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Abstract 
 
This study provides evidence that the posterior parietal cortex (PPC) is causally involved in 

risky decision making via the processing of reward values but not reward probabilities. In the 

within-group experimental design, participants performed a binary lottery choice task 

following transcranial magnetic stimulation of the right PPC, left PPC and a right PPC sham 

(placebo) stimulation. Both, mean-variance and the prospect theory approach to risky choice 

showed that the PPC stimulation changed participants’ preferences towards greater risk 

aversion compared to sham. On the behavioral level, after the PPC stimulation the likelihood 

of choosing a safer option became more sensitive to the difference in standard deviations 

between lotteries, compared to sham, indicating greater risk avoidance within the mean-

variance framework. We also estimated the shift in prospect theory parameters of risk 

preferences after PPC stimulation. The hierarchical Bayesian approach showed moderate 

evidence (BF = 7.44 and 5.41 for right and left PPC respectively) for a credible change in risk 

aversion parameter towards lower marginal reward value (and, hence, lower risk tolerance), 

while no credible change in probability weighting was observed.  Additionally, we observed 

anecdotal evidence (BF = 2.9) for a credible increase in the consistency of responses after the 

left PPC stimulation compared to sham. 
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Introduction 
 

The ability to make risky decisions is fundamental for survival. However, the brain 

mechanisms of risky behavior are still poorly understood. Previous studies have highlighted 

the role of the frontoparietal neural network as an important neural substrate for decision 

making under risk (Peter Mohr, Heekeren, & Rieskamp, 2017; Paulus et al., 2001). Several 

studies have shown that the dorsolateral prefrontal cortex (DLPFC) plays a fundamental role 

in risk taking (Huang et al., 2017; Knoch & Fehr, 2007; Pripfl, Neumann, Köhler, & Lamm, 

2013; Ye et al., 2015). A meta-analysis reported that the activity in DLPFC is correlated with 

risk taking in the situation of active choice by contrast to merely anticipating the realization of 

a risky outcome (Mohr, Biele, & Heekeren, 2010). The role of the posterior parietal cortex 

(PPC) in making risky decisions has received much less attention in the neuroscientific 

literature. 

Previous studies suggest that the PPC is involved in the assessment of risky options such 

as the degree of uncertainty of investments in the financial market (Peters & Büchel, 2009), 

with some subregions of the PPC decreasing activation in response to greater risk (van 

Duijvenvoorde et al., 2008). Making a risky decision is a complex process in which, as 

suggested by many economic studies, two components play a major role: subjective valuation 

of a monetary reward and probability weighting (Tversky & Kahneman, 1992). However, the 

neuroeconomic studies do not focus on the investigation of the role the PPC plays in these 

separate components. In the present study we aim to close this gap by causally addressing the 

PPC involvement in both subjective valuation of reward and probability weighting.  

Previous studies allow us to hypothesize that PPC may be causally involved in both of 

these components. For example, a study on decisions under risk and ambiguity demonstrated 

that the PPC is more active in the situation of choice under risk rather than ambiguity in 

adolescents (Blankenstein, Schreuders, Peper, Crone, & van Duijvenvoorde, 2018). As the 

difference between risk and ambiguity consists in the availability of information about exact 

outcome probabilities, these findings support the hypothesis that the PPC might be involved in 

probability weighting. In a brain lesion study, participants with injuries in the PPC 

demonstrated impaired decision making in a risk-taking context compared to healthy controls, 

and the extent of the behavioral impairment correlated with the size of the lesion (Studer, 

Manes, Humphreys, Robbins, & Clark, 2015). Importantly, the perception of probabilities 

outside of decision-making contexts remained unimpaired. Another study revealed that 
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repetitive transcranial magnetic stimulation (rTMS) of the temporoparietal junction shifted 

preferences towards lower risk taking particularly when outcome probabilities were 50%,  

suggesting the PPC might be also involved in risk sensitivity (Coutlee, Kiyonaga, Korb, 

Huettel, & Egner, 2016). 

 In the present study, we subjected participants to the three sessions of an offline rTMS 

protocol by using continuous theta burst stimulation (cTBS) over the right PPC, left PPC, and 

placebo stimulation over the right PPC, performed on separate days. In each session, after the 

stimulation participants made a series of binary lottery choices. The data allowed us to test the 

effects of TMS on risk taking using two different approaches to choice under risk currently 

existing in the literature. The first approach represents choice between lotteries as a mean-risk 

tradeoff (Markowitz, 1952; Tobin, 1958; Tobler et al., 2009). According to this approach, an 

individual gains positive utility from a higher expected value of a lottery, and obtains disutility 

from a higher variance (or standard deviation) of a lottery. The extent by which standard 

deviation affects the utility of a risky option is determined by an individual degree of risk 

tolerance (Grabenhorst et al., 2019). According to the second approach, known as prospect 

theory, an individual chooses between lotteries maximizing the sum of non-linear utilities of 

rewards weighted by non-linearly transformed probabilities (Tversky & Kahneman, 1992). As 

currently there is no consensus on which of these approaches better represents cognitive 

processes underlying risky choice (Boorman & Sallet, 2009; d’Acremont & Bossaerts, 2008; 

Dennison et al., 2022), we use both of them to analyze the data. Since the mean-variance 

approach implies that risk-sensitivity affects the choice linearly, we use this approach to 

analyze the data on a behavioral level with a linear regression model. Prospect theory, by 

contrast, depends on the curvature of utility and probability weighting functions Thus, we also 

use the structural modeling of risk preferences to determine the TMS effects on choice within 

a prospect theory framework. 

On a behavioral level we find that both left and right PPC stimulation increased 

participants’ sensitivity to the difference in standard deviations between the riskier and the 

safer option (controlling for the difference in the mathematical expectations of the options), 

which corresponds to a decrease in risk tolerance within the mean-variance approach. The 

structural modeling of risk preferences estimated using the hierarchical Bayesian approach 

revealed that this shift in risk tolerance is associated with a credible decrease in the marginal 

value of money (risk aversion coefficient), while no such effect is found for probability 
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weighting. Additionally, we observed that the TMS of the left PPC significantly decreased the 

amount of noise in participants’ choices.  

 

 
Materials and Methods 

 

Participants 

We recruited 36 healthy volunteers (61% females, mean age = 22, min age = 19, max age = 

27) who participated in all three sessions of the experiment. Participants were recruited via 

paper flyers distributed on the university campus as well as advertisements on the Internet. 

Potential subjects were queried about their area of education, and those with prior knowledge 

of economics or technical sciences (math, physics, computer science, etc.) were not invited to 

participate. These subjects were excluded due to possible knowledge of various theories of 

choice (e.g., expected utility, prospect theory) which might bias the outcomes — they may try 

to deliberately align their behavior with these theories or may engage in calculating 

mathematical expectation of lotteries.  

Other exclusion criteria included regular sleep of less than 6 hours per day, self-reported 

left-handedness, history of brain injury or head trauma, being diagnosed with any psychiatric 

or neurological illness including epilepsy and migraines, family history of epilepsy, taking any 

prescription medication, and having metal objects inside the body. All participants read and 

signed the informed consent form prior to the experiment. All procedures were approved by 

the ethics committee of HSE university. One participant was excluded from data analysis due 

to misconception regarding the unlimited response time in the task. Overall, 35 participants 

were included in the final data set. 

 

Experimental task and payment 

 

The experimental protocol closely follows the one used in a previous TMS study on the role of 

the DLPFC in risky choice (Panidi et al., 2022). The experimental task consisted of 85 self-

paced binary lottery choice questions. Each question involved a choice between option A and 

option B, where each option represented a lottery (for a similar task, see (Holt & Laury, 2002)). 
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Figure 1 presents an example of a screen subjects would see during the experiment. A 

participant had to indicate which lottery they would prefer to play by pressing one of two 

buttons on the keyboard located in front of them (indifference between lotteries was not 

allowed). All lotteries were purely in the gain domain. The monetary outcomes were presented 

in monetary units (MU) corresponding to the local currency with 1:1 conversion ratio. 

Participants were paid a 500 monetary unit (MU) participation fee (~22USD based on the 

BigMac index at the time of data collection) for each session and were informed that all 

payments would be administered at the very end of the third session. Additionally, they were 

informed that one answer from each session would be selected randomly and the lottery that 

was preferred in this particular question would be played out for real to determine the final 

payment the participant would receive for each session. Participants were informed about the 

outcome of each session only at the end of the third session to avoid interaction of this 

information with risky behavior. All the information regarding participation fee and the 

payment of additional rewards based on the choices in the experimental task was thoroughly 

conveyed to the participants in the instructions prior to the beginning of the task. On average, 

participants earned 934 MU (~41USD based on the BigMac index at the time of data collection) 

for the lotteries in three sessions in addition to the participation fee. Therefore, the amounts 

used in the task were meaningful for participants. Across all sessions, completion of the task 

took 7.8 minutes on average. 

 

 

 
 
Figure 1. Task design. Subjects had to indicate their preferred option by pressing one of two 
buttons on the keyboard. The diagrams graphically and numerically present probability 
distributions for each lottery as well as the corresponding lottery outcomes. 
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In each trial, the lottery choice question was randomly taken from the list of 85 binary lottery 

choice questions. This list of questions consisted of five multiple price lists (MPL) similar to 

those used in other studies to detect changes in risk preferences (Holt & Laury, 2002). Each 

MPL represented a set of 17 binary choice questions ordered by probability of the best outcome 

ranging from 0 to 1. An example of an MPL used in the task is seen in  

Table . The complete list of lotteries used can be found in the Supplementary Materials. 
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Number of 
question 

Option A Option B Probability 
of best 

outcome 

Probability 
of worst 
outcome 

Expected 
value of 
Option A 

Expected 
value of 
Option B 

Outcome 1 Outcome 2 Outcome 3 Outcome 4 

1 750 15 450 250 0 1 15 250 

2 750 15 450 250 0.01 0.99 22.35 252 

3 750 15 450 250 0.05 0.95 51.75 260 

4 750 15 450 250 0.10 0.90 88.5 270 

5 750 15 450 250 0.15 0.85 125.25 280 

6 750 15 450 250 0.20 0.80 162 290 

7 750 15 450 250 0.30 0.70 235.5 310 

8 750 15 450 250 0.40 0.60 309 330 

9 750 15 450 250 0.50 0.50 382.5 350 

10 750 15 450 250 0.60 0.40 456 370 

11 750 15 450 250 0.70 0.30 529.5 390 

12 750 15 450 250 0.80 0.20 603 410 

13 750 15 450 250 0.85 0.15 639.75 420 

14 750 15 450 250 0.90 0.10 676.5 430 

15 750 15 450 250 0.95 0.05 713.25 440 

16 750 15 450 250 0.99 0.01 742.65 448 

17 750 15 450 250 1 0 750 450 

 
Table 1. Example of the MPL used in the experimental task. Expected values were not shown 
on the screen during the task. 
 

 In each pair of lotteries, the probabilities of the corresponding high and low outcomes 

were identical. The ordering of lotteries on the screen was randomized: in half of the questions 

the lottery with a higher outcome spread appeared as option A, while in the other half it 

appeared as option B. To minimize the possibility that subjects would remember their answers 

from previous sessions, the order of the questions was randomized and unique in each session. 

The positions of the monitor and keyboard were adjusted to suit each participant prior to the 

beginning of the task. To eliminate possible effects of time pressure on risk preferences found 

in previous studies (Kirchler et al., 2017), subjects were told that they had unlimited time for 

the task. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 9, 2023. ; https://doi.org/10.1101/2023.02.08.527663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527663


 8 

 

Experimental design and stimulation protocol 

 
For each participant, the experiment consisted of three sessions carried out on different dates 

separated by 3 to 4 days. In each session, we used a neuronavigated continuous theta-burst 

stimulation (cTBS) protocol. cTBS is an advanced patterned TMS protocol which has been 

shown to be effective in modulating the cortical excitability of a specific brain area both in 

motor and cognitive domains (Cho et al., 2010; Christov-Moore et al., 2016; Huang et al., 2005; 

Klucharev et al., 2011; Ott et al., 2011; Zack & Boileau, 2016). Each session included one of 

the three treatments: (1) cTBS of the right PPC (“right”), (2) cTBS of the left PPC (“left”), (3) 

sham stimulation of the right PPC (“sham”). The order of these treatments was randomized and 

counterbalanced between participants. To improve precision when positioning the coil, we 

employed a neuronavigation system which utilized the structural T1-weighted MRI scans 

which subjects obtained on a separate day prior to the experiment. 

The stimulation was performed using a figure-of-eight (C-B60, 75mm diameter) coil 

through a MagVenture stimulator (MAGPRO R30 with MagOption, MagVenture, Inc.). The 

off-line stimulation paradigm was used; that is, stimulation was administered prior to 

performing the task. Stimulation intensity was set at 80% of the resting motor threshold (RMT) 

determined for each individual at the beginning of each session. The RMT was determined as 

the stimulation intensity inducing at least five motor evoked potentials (MEPs) of at least 50µV 

out of 10 pulses on the motor hotspot of the first dorsal interosseous muscle (Rossi et al., 2009) 

in the hand contralateral to the side of PPC stimulation. The cTBS stimulation lasted 40 

seconds. The coil was held tangentially to the scalp at a 45-degree angle to the midsagittal axis 

of the subject’s head. Subjects were given a 5-minute break after the stimulation and before 

performing the task to allow for the downregulating effects of cTBS to take place (Huang et 

al., 2005). Previous research has shown that this stimulation protocol downregulates the cortex 

for up to 60 minutes following stimulation (Huang et al., 2005). Sham sessions were held in 

exactly the same way except that the stimulation was performed using a sham coil (MCF-P-

65) which mimics the sound of the actual stimulation without inducing any perpendicular 

magnetic field to the cortex. Stimulation protocols were run with online neuronavigation 

(Localite GmbH, Germany).  
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Stimulation site coordinates were identified for each subject based on their T1-weighted 

structural MRI images. Montreal Neurological Institute (MNI) stereotaxic coordinates were 

back-normalized to subjects’ native brain space using an SPM8 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The stimulation coordinates (right PPC 

(42, -38, 44); left PPC (-36, -52, 46)) were selected based on a previous fMRI study (Peters & 

Büchel, 2009) where the peak activation at these sites correlated with the subjective value of a 

probabilistic reward. The right PPC coordinates are close to those reported in a meta-analysis  

(Mohr et al., 2010) where they were found to be more related to decision risk as opposed to 

anticipation risk. The left PPC coordinates are close to the coordinates used in a previous TMS 

study (Coutlee et al., 2016) which showed that downregulation of the left PPC in this area 

reduces risk taking behavior. TMS stimulation sites were identified on each participant’s scalp 

using the MRI-based Localite TMS Navigator system (Localite GmbH, Germany). 

The level of discomfort in each session was assessed by means of self-report on the 7-

point scale (1 indicating the lowest and 7 the highest experienced discomfort). The mean 

reported discomfort was as 1.5 for sham, 1.7 for right PPC and 1.9 for left PPC stimulation. 

The three sessions did not significantly differ in the reported discomfort (Wilcoxon signed-

rank test p-value = 0.40 for sham vs. right PPC, 0.11 for sham vs. left PPC, 0.23 for left vs. 

right PPC). 

 
 
Behavioral analysis 

To analyze the behavioral effects of TMS on risk taking we estimated a generalized linear 

mixed-effects regression model with a logit link function using the probability of choosing the 

riskier lottery as the dependent variable. In accordance with other studies on risk taking, we 

defined the riskier lottery as a lottery having higher standard deviation (Bougherara et al., 

2021). We tested various model specifications with fixed effects for right and left PPC 

stimulation conditions, the difference in means in favor of the riskier lottery (Δ𝜇 ), the 

difference in standard deviations in favor of the riskier lottery (	Δ𝜎), the ratio  Δ𝜇/Δ𝜎, and their 

interaction with stimulation conditions. Additionally, trial number and order of the 

experimental session were included to control for fatigue and order effects, as well as the self-

reported level of discomfort during the stimulation to control for the emotional effects it might 
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have had on participants’ decisions. Subject-level random effects were included in all model 

specifications. 

 The inclusion of the Δ𝜇/Δ𝜎 ratio is suggested by the mean-risk approach to risky choice 

(Tobler, Christopoulos, O’Doherty, Dolan, & Schultz, 2009). The mean-risk approach 

postulates that participants derive utility from a higher mean of a lottery while experiencing 

disutility from a higher risk. The level of risk can be represented by the variance or the standard 

deviation of a lottery. The coefficient by which the risk measure is multiplied represents then 

the individual risk sensitivity. The utility of each lottery can then be represented as: 

 

𝑈( = 𝜇( − 𝛼𝜎(,	 (1) 

 

where 𝜇(  and 𝜎( are the mean and standard deviation of a lottery respectively, and 𝛼 > 0 is the 

degree of risk aversion. Following this framework, we can predict that a participant will choose 

the riskier lottery A versus the safer lottery B whenever 𝑈/ > 𝑈0, i.e. whenever 𝜇/ − 𝜇0 >

𝛼(𝜎/ −	𝜎0).  Therefore, in a deterministic model the participant will choose the riskier lottery 

whenever 𝛼 < 34536
74576

.  In the regression analysis, we expect a positive coefficient for the 

Δ𝜇/Δ𝜎 regressor. A positive sign for this regressor would mean that participants are more 

likely to choose the riskier option when it offers a higher mean reward at the expense of a not 

very large difference in standard deviations with a safer option. Trials with probabilities equal 

to 0 or 1 were excluded from the analysis due to the standard deviation being zero and, as a 

result, Δ𝜇/Δ𝜎	 being undefined for these trials. 

The advantage of the regression analysis is that it does not require specific assumptions 

regarding the functional forms for utility or probability weighting. However, the results might 

be biased since it does not allow for a non-linear relationship between various factors 

influencing risk-taking behavior. Therefore, we further proceed with the structural modeling 

of risk preferences and estimating the shift in preference parameters after the PPC stimulation.  

 

  

Structural modeling of risk preferences 

 

To determine the effect of TMS stimulation on different components of risk preferences we 

estimated the structural model of choice under risk using the hierarchical Bayesian approach. 
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We assumed rank-dependent preferences with probability weighting in the form suggested in 

(Tversky & Kahneman, 1992), logistic distribution of the random error (Andersen, Harrison, 

Lau, & Rutström, 2008), a utility function with constant relative risk aversion (CRRA), and the 

difference in the logarithms of utility as a factor defining the choice between lotteries (strict 

utility) (Holt & Laury, 2002). The functional forms for probability weighting and utility are 

provided below: 

 

𝑤(𝑝) =
𝑝:

(𝑝: + (1 − 𝑝):)
=
:
				

 

(1) 

𝑈(𝑥) = 𝑥?, (2) 

where 𝑟 > 0 represents the risk-aversion coefficient, and 𝛾 represents the degree of probability 

distortion. The utility function is defined only in the gain domain since only positive outcomes 

were used in the experimental task. In accordance with the rank-dependent utility theory 

expected utility of lottery	𝐿 is defined as 𝐸𝑈( = 𝑤(𝑝)𝑥=? + D1 − 𝑤(𝑝)E𝑥F?, where 𝑥= and 𝑥F 

are the best and the worst monetary outcome respectively, and 𝑝 is the probability of the best 

outcome. The probability of choosing lottery A over B is then given as: 

 

𝑃(𝐴 ≻ 𝐵	) =
1

1 + exp N−𝜏 ∙ 𝑙𝑛 N𝐸𝑈/𝐸𝑈0
S	S

 (3) 

 

where 𝜏 represents the inverse “temperature”, or the inverse of the standard deviation of the 

noise, and 𝐸𝑈/ and 𝐸𝑈0 represent expected utilities of options A and B respectively. 

 

Following the hierarchical Bayesian approach, we model each preference parameter as a 

combination of a baseline level and a change induced by the left or right PPC TMS stimulation: 

 

𝑟T = 𝑟TU + Δ𝑟T
?TVWX ∙ 𝐼D	𝑇𝑀𝑆?TVWXE + Δ𝑟T

]^_X ∙ 𝐼	D𝑇𝑀𝑆]^_XE  

𝛾T = 𝛾TU + Δ𝛾T
?TVWX ∙ 𝐼D	𝑇𝑀𝑆?TVWXE + Δ𝛾T

]^_X ∙ 𝐼	D𝑇𝑀𝑆]^_XE (4) 

𝜏T = 𝜏TU + Δ𝜏T
?TVWX ∙ 𝐼D	𝑇𝑀𝑆?TVWXE + Δ𝜏T

]^_X ∙ 𝐼	D𝑇𝑀𝑆]^_XE  
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where 𝐼(∙) equals 1 for trials from the corresponding TMS condition and 0 otherwise. The 

weakly informative priors for all unconstrained group-level parameters were taken from the 

standard normal distribution. 

 

The standard deviations of all group parameters were sampled from a uniform distribution from 

0 to 5. The individual-level parameters were linked to the unconstrained group-level parameters 

through Phi transformation, which would correspond to the uniform priors for constrained 

individual parameters. An additional linear transformation was applied to extend the support 

for these uniform distributions. We imposed the following restrictions on the individual and 

group parameter space:  𝑟TU ∈ (0, 5) , 	𝛾TU ∈ (0, 5) , 𝜏TU ∈ (0, 10) , Δ𝑟T
?TVWX,]^_X ∈ (−0.5, 0.5) , 

Δ𝛾T
?TVWX,]^_X ∈ (−0.5, 0.5), Δ𝜏T

?TVWX,]^_X ∈ (−5,5). The obtained posterior distributions showed 

that all posterior samples well within these intervals and did not approach the boundaries.  

The sampling was performed using the Markov Chain Monte Carlo (MCMC) method 

(NUTS algorithm) with 8 chains each containing 2,000 iterations for a warm-up and additional 

2,000 iterations for sampling from posterior distribution giving 16,000 posterior samples for 

each parameter. Convergence was confirmed using the 𝑅d statistics and the visual inspection of 

the traceplots. The mean 𝑅d value for the group-level parameters equaled 1.009 with maximum 

value of 1.03, indicating that chains have mixed well. The estimates of model parameters were 

characterized with the mean of the posterior distribution for each group-level model parameter 

(denoted further as 𝜇?e , 𝜇:e , 𝜇fe  for the baseline parameters and  𝜇g?hijk,lmnok , 𝜇g:hijk,lmnok , 

𝜇gfhijk,lmnok  for the TMS effects for the left and right PPC respectively). The TMS effect was 

considered credible if the 95% Highest Density Interval for the corresponding variable did not 

contain zero. Additionally, for each parameter of interest we used the Savage-Dickey ratio at 

zero to compute the Bayes factor for testing the hypothesis that the group-level parameter is 

different from zero (i.e., testing 𝐻=:	𝛿 ≠ 0  against 𝐻U:	𝛿 = 0 ). We follow the standard 

interpretation of the Bayes factors with 1<BF<3 to indicate anecdotal, 3<BF<10 moderate, and 

BF>10 strong evidence in favor of the alternative hypothesis (Beard et al., 2016). 

A posterior predictive check was performed by obtaining 4,000 random parameter 

samples from the joint posterior distribution. The proportion of correctly fitted choices was 

calculated for each selected sample to obtain the probability that the model fits participants’ 
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choices correctly. This analysis indicated that the model fitted the participants’ choices 

correctly significantly better than chance (median = 0.80, 95% HDI= [0.79, 0.81]). 

 

Results 

Behavioral analysis  
 
 
Table 2 presents the regression model estimation results. In all models, the dependent variable 

is the probability of choosing the riskier lottery in a trial. The regression analysis shows that 

regardless of the stimulation condition, participants behave in an expected way: they are more 

likely to choose the riskier lottery when it delivers, other things being equal, a higher mean 

reward compared to the safer one, when the difference in standard deviations with the safer 

lottery is smaller, and when the ratio Δ𝜇/Δ𝜎 is higher.  

 
 Dependent variable: 
  Choose riskier lottery 
 (1) (2) (3) (4) 

Constant -0.5043 -0.3126 -0.3193 -0.3323 

Right PPC stimulation  -0.0938 -0.0930 -0.1403 -0.1039 

Left PPC stimulation -0.0434 -0.0246 -0.1001 -0.0907 

Diff. in means / Diff. in stdv. 0.7337*** 0.7352*** 0.6344*** 0.6197*** 

Diff. in means 0.0068*** 0.0068*** 0.0068*** 0.0071*** 

Diff. in stdv. -0.0080*** -0.0080*** -0.0080*** -0.0079*** 

Trial  0.0015 0.0015 0.0015 
Order  -0.1178** -0.1182** -0.1190** 

Discomfort  -0.0155 0.0077 0.0071 

Right PPC stimulation x Diff. in means / Diff. in stdv.   0.1307* 0.1799* 
Left PPC stimulation x Diff. in means / Diff. in stdv.   0.1964** 0.1935* 

Right PPC stimulation x Diff. in means    -0.0009 

Left PPC stimulation x Diff. in means    0.00003 

Right PPC stimulation x Diff. in stdv.    -0.0002 

Left PPC stimulation x Diff. in stdv.    -0.0001 

Observations 7,875 7,875 7,875 7,875 
Log Likelihood -2,869.4490 -2,865.0160 -2,860.2390 -2,859.7590 

Akaike Inf. Crit. 5,752.8970 5,750.0320 5,744.4780 5,751.5170 

Bayesian Inf. Crit. 5,801.6980 5,819.7470 5,828.1350 5,863.0610 

Note: * p<0.05, ** p<0.01,*** p<0.001 
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Table 2. Mean-variance regression model estimation results. Dependent variable in all regressions: 
probability of choosing the riskier lottery. Columns (1) – (4) refer to model specifications with different 
sets of control variables and interaction terms.  
 

All regression model specifications suggest that the PPC stimulation does not have a 

direct effect on the probability of choosing the riskier lottery. However, both left and right PPC 

stimulation affects lottery choices by significantly changing the sensitivity of participants to 

the Δ𝜇/Δ𝜎 ratio compared to sham (interaction terms “Right PPC stimulation x Diff. in means / Diff. 

in stdv.” and “Left PPC stimulation x Diff. in means / Diff. in stdv.”). This result indicates that after the 

PPC stimulation participants became more sensitive to the increase in the difference of the 

standard deviations between risky and safe options provided that the difference in their means 

is kept constant. In other words, when the standard deviation of the riskier lottery increases 

leading to a lower Δ𝜇/Δ𝜎 ratio participants become less likely than they were in the sham 

session to choose the riskier lottery.   

 Therefore, behavioral analysis suggests that stimulation of either left or right PPC leads 

to greater sensitivity to risk (more risk-averse behavior).  

 
 
Parameter estimation 
 
Prospect theory parameter estimation showed that in the sham session participants were risk 

averse on a group level with the risk aversion coefficient estimate being 𝜇?e= 0.80 (95% HDI 

= [0.44, 1.20]), demonstrated substantial probability distortion with average 𝜇:e= 1.88 (95% 

HDI = [0.88, 2.95]), and were consistent in their choices with 𝜇fe= 8.38 (95% HDI = [6.88, 

9.81]). The group-level estimated TMS effects on model parameters with their respective 95% 

HDIs and Bayes Factors are presented in Table 3. Figure 2 shows the sampled posterior 

distributions of the TMS effect parameters. 
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 Parameter Mean 95% HDI BF 

 TMS effects for right PPC    

 Δ risk aversion ( µΔr
right) -0.201 [-0.35; -0.06] 7.44 

 Δ prob.weighting ( µΔγright) 0.043 [-0.01; 0.09] 0.24 

 Δ consistency ( µΔτright) 0.595 [-0.99; 2.19] 0.24 

 TMS effects for left PPC    

 Δ risk aversion ( µΔr
left) -0.175 [-0.31; -0.05] 5.41 

 Δ prob.weighting ( µΔγleft) 0.047 [-0.002; 0.1] 0.35 

 Δ consistency ( µΔτleft) 2.089 [0.298; 4.13] 2.9 

 
Table 3.  Estimated TMS effects on risk preference parameters: means, 95% HDIs and Bayes 
Factors for the changes in model parameters based on the sampled posterior distributions. The 
Bayes Factors indicate evidence in favor of 𝐻=: 𝛿 ≠ 0	 against 𝐻U: 𝛿 = 0. 
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Figure 2. TMS effects on the risk preference parameters. Estimated posterior distributions are 
presented for: B.1 change in risk aversion after right PPC TMS (𝜇g?lmnok 	); B.2 change in 
probability weighting after right PPC TMS (𝜇g:lmnok ); B.3 change in consistency after right 
PPC TMS (𝜇gflmnok 	). C.1 change in risk aversion after left PPC TMS (𝜇g?hijk	); C.2 change in 
probability weighting after left PPC TMS (𝜇g:hijk); C.3 change in consistency after left PPC 
TMS (𝜇gfhijk	). The shaded area under the curve corresponds to 95% HDI. Dashed vertical line 
indicates the mean (point estimate) of the posterior distribution. Zero is located outside the 
95% HDIs for 𝜇g?lmnok  (figure B.1), 𝜇g?hijk (figure C.1),  𝜇gfhijk  (figure C.3) and indicating a 
significant change in the risk aversion parameter.  
 
 
As can be seen from Table 3, the estimated HDIs for the change in risk aversion parameter 

after both left and right PPC stimulation do not contain zero, which suggests that the PPC 

stimulation leaded to a credible decrease in the marginal value of money (parameter 𝑟 of the 

utility model). The Bayes factors indicate that the evidence for these effects is moderate. We 

do not observe any credible change in the probability weighting parameter. We do observe a 

positive shift in the consistency of preferences after the left PPC stimulation, however, the 

evidence for this effect is anecdotal as assessed by Bayes factor (self-reported discomfort did 

not significantly differ between the three stimulation conditions – see Methods). 
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Discussion 
 

The present study provides evidence that both left and right posterior parietal cortex is 

causally involved in risky decision making by its involvement in the processing of the marginal 

value of money rather than reward probability. In our experiment, downregulation of the PPC 

excitability leads to greater sensitivity to risk on a behavioral level relative to sham, as well as 

the downward shift in the estimated risk aversion parameter indicating decreased risk tolerance.  

The results of the study are in line with the previously reported findings that the 

downregulation of the intraparietal sulcus with rTMS leads to a greater number of safe choices 

in trials with 50% probability lotteries (Coutlee et al., 2016). Our findings might give a clue as 

to why the shift in the number of safe choices was not previously observed for other probability 

levels (Coutlee et al., 2016): since a risky choice may depend on the valuation of reward and 

probability in a non-linear way, and given that participants may not always be consistent in 

their choices, the trial-by-trial analysis might not be enough to detect a significant shift in risk 

preferences. Therefore, structural modeling of risky choice might provide more information on 

the actual changes following the stimulation.  

Further we discuss possible mechanisms which might have led to the observed effects of 

the PPC TMS on behavior. Importantly, these mechanisms might rely on the role of the PPC 

in representation of uncertainty, attention to salient stimuli, and numerical cognition.  

Studies using animal models revealed that the PPC is involved in assessing the 

expectation of reward (Kobayashi, 2009). The lateral intraparietal (LIP) area activity in 

monkeys traced the desirability of an option based on the expected reward (Kubanek & Snyder, 

2015), as well as the association of the rewarding option with a specific action needed to obtain 

it (Sugrue et al., 2004). It has also been shown that monkey parietal cortex neurons are strongly 

engaged in the saccades that reduce uncertainty (Horan et al., 2019). Single-cell recordings 

revealed that expected values and variances are encoded by separate populations of neurons in 

the fronto-parietal network, and that increased uncertainty enhances fronto-parietal bottom-up 

functional connectivity thereby increasing the amount of sensory input that would reduce the 

uncertainty (Taghizadeh et al., 2020). The results of the neuroanatomical studies suggest that 

a greater volume of gray matter in the PPC is correlated with higher tolerance to risk (Levy, 

2017). These studies indicate that this brain area might play a role in stable personality-related 

components of risk preferences. Interestingly, the behavioral results of our study do not show 

the modulation of expected value effects on risky choice by TMS. Instead, we observe the 
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increased sensitivity to the ratio between the expected value difference and the standard 

deviation difference in favor of the riskier option, which corresponds specifically to risk 

sensitivity.  

Alternatively, the observed effects of the PPC stimulation might potentially be explained 

by the involvement of this region in numerical cognition (Roitman et al., 2012). In our task, 

the distance between the lottery outcomes might have been used by participants as a proxy for 

variance, or risk. It is well-known in numerical cognition that people more easily discriminate 

between the two numbers as the distance between them increases (Dehaene, 2007). If the TMS 

of the PPC temporarily affected the perception of difference between the monetary amounts, it 

might have shifted risk preferences as well. However, if numerical cognition was indeed 

distorted following the TMS stimulation, we would be likely to observe the distortion both in 

values and in probability perceptions since both modalities were numerically represented in the 

task. Since no credible changes were observed in the probability distortion parameter, we argue 

that the decrease in risk tolerance is not related to changes in numerical cognition but comes 

specifically from changes in the reward valuation process.  

Importantly, the interpretation of the present findings crucially depends on the 

understanding of the underlying decision-making processes which guide participants’ choices 

between lotteries. Here, we based our analysis on the assumption that participants rely on 

multiplying and adding the weighted utilities of outcomes and aim to maximize the expected 

utility of an option. However, recent theories of choice under risk suggest that participants’ 

decisions may be based on various heuristic rules which simplify the decision-making process 

(Pachur et al., 2013). As the use of these heuristic rules may be reflected in the parameters of 

risk preferences (Pachur et al., 2017, 2018; Zilker & Pachur, 2021) the present study design 

does not allow to disentangle the use of heuristics and expected utility maximization.  

Therefore, a plausible alternative explanation for the observed effects might be related to 

the modulation of attentional processes. In particular, TMS might have affected attention to 

salient rewards. A recent study in humans suggests that the value and salience of rewards are 

distinctly encoded in superior and inferior subregions of the PPC (Kahnt et al., 2014). Many 

previous studies also found that the activity in PPC is correlated with attention to information 

relevant for decision making (Corbetta & Shulman, 2002). Because stimulus salience is an 

important feature that guides attention, this finding opens the possibility that the PPC TMS 

might have altered participants’ visuo-spatial attentional processes during the accumulation of 
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information about risky options. As a result, participants’ attention might have been shifted 

away from larger monetary amounts which are more salient but also more risky. The latter 

might have led them to prefer less risky options. The change in attentional processes might 

manifest itself in the TMS effects on the reaction time. To investigate this issue, we estimated 

a multilevel mixed effects linear regression model with the reaction time as a dependent 

variable and the stimulation conditions as the main variables of interest, including lottery 

characteristics, order of stimulation, trial number, and the self-reported level of discomfort as 

controls (see Supplemental material). Interestingly, we observed that after both left and right 

PPC stimulation the trial-by-trial reaction time significantly decreased compared to sham. At 

the same time, the change in reaction time might indicate that it became easier for participants 

to make a decision not to risk, for example, because they experienced less of a conflict between 

possible larger gain and chances to win only a small amount. 

We also found anecdotal evidence (as assessed by the Bayes factor) that participants’ 

responses became less noisy after the left PPC stimulation. However, it is hard to interpret this 

finding directly since the understanding of the underlying nature of the inconsistencies in 

participants’ answers in this type of experimental tasks is largely lacking (Hollard et al., 2016). 

Economic experimental literature currently postulates two major sources of these 

inconsistencies. One hypothesis is that participants have stable and well-defined utility 

functions but they may make random errors at the moment of choice (‘random utility’ models). 

An alternative hypothesis is that participants’ preferences are not stable from trial to trial, i.e. 

the parameters of their utility function are subject to a random error in each trial (‘random 

preference’ models) (Loomes et al., 2002). In the present study, we applied random utility 

modeling of risk preferences which relies on the first interpretation of random errors. However, 

further analysis and fitting the data with random preferences rather than the random utility 

model may clarify the role of the PPC in the stability of risk preferences.  

Several limitations of the study should be mentioned. First, to use a sufficiently large 

number of trials for a reliable estimation of the risk preference parameters we focused only on 

the gain domain. It has been suggested that gains and losses may be processed by separate 

neural networks in the brain (Mohr et al., 2010; Seymour et al., 2007; Zhang et al., 2018). 

Therefore, the conclusions of the present study shed light on the role of the PPC specifically in 

risky choices only when gains are involved. Second, in the stimulation procedure we focused 

on the specific coordinates in the PPC based on a previous fMRI study (Peters & Büchel, 2009). 
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However, the PPC is a large brain region with several subregions involved in various cognitive 

and motor functions. Hence, we cannot extrapolate the findings on the whole posterior parietal 

area. Finally, as a control condition we used sham stimulation only on the right PPC. This was 

done to reduce the repetition of the task for 4 times due to a within-subject design. Sham 

stimulation on the left PPC could also be used to control for the effects of discomfort on choice. 

Although the regression analysis did not reveal any significant effects of self-reported 

discomfort on the likelihood of choosing the riskier option, future studies are needed to control 

for left PPC placebo effects. Since in our study we used the offline stimulation protocol, our 

participants did not experience the discomfort of stimulation while performing the task itself, 

which could have biased the results if an online stimulation protocol had been used. 

Overall, despite some limitations, our results demonstrate that both left and right PPC is 

causally involved in risky decision making, potentially via the marginal utility of reward. We 

do not find evidence for its involvement in probability weighting.   
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SUPPLEMENTAL MATERIALS 
 
 

Number 
of 

question 

Option A Option B Probability 
of best 
outcome 

Probability 
of worst 
outcome 

Expected 
value of 

Option A 

Expected 
value of 
Option B 

Outcome 1 Outcome 2 Outcome 3 Outcome 4 

MPL 1 
        

1 750 15 450 250 0 1 15 250 

2 750 15 450 250 0.01 0.99 22.35 252 

3 750 15 450 250 0.05 0.95 51.75 260 

4 750 15 450 250 0.1 0.9 88.5 270 

5 750 15 450 250 0.15 0.85 125.25 280 

6 750 15 450 250 0.2 0.8 162 290 

7 750 15 450 250 0.3 0.7 235.5 310 

8 750 15 450 250 0.4 0.6 309 330 

9 750 15 450 250 0.5 0.5 382.5 350 

10 750 15 450 250 0.6 0.4 456 370 

11 750 15 450 250 0.7 0.3 529.5 390 

12 750 15 450 250 0.8 0.2 603 410 

13 750 15 450 250 0.85 0.15 639.75 420 

14 750 15 450 250 0.9 0.1 676.5 430 

15 750 15 450 250 0.95 0.05 713.25 440 

16 750 15 450 250 0.99 0.01 742.65 448 

17 750 15 450 250 1 0 750 450 

MPL 2 
        

1 480 105 400 180 0 1 105 180 

2 480 105 400 180 0.01 0.99 108.75 182.2 

3 480 105 400 180 0.05 0.95 123.75 191 

4 480 105 400 180 0.1 0.9 142.5 202 

5 480 105 400 180 0.15 0.85 161.25 213 

6 480 105 400 180 0.2 0.8 180 224 

7 480 105 400 180 0.3 0.7 217.5 246 

8 480 105 400 180 0.4 0.6 255 268 

9 480 105 400 180 0.5 0.5 292.5 290 

10 480 105 400 180 0.6 0.4 330 312 

11 480 105 400 180 0.7 0.3 367.5 334 

12 480 105 400 180 0.8 0.2 405 356 

13 480 105 400 180 0.85 0.15 423.75 367 
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14 480 105 400 180 0.9 0.1 442.5 378 

15 480 105 400 180 0.95 0.05 461.25 389 

16 480 105 400 180 0.99 0.01 476.25 397.8 

17 480 105 400 180 1 0 480 400 

MPL 3 
        

1 350 20 290 60 0 1 20 60 

2 350 20 290 60 0.01 0.99 23.3 62.3 

3 350 20 290 60 0.05 0.95 36.5 71.5 

4 350 20 290 60 0.1 0.9 53 83 

5 350 20 290 60 0.15 0.85 69.5 94.5 

6 350 20 290 60 0.2 0.8 86 106 

7 350 20 290 60 0.3 0.7 119 129 

8 350 20 290 60 0.4 0.6 152 152 

9 350 20 290 60 0.5 0.5 185 175 

10 350 20 290 60 0.6 0.4 218 198 

11 350 20 290 60 0.7 0.3 251 221 

12 350 20 290 60 0.8 0.2 284 244 

13 350 20 290 60 0.85 0.15 300.5 255.5 

14 350 20 290 60 0.9 0.1 317 267 

15 350 20 290 60 0.95 0.05 333.5 278.5 

16 350 20 290 60 0.99 0.01 346.7 287.7 

17 350 20 290 60 1 0 350 290 

MPL 4 
        

1 680 70 430 380 0 1 70 380 

2 680 70 430 380 0.01 0.99 76.1 380.5 

3 680 70 430 380 0.05 0.95 100.5 382.5 

4 680 70 430 380 0.1 0.9 131 385 

5 680 70 430 380 0.15 0.85 161.5 387.5 

6 680 70 430 380 0.2 0.8 192 390 

7 680 70 430 380 0.3 0.7 253 395 

8 680 70 430 380 0.4 0.6 314 400 

9 680 70 430 380 0.5 0.5 375 405 

10 680 70 430 380 0.6 0.4 436 410 

11 680 70 430 380 0.7 0.3 497 415 

12 680 70 430 380 0.8 0.2 558 420 

13 680 70 430 380 0.85 0.15 588.5 422.5 

14 680 70 430 380 0.9 0.1 619 425 
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Table S-1. Complete list of lotteries used in the experimental task

15 680 70 430 380 0.95 0.05 649.5 427.5 

16 680 70 430 380 0.99 0.01 673.9 429.5 

17 680 70 430 380 1 0 680 430 

MPL 5 
        

1 335 10 230 110 0 1 10 110 

2 335 10 230 110 0.01 0.99 13.25 111.2 

3 335 10 230 110 0.05 0.95 26.25 116 

4 335 10 230 110 0.1 0.9 42.5 122 

5 335 10 230 110 0.15 0.85 58.75 128 

6 335 10 230 110 0.2 0.8 75 134 

7 335 10 230 110 0.3 0.7 107.5 146 

8 335 10 230 110 0.4 0.6 140 158 

9 335 10 230 110 0.5 0.5 172.5 170 

10 335 10 230 110 0.6 0.4 205 182 

11 335 10 230 110 0.7 0.3 237.5 194 

12 335 10 230 110 0.8 0.2 270 206 

13 335 10 230 110 0.85 0.15 286.25 212 

14 335 10 230 110 0.9 0.1 302.5 218 

15 335 10 230 110 0.95 0.05 318.75 224 

16 335 10 230 110 0.99 0.01 331.75 228.8 

17 335 10 230 110 1 0 335 230 
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 Dependent variable: 
 Reaction time 

Constant 8,983.30*** 
 (637.17) 

Right PPC stimulation -760.30*** 
 (144.20) 

Left PPC stimulation -355.25* 
 (147.75) 

Probability of best outcome 1,026.59* 
 (419.09) 

Trial number -20.87*** 
 (2.38) 

Difference in means 2.17* 
 (0.84) 

Difference in std.dev. -0.33 
 (0.71) 

(Diff. in means/ Diff. in std.dev.) -162.21** 
 (54.95) 

Discomfort 467.47*** 
 (86.12) 

Session order -1,618.61*** 
 (73.90) 

Observations 7,875 
Log Likelihood -78,565.10 
Akaike Inf. Crit. 157,154.20 
Bayesian Inf. Crit. 157,237.90 

 
 
 
 
Table S-2. Regression analysis of PPC TMS effects on reaction time. 

Note: * p<0.05 **p<0.01, ***p<0.001 
 Standard errors in parentheses. 
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Parameter recovery 
 

 
 
For parameter recovery we simulated 729 each containing responses of 35 synthetic subjects 

with exactly the same lottery sets as in the real experiment. Since the model contains 9 group-

level parameters, assigning 3 values to each of them and taking all possible permutations would 

imply 19,683 combinations. To reduce the number of simulated datasets we assigned only one 

value for each of the group-level baseline parameters. Each of the 6 parameters corresponding 

to the TMS effects was assigned 3 possible values. The complete permutation then generated 

729 group-level parameter sets. Group-level parameters were chosen in the range similar to the 

values estimated on the real data as follows:	𝜇?e = 0.8 ,	𝜇:e = 1.5, 	 𝜇fe = 8 ,	 𝜇g?lmnok =

(−0.3,−0.2,−0.1) ,	 𝜇g:lmnok = (0.01,0.03, 0.05) ,	 𝜇gflmnok = (−0.5, 0.5, 1) ,	 𝜇g?hijk =

(−0.25,−0.15,−0.05),	 	𝜇g:hijk = (0.04,0.06, 0.08),		𝜇gfhijk = (0.5, 1, 2).	The	group-level	

standard	 deviations	 for	 the	 baseline	 parameters	 were	 selected	 as	 follows:	𝜎?e = 0.1 ,	

𝜎:e = 0.5,	𝜎fe = 0.1.	Group-level	standard	deviations	for	the	TMS	effect	parameters	were	

set	equal	to	those	estimated	on	the	real	data.	 

 

For each group-level parameter value, the corresponding subject-level parameters were 

sampled from a uniform distribution. The support interval for the uniform distribution was 

selected to match the group-level parameter value as a mean and its corresponding standard 

deviation.  

 

Each of 729 simulated datasets was then submitted to the same estimation pipeline as the real 

data. For each group-level parameter value estimation bias was calculated as the difference 

between the estimated and generating value. Figure S1 shows estimation bias for each group-

level parameter. 
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Figure	 S-1.	 Estimation	 bias	 as	 the	 difference	 between	 recovered	 and	 generating	
parameter	values.	Each	boxplot	represents	mean±SD,	as	well	as	min	and	max	for	each	
parameter	estimation	bias.		
 

Additionally, we calculated the recovery rate for each parameter, i.e., the percent of cases 

where the generating parameter value belonged to the 95% HDI. The obtained recovery rates 

were as follows: :	 	 	𝜇?e	0.96,	𝜇:e	0.92,	𝜇fe	0.93,	𝜇g?lmnok 	0.96,	𝜇g:lmnok 	0.97 ,	𝜇gflmnok 	0.97 ,	

𝜇g?hijk	0.97,		𝜇g:hijk 	0.95,		𝜇gfhijk 	0.95.	 For	all	parameters	measuring	the	TMS	effects	the	

recovery	rate	was	above	95%.	Overall,	the	parameter	recovery	procedure	suggests	that	

all	parameters	of	interest	can	be	recovered	well.	
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Baseline prospect theory parameter estimates 
 
 

 
 
Figure S-2. Baseline group-level risk preference parameters: A.1 Estimated posterior 
distribution for risk aversion (𝜇?e ), A.2 Estimated posterior distribution for probability 
weighting (𝜇:e), A.3 Estimated posterior distribution for consistency (𝜇fe). The shaded area 
under the curve corresponds to 95% HDI. Dashed vertical line indicates the mean (point 
estimate) of the posterior distribution. 
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