(p, q) + linear tremd Model clam = AR(p) + lincar trend
Model selecrad Foslerior odds in Model Selected Long-run Posterior odds in
Long-run favor of a unit gremive |  favor of a unit
Scrics Delerministic ";::!.il:ie I Rt 1/BLR(e,) Deterministic |  cocfficient | root = 1/BLR(s,)
Dynamics | trend degree® Dyoamics | trend degree*
Real GNP AR(D) -1 L003 59,523 AR(2) -1 1003 50.523
Nominal GNP AR(2) -1 1002 64,516 AR(2) -1 1.002 64,516
Real p.c. GNP AR(2) -1 1001 400,000 AR(2) -1 1001 400.000
Industrial production |  AR(1) 1 0841 0.169 AR(1) i 0.841 0.169
Employment AR(2) -1 1.001 129870 AR(2) -1 1001 129870
Unempioyment ARMA(LI) o 0.585 £.000 AR(4) 0 0.709 0019
GNP deflator AR(2) -1 1.003 69,444 AR(2) -1 1003 69.444
Consumer prices ARMA(21) -1 1.002 172414 AR(6) -1 1.001 555.555
Nominal wages ARMA(L1) -1 1,005 .001 AR(2) -1 1002 40,186
Real wages AR(1) -1 1.004 11001 AR(2) 1 1.004 11,001
Money Stock AR(2) 1 0.916 0.321 AR(2) 1 0.916 0321
Velocity AR(1) -1 0.981 442 AR(1) -1 098] 44m2
Bond yields AR(1) -1 1019 12,642 AR(1) -1 1019 12642
Stock prices AR(1) -1 1.007 8L301 AR(1) -1 1007 81301

*[egend: deterministic trend degree p = -1 (o trend or intercept), p = 0 (intercept only), p = 1 (intercept + lincar trend)

All of the remaining series are found to be stochastically nonstationary. The nominal
wage series provides a very interesting case where a "Bayes model" with a mildly explosive
long run autoregressive coefficient of 1.0054 is selected over a model with a unit root. The
nonstationary models selected for all of the other series have unit roots. Note that in the case
of the stock price series the odds in favor of the presence of a unit root are close to 100:1.

Table 3 also details the models and the lag orders selected. We note that eleven of the
series are found to be autoregressive, either AR(2) (6 series) or AR(1) (5 series). Three of
the series are autoregressive moving average, either ARMA(1,1) (unemployment and the
nominal wage) or ARMA(2,1) (the consumer prices).

Results obtained by restricting the model class to be purely autoregressive are given in
Block B of Table 3. All of the conclusions concerning stochastic nonstationarity are the same.
The only important change from restricting the class of models to be autoregressive is for the
nominal wage series. In this case an AR(1) model with no deterministic trend is selected (as
distinct from an ARMA(1,1)) and the posterior odds are in favor of the presence of a unit
root as compared with a mildly explosive autoregressive root when the wider model class is

used for model selection.
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7. CONCLUSION

This paper puts forward what we believe is a new paradigm for Bayesian inference in time
series. As we have shown in Theorem 2.3, the effect of data conditioning in a time series
model is to alter the context of statistical inference from the original model to a location
model, like (15), where f%,,, is the best estimate of the location of Ya+1 Biven the historical
trajectory (i.e. information in #,). In such a context, 2 Gaussian (or asymptotically Gaussian)
posterior density for the parameter vector B that is centered on the maximum likelihood esti-
mate fi, seems eminently reasonable, whereas it is much less reasonable in the context of the
original time series mode! because of the poor sampling properties of §,. We call location
models such as (15) "Bayes models" because they arise naturally in the passage to the poster-
ior density due to data conditioning. Associated with these models are probability measures
that we call "Bayes model" measures. Our new paradigm for Bayesian inference works explic-
itly with these "Bayes model" measures. The measures allow us to compare models and to
conduct tests, almost as we do in classical theory, by using likelihood ratios. What is especi-
ally powerful in the new paradigm is that problems that have been separately treated before in
time series analysis (like model selection and hypothesis testing) are now treated simply as
different aspects of the same common theory. Thus, a model is selected when its density
under these new measures is the largest in a given class. And a point null hypothesis is
favored by the data when the likelihood ratio of the "Bayes model" densities exceeds given
prior odds, which we typically set to unity, In other words, the likelihood ratio or RN deriva-
tive of the respective "Bayes model" measures allows us to discriminate statistically equally
well among models and among sharp hypotheses about parameters in those models.

The empirical results of Section 6 provide support for the earlier conclusions of Nelson-
Plosser (1982) concerning the presence of stochastic trends in US historical time series.
Especially interesting in these results is the fact that deterministic trends receive support from
model selection methods for only two series (the money stock and industrial production).
These series and the unemployment rate are the only series found to be trend or level

stationary,
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We emphasize that our approach to inference is very different from both classical and
Bayesian methods that have heretofore been adopted in studies relating to the presence or
absence of unit roots in economic time series. Since our methods are data-based and inte-
grally involve model selection we allow the data to choose the most appropriate model. As
more data accumulates, this approach recognizes the potential need for the model itself to
evolve. And when the model changes, so too may the conclusions concerning the presence or
absence of stochastic nonstationarity. We view this flexibility and updating as an inherent
advantage of our approach.

This approach to Bayesian inference in time series models has many applications beyond
those presented here. The authors plan to report on analytical extensions of the theory to

nonlinear models, multivariate models and models with cointegrated processes in later work.

8. REFERENCES
Akaike, H. (1969). "Fitting autoregressive models for prediction," Annals of the Institute of
Statistical Mathematics 21, 243-247.

Akaike, H. (1977). "On entropy maximization principle,” in P. R. Krishnarah (ed),
Applications of Statistics. Amsterdam: North-Holland, pp. 27-41.

Durbin, J. (1960). "The fitting of time series models," International Statistical Review, 28,
233-244.

Hannan, E. J. (1980). "The estimation of the order of an ARMA process," Annals of Statistics,
8, 1071-1081.

Hannan, E. J. (1981). "Estimating the dimension of a linear system," Journal of Multivariate
Analysis, 11, 459-473,

Hannan, E. J. and M. Deistler (1988). The Statistical Theory of Linear Systems. New York:
John Wiley & Sons.

Hanpan, E. J. and J. Rissanen (1982). "Recursive estimation of ARMA order," Biometrika,
69, 273-280 [Corrigenda, Biometrika, 1983, 70].

Harvey, A. C. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter,
Cambridge, UK: Cambridge University Press.

Kavalieris, L. (1991). "A note on estimating autoregressive-moving average order," Biometrika,
78, 920-922.

Nelson, C. R. and C. Plosser (1982). "Trends and random walks in macroeconomic time
series: Some evidence and implications,"” Journal of Monetary Economics, 10, 139-162,



34

Park, J. Y. and P. C. B. Phillips (1988). “Statistical inference in regressions with integrated
processes: Part 1," Econometric Theory, 4, 468-497,

Park, J. Y. and P. C. B. Phillips (1989). "Statistical inference in regressions with integrated
processes: Part 2," Econometric Theory, 5, 95-131.

Paulsen, J. (1984). "Order determination of multivariate autoregressive time series with unit
roots," Journal of Time Series Analysis, 5, 115-127,

Phillips, P. C. B. (1991). "To criticize the critics: An objective Bayesian analysis of stochastic
trends," Journal of Applied Econometrics, 6(4), 333-364.

Phillips, P. C. B. and W. Ploberger (1991). "Time series modeling with a Bayesian frame of
reference: 1. Concepts and illustrations,” Cowles Foundation Discussion Paper No. 980.

Phillips, P. C. B. and W. Ploberger (1992a). "Time series modeling with a Bayesian frame of
reference: II. General theory and applications,” in preparation.

Phillips, P. C. B. and W. Ploberger (1992b). Bayesian model selection and prediction with
empirical illustrations," in preparation.

Potscher, B. M. (1989). "Model selection under nonstationarity: Autoregressive models and
stochastic linear regression models," Annals of Statistics, 17, 1257-1274.

Rissanen, J. (1978). "Modeling by shortest data description," Automatica, 14, 465-471.
Schwarz, G. (1978). "Estimating the dimension of a model" Annals of Statistics, 6, 461-464.

Tsay, R. S. (1984). "Order selection in nonstationary autoregressive models," Annals of
Statistics, 12, 1425-1433,

Wei, C. Z. (1992). "On predictive least squares principles," Annals of Statistics, 20, 1-42.



o0UsIa}}I0 OIF — Old 1l @4nbi]

09'0 = j0od 384y (q) 00°L = )00J sy (D)

Old % Old U=eomieg
(8010YD |2pOW 1084400)d Ul 20Usldallid



