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Hierarchical modeling is wonderful and here to stay, but hyperparameter
priors are often chosen in a casual fashion. Unfortunately, as the number of
hyperparameters grows, the effects of casual choices can multiply, leading
to considerably inferior performance. As an extreme, but not uncommon,
example use of the wrong hyperparameter priors can even lead to impropriety
of the posterior.

For exchangeable hierarchical multivariate normal models, we first
determine when a standard class of hierarchical priors results in proper or
improper posteriors. We next determine which elements of this class lead to
admissible estimators of the mean under quadratic loss; such considerations
provide one useful guideline for choice among hierarchical priors. Finally,
computational issues with the resulting posterior distributions are addressed.

1. Introduction.

1.1. The model and the problems. Consider the block multivariate normal
situation (sometimes called the “matrix of means problem”) specified by the
following hierarchical Bayesian model:

(1) XNNp(0,|),0~Np(B,Zn),
where
X1 01
Xo 0-
X])Xl_ : ) 0[7X1: : 9
X 0
B V 0 0
B 0V 0
Bpxi=1". | Lopxp=| . + - |
B 0 O \/
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HYPERPRIORS IN NORMAL MODELS 607

where theX; arek x 1 observation vectorg,> 2, thef; arek x 1 unknown mean
vectors,f is ak x 1 unknown “hyper-mean” vector and is an unknownp x p
“hyper-covariance matrix.” This is more commonly written as,ifer1,2,...,m

and independentlyg; ~ N;(0;,1), 8; ~ Ni(B,V). Note thatp = mk. Efron and
Morris [16, 17] introduced the study of this model from an empirical Bayes
perspective. Today, it is more common to analyze the model from a hierarchical
Bayesian perspective (cf. [2, 18]), based on choice of a hyperp(iprV). Such
hyperpriors are often chosen quite casually, for example, constant priors or the
“nonhierarchical independence Jeffreys prior” (see Section [V.p)*+D/2 |n

this paper we formally study properties of such choices.

The first issue that arises when using improper hyperpriors is that of propriety
of the resulting posterior distributions (cf. [38]). In Section 2 we discuss choices
of (B, V) which yield proper posterior distributions. That this is of importance is
illustrated by the fact that we have seen many instances of ud& dof+1/2 for
similar situations, even though it is known to generally yield an improper posterior
distribution when used as a hyperprior (see Section 2).

A more refined question, from the decision-theoretic point of view, is that of
choosing hyperpriors so that the resulting Bayes estimators, for a specified loss
function, are admissible. The particular version of this problem that we will study
is that of estimatin@ by its posterior mead™ (x), under the quadratic loss

2) L(©0,8")=(0—38")'Q(0 —3d"),

whereQ is a known positive-definite matrix. The performance of an estimétor
will be evaluated by the usual frequentist risk function

(3) R(0,8) = ES[L(6,8(X)].

The estimato# is inadmissible if there exists another estimator with risk function
nowhere bigger and somewhere smaller. If no such better estimator éxists,
admissible.

In Section 3 conditions onr(B,V) are presented under which the Bayes
estimatord”™ is admissible and inadmissible. The motivation for looking at this
problem is not that this specific decision-theoretic formulation is necessarily of
major practical importance. The motivation is, instead, that use of “objective”
improper priors in hierarchical modeling is of enormous practical importance, yet
little is known about which such priors are good or bad. The most successful
approach to evaluation of objective improper priors has been to study the
frequentist properties of the ensuing Bayes procedures (see [3] for discussion and
many references). In particular, it is important that the prior distribution not be too
diffuse, and study of admissibility is the most powerful tool known for detecting an
over-diffuse prior. Also see [10] for general discussion of the utility of the decision-
theoretic perspective in modern statistical inference.

The results in the paper generalize immediately to the case where the identity
covariance matrix for the X; is replaced by a known positive-definite covariance
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matrix, but for notational simplicity we only consider the identity case. More
generally, the motivation for this study is to obtain insight into the choice of
hyperpriors in multivariate hierarchical situations. The possibilities for normal
hierarchical modeling are endless, and it is barely conceivable that formal results
about posterior propriety and admissibility can be obtained in general. The hope
behind this study is that what is learned in this specific multivariate hierarchical
model can provide guidance in more complex hierarchical models.

1.2. The hyperprior distributions being studied. We will study hyperprior
densities of the form

(B, V) =m(B)m(V).

For V, we will study priors that satisfy the following condition, whete> do >
.-+ >dy > 0 are the eigenvalues df.

CoNDITION 1. ForO<l/<1,
C1
|+ V]@a Ve[ d; — d;)] 3D
C2
+ V|(a2—a1)|V|a1[l‘[i<J. (d; — dj)](l—l) ’

<n(V) =< T

where C1 and C, are positive constants arjél| denotes the determinant &f.
Many common noninformative priors satisfy this condition, including:

Constant prior. 7 (V) =1; hereas =a> =0andl =1.

Nonhierarchical independence Jeffreys prior. (V) = [V|~**+D/2: herea; =
ar=(k+1)/2andl = 1.

Hierarchical independence Jeffreys prior. w(V) = || + V|~®+D/2; here
a1=0,a2=(k+1)/2andl = 1.

Nonhierarchical reference prior. (V) = [|VI]];;(di — dj)]*l; herea; =
az =1 and! = 0. (See [40].)

Hierarchical reference priors.

@) 7(V)=[ll +VI[I;-;(d —d;j)I"*; herea; =0, a2 = 1 andl =0.
(b) 7 (V) = [[V|~@&D/COT], _(d; — d)17Y; herear = ap = (2k — 1)/(2k)
and/ =0.
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We have already alluded to the nonhierarchical independence Jeffreys prior,
which formally is the Jeffreys prior for a covariance matrix in a nonhierarchical
setting with given mean. Unfortunately, this prior seems to be commonly used
for covariance matrices at any level of a hierarchy, typically yielding improper
posteriors, as will be seen in Section 2. Those who recognize the problem often
instead use the constant prior, or the hierarchical independence Jeffreys prior,
which arises from considering the “marginal model” formed by integrating gver
in the original model and computing the independence Jeffreys prior for this
marginal model.

Similarly, the nonhierarchical reference prior yields an improper posterior
in hierarchical settings (shown in Section 2). The two versions of hierarchical
reference priors given above arise from quite different perspectives. Prior (a) arises
from considering the marginal model formed by integrating ¢g&m the original
model, and applying the Yang and Berger [40] reference prior formula to the
covariance matriX + V that arises in the marginal model. (The differences of
eigenvalues for this matrix are the same as the differences of the eigenvalues
for V.) Prior (b) arises from a combination of computational and admissibility
considerations that are summarized in Sections 1.5 and 1.6, respectively.

Note that if the covariance matrix for the were a knowr, instead of , thenl
in the above priors would be replaced Byt could not then be said, however, that
the reference prior formula is that which would result from applying the Yang and
Berger [40] reference prior formula to the covariance maRix- V that arises
in the marginal model, since the differences of eigenvalues of this matrix will no
longer equal the differences of the eigenvalue¥ of

Three commonly considered priors for the hyperparamgtre:

Case 1. Constant prior. 7(B)=1.

Case 2. Conjugate prior. 7 (B) is Nx(B8°, A), whereB® andA are subjectively
specified.

Case 3. Hierarchical prior. m(p) is itself given in two stages:
4 BIr~ Ni(B%2A),  h~m(A), % >0,
whereB® andA are again specified, and(}) satisfies:

CONDITION 2.

(i) Jom()dr <ooforc>0;

(i) 7() ~Cr~" (b > 0) asr — oo for some constant > 0.

As discussed in [7], an important example of a Case 3 prior is obtained by
choosing

T\ o A"Pem¢/*,
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that is, an inverse Gamrtia— 1, c_l) density. This clearly satisfies Condition 2,
and the resulting prior fog is

1 —(k/2+b-1)
w(B) = [ 7 (Blm ) dicx 1+ 5B - B ANE ~ 89| ,
which is a multivariate -distribution with mediang®, scale matrix proportional
to A and 2b — 1) degrees of freedom. We will be particularly interested in
the improper version of this prior wita = 1/2, B° =0, A=1 andb = 1/2,
corresponding to

(5) () oc [1+ (18117~ *~D/2,

1.3. Related literature. Hierarchical Bayesian analysis has been widely ap-
plied to many theoretical and practical problems (cf. [8, 11, 21, 23]). Results and
many references to decision-theoretic analysis of hierarchical Bayesian models
can be found in [5-7, 18, 31]. Reference [7] considered the following hierarchi-
cal normal modelX = (X1, X2,...,Xp)’ ~ N,(0,X), with X being a known
positive-definite matrix. The paper considered the common two-stage prior distri-
bution for@ given by8 ~ N,(81,021), (B, 02) ~ m1(c2)m2(B), where lis the
p-vector of 1's andl is the identity matrix, and presented choiceantojf)
andm2(B) which yield proper posteriors and admissible Bayes estimators under
quadratic loss. This is thus the special case of our model wherd,, and this
paper can be viewed as an extension of those results to the vector mean problem
(and, hence, our restriction to> 2).

The more general decision-theoretic background of this paper is the huge
literature on shrinkage estimation, initiated by the demonstration in [33] that the
usual estimator for the mean of a multivariate normal distribution is not admissible
whenp > 3. This huge literature can be accessed from, for instance, [36].

The key to the admissibility and inadmissibility results presented in this
paper is the fundamental paper [9], which provided the crucial insight to allow
determination of admissibility and inadmissibility of Bayes estimators.

1.4. A transformation and revealed concern. It is convenient, for both
intuitive and technical reasons, to writ¢ = H’DH, where H is the matrix
of eigenvectors corresponding @ = diag(dy, do, . .., di), such thatH’H = I.
Indeed, we will make the change of variables fréfrto (D, H), and rewrite the
prior as

7(V)dV =nH, D) j4;>dp>...>a,1dD dH;

heredV =T[;-;dVij, dD = [1¢_, dd;, dH denotes the invariant Haar measure
over the space of orthonormal matrices apg-4,-...~4,] denotes the indicator
function over the specified set. (Because of Condition 1, equality of any
eigenvalues has measure 0.)
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From [19], the functional relationship betweexV) andx (H, D) is
m(H,D) =7 (H'DH) [ —d)).

i<j

Thus Condition 1 becomes

ConDITION 1. For0O<lil<1,

CAd: —dDT o — AN
Cl[l—[[<j(dl dj)] ST[(H,D)f Cz[l—L<,(dl d])] .
[| + D|@2—a1)|Djau || + D|@2—a1)|Dju
Under this transformation, the common objective priors\fare as follows:

1. The constant prior is now(H, D) = [li<;(di —dj).
2. The nonhierarchical independence Jeffreys prior(id, D) = |D|~*+D/2 »

[licjdi —dj).
3. The hierarchical independence Jeffreys priat i, D) = || + D|~*+D/2 »
[licjdi —dj).

4. The nonhierarchical reference priorigH, D) = |D| L.

5. The hierarchical reference priors are faH,D) = || + D|~! and (b)x=(H,
D)= |D|—(2/<—1)/(2k)_

This transformation reveals a significant difficulty of any prior that can be
written as a function ofV|: in the (H, D) space, such priors contain the factor
[li<;(d —d;), which gives low mass to close eigenvalues, and hence effectively
forces the eigenvalues apart. (The effective priotbis just constant, which is
natural sinceH ranges over a compact space, and hence has no effect on the
eigenvalues.) This is contrary to common intuition, in that one is often debating
between choice of a covariance matrix with equal eigenvalues or choice of an
arbitrary covariance matrix; if anything this would suggest that one should choose
a prior that pushes the eigenvalues closer together.

This intuition also receives support from the frequentist literature. The inde-
pendence Jeffreys prior (and often-employed modifications sughta¥g|) are of
this suspicious form and, when used at the first level of a normal model, result in
estimates oV that are proportional t&, the sample covariance matrix. The fre-
guentist literature, starting with [34] and continuing with such works as [22, 26,
27, 30, 40], shows th&® has eigenvalues that are too disperse and that shrinking
the eigenvalues db together is necessary for good performance. Since multiples
of Sarise as Bayes estimators for priors of the “suspicious” form, there appears to
be a direct analogy between what frequentists observed &and the concern
that these priors force the eigenvalues apart.

In contrast to this behavior, the reference and hierarchical reference priors do
not contain the term[; _ ; (d; —d;) in the transformed space, and hence are neutral
with respect to expansion or shrinkage of the eigenvalues. Interestingly, in [40]
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(see also [37]), it is shown that the Bayes estimators arising from the reference
prior (in the nonhierarchical model) behave very similarly to the Stein [34] and
Haff [22] estimators, suggesting that such neutral behavior is natural for frequentist
estimators—that is, that shrinking the eigenvalueS obrresponds to a Bayesian
prior that is neutral about the eigenvalues. (It should be noted that, in the more
recent Bayesian literature, aggressive shrinkage of eigenvalues, correlations or
other features of the covariance matrix is entertained; cf. [14, 15, 25] and the
references therein. This may well be desirable in many practical situations, but
is more aggressive in its prior assumptions than the objective priors we consider.)

1.5. Computation. Hierarchical models are typically handled today by Gibbs
sampling, possibly with rejection or Metropolis—Hastings steps in the Gibbs
sampler (cf. [12, 32]). We briefly indicate considerations in utilizing the priors
discussed in Section 1.2 within such computational frameworks.

Use of the Case 1 (constant) or Case 2 (normal) priorsgfarauses no
difficulties; sampling of8 can simply be carried out with a Gibbs step, as its full
conditional will be a normal distribution. The Case 3 prior is almost as easy to
utilize, because of its representation as a mixture of normals. Indeed, one purposely
introduces the latent variabbe having the density in (4); sampling @ is then
done from its full conditional—also givel—which is normal, with. then being
sampled from its full conditional

1 1 1
7B &y B~ [ + 58— B ATLB ~ 9 )

thatis, an inverse Gamrtia— 1+ k/2, [c + (B — B%)'A"1(B — B91~1) density.
In particular, the recommended default hyperprigg) o [1 + [|8]121~*~D/2 is
handled as above, samplingrom the inverse Gamnigk — 1)/2, 2/[1 + ||811?])
density.

Dealing with the hyper-covariance matnix is not as easy (cf. [13]), except
for the constant priorr (V) = 1, for which the full conditional ofV is simply
an inverse Wishart distribution; alas, this is not a desirable prior in other
respects. More attractive is the hierarchical independence Jeffreysmgior=
I + V|~ *+D/2 DefiningW (@, B) = X7 ,(8; — B)(@; — B)', the resulting full
conditional forV can be written

7(V|0, B) x | 1 tr(V=iwe, ﬂ))),

1
|+V|(k+l)/2|V|m/2 eXp( 2

which, unfortunately, is not of closed form. Still, one can easily sample from this
full conditional using the following accept-reject sampling algorithm:
Propose a candidaté/* from the inverse Wishattn, W (@, 8)) density

1 1 _
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Accept the candidate with probability = (|V|/|l +V|)*+D/2  returning to the
proposal step if the candidate is rejected, and moving on to another full conditional
if it is accepted.

For largeV or m or small dimensiort, the acceptance probability will be quite
high.

When using the hierarchical independence Jeffreys prior, one can gain efficiency
by working with the marginal distribution 0¥, instead of the full conditionals.
This is particularly convenient in the Case 1 scenario, where the overall posterior
distribution can be writtenr (0|V, X)7 (V|X), the first posterior being a normal
distribution, and hence trivial to sample from, and the marginal posteri® of
being proportional to the integrand in the first expression of Lemma 2.1, namely

1 1 ) 1 )
7(VIX) « Wem(_ig(xi — X'+ V)X —x)).

As discussed in [18] (although they utilized the constant priorM®rone can
construct a rejection sampler o by simply generatind® = (I + V*) from the
inverse Wishar(m + k, Y71 (x; — X)(X; — X)") density, accepting the candidate
V* =B — | ifit is positive definite and returning to generate a rn@w it is not.
This will have a reasonable acceptance probabiliyy i§ large orm is large.

For the hierarchical reference priors, it seems that Metropolis—Hastings must
be used to sample from the full conditionals. The “standard” approach is that
utilized in [40] and [28]. In this approach one first performs the exponential
matrix transform ofV, which translates the set of positive-definite matrices into
unconstrained Euclidean space. Then a hit-and-run Metropolis—Hastings algorithm
is employed to produce the Markov chain. This algorithm can be directly utilized
here, requiring only the change in the acceptance probability induced by using the
hierarchical reference priors instead of the nonhierarchical reference priors.

Since a Metropolis—Hastings step is required anyway for the hierarchical
reference priors, one can again gain efficiency by working with the marginal
distributions ofV, instead of the full conditionals. Taking the Case 3 situation
for illustration, one uses the posterior form

@B, V,X)w(BIV, L, X))V, A|X),

where the first two posteriors are simply normal distributions, and hence trivial to
sample, and the marginal posterior(®f, 1) is proportional to the integrand in the
first expression of Lemma 2.3, that is,

1

V, A|X
7 ( | ) X || +V|(m—l)/2|| +V—|—m)\.A|1/2

X exp(—% i(xi ' +V)"Lx — >‘<)>

i=1

x exp(—%mxf(l +V+ mkA)_li)n(V)n(A).
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One proceeds by applying the exponential matrix transforkhamd then running

a hit-and-run algorithm for the transform&danda. For each(V, 1) in the chain
(or probably better—for, say, every 100th in the chain) one can then gergerate
from the normalz (8|V, A, x) and therd from the normalz (8|8, V, x).

If one wishes to stick to Gibbs sampling for the hierarchical reference priors (as
would be the case, e.g., if one were working with a complex model for which
marginalization could not be carried out), and further desires an easy-to-code
algorithm, one could use Metropolis—Hastings on the full conditionaMfavith
the proposal in (6). (For justification as to why this is the best inverse Wishart
proposal, see [39].) The acceptance probabilities for the (a) and (b) versions of the
hierarchical reference prior would then be, respectively,

[Ticj(d —d?) I + V¥ |V|(k+l)/2}
"Thic;di —dp) T+ V[ VE[&D2 ]

l_[l<](d1* — d}“) |V|(k—1+k*1)/2
ey —d) |V*|<k—1+kl>/2}'

min{l

min{l

Note, also, that it is generally best to iterate a number of times on this Metropolis
step, keeping only the last value, before moving on to another full conditional (as
this step is considerably less efficient than the others).

For small k or large m, this simple approach will work reasonably well.
For instance, in a simulation reported in detail in [39], the average number of
Metropolis iterations before a move occurred was as indicated in Table 1. Since
the proposal moves widely over the parameter space, a Metropolis scheme that
moves at least once in every 10 iterations is often acceptable; thug, 080,
one can use this algorithm to do the calculation withip to 7. With largem:,
such as 100, the algorithm is still acceptable&et 15. When this scheme is not
efficient enough, the exponential matrix transform hit-and-run approach mentioned
above has proven to be very effective (but harder to program).

TABLE 1
Average number of nonmoves

m

k 20 30 50 100

6.89 4.92 2.14 1.06
9.83 574 296 121

7 13.52 850 4.03 227
10 18.74 10.86 542 3.46
12 33.67 19.63 7.61 5.07
15 12735 4298 17.89 9.36

g w
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1.6. Summary and generalizations. The results in the paper require significant
technical machinery. This machinery is not necessary for understanding the
basic conclusions, so we present the most important conclusions and potential
generalizations here. Note that the conclusions depend on intuitive appeal (e.g.,
Section 1.4), posterior propriety (Section 2), admissibility (Section 3) and
computational simplicity (Section 1.5).

None of the priors ong significantly affects posterior propriety, or caused
difficulties in the posterior computation. Hence admissibility is the most important
criterion for deciding between them. It seems that use of the constant prior
m(B) = 1 results in inadmissibility, except for the case- 2. (This is, of course,
not a surprise, in that two dimensions is typically the cut-off for admissibility with
constant priors on means.) The Case 2 conjugate prior is, perhaps, reasonable,
if one has subjective information abo@t Among the Case 3 default priors, the
prior 7(B) o [1+ || 81121~ *~D/2 s excellent from the perspective of admissibility
for all k, and is the prior that we actually recommend for default use. Part of the
motivation here is the many studies that have shown the great success of these
mixture-of-normals priors in shrinkage estimation in particular (cf. [1, 20, 35]),
and robust Bayesian estimation in general (cf. [4]). There is the caveat, however,
that this prior should probably only be applied when tHe are roughly
“exchangeable,” which might well require some reparameterization to ensure. Note
that we even recommend use of this prior whes 2. It is often thought that
shrinkage should only be used wher 3, but it can be used to practical advantage
even wherk = 2 (even though there are no longer uniform dominance results).

Of considerably more importance than the prior s the prior onV. The
two priors for V that we have seen most commonly used in practice are
the constant prior (or, equivalently, a “vague proper inverse Wishart” prior) and
the nonhierarchical Jeffreys prior (or a vague proper inverse Wishart equivalent).
Use of the nonhierarchical Jeffreys prior is simply a mistake, in that it results in
an improper posterior (and use of the vague proper inverse Wishart equivalent
is no better, in that it essentially yields a posterior with almost all its mass in a
spike nearvV = 0). The constant prior requires, the number of blocks, to be
about Z in order to achieve posterior propriety. Intuitively, at médblocks are
needed for identifiability oV, so this is a strong indication of the inadequacy
of the constant prior. In this regard, the hierarchical independence Jeffreys prior
7(V) = || +V|~*+D/2 requires onlyk blocks ¢ + 1 if the constant prior o is
used) for posterior propriety.

We were not able to establish any admissibility results for these priors, but
Tatsuya Kubokawa (private communication) has been able to show by different
techniques that the= 0 prior results in inadmissibility for Case 1 when= 0
andaz <1+ k/2 — 1/k and, for the special case of Case 2 of knogyrnwhen
a1 =0 andaz < (k + 1)/2 — 1/k. Since the constant prior ov is a; = a» =0,
this clearly shows that the constant prior is badly inadmissible (i.e., is far from
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the boundary of admissibility). Kubokawa’s results do not settle the question of
admissibility of the hierarchical independence Jeffreys prior.

Either the constant prior or the hierarchical independence Jeffreys prior is easy
to handle computationally so, if computational ease is the primary concern, our
recommendation would be to use the hierarchical independence Jeffreys prior.
As mentioned earlier, however, it is not immediately obvious how to generalize
this prior to other hierarchical settings, although repladinigy the covariance
matrix from the lower level is a good general solution when the lower level has an
exchangeable structure.

The two proposed hierarchical reference priorsa(@)) = [|l + V], ;(di —
d)1™t and (b) (V) = [|V|=@-D/EOT],_i(d; — dj)17*, are very appealing.
They always result in proper posteriors iif > 2, a practically very useful
and surprising fact whem < k (explained in Section 2.2.4). They also both
yield admissible (or nearly admissible) estimators in Cases 2 and 3, and are
computationally of similar complexity. Choice (a) is an actual hierarchical
reference prior, in that it can be derived by a reference prior argument. In contrast,
(b) was a rather ad hoc modification. Hence (a) should be the preferred choice for
the actual model we consider. Again, however, it can be difficult in more general
hierarchical models to know what to use in placel pand choice (b) does not
require this additional input.

A very useful generalization (e.g., in common meta-analysis situations) would
be to consider the setting

Xi ~ Ni(0;, %), 0; ~ Ni(z:B,V),

independently fof =1, ..., m, where thex; are known positive-definite matrices,
the z; are givenk x h covariate matrices an@ is now & x 1. Reasonable
adaptations of the priors discussed above are:

1. Replace the covariance matrix in the definitions of the priors foV
by £ = %Z?lei- (Again, this is not necessary if one uses the prior
[V[-E#Y/COT] i —dp1™t)

2. Replace the priorin (5) by(8) = [1+ B'Z'ZB1~"~D/2 whereZ is the matrix
(Zy2,---2,)".

The results in the paper almost certainly go through for the generalization to
known X;. We would also guess that the results are true for the generalization
to covariates (the extension was true for the dasel, as shown in [7]), but the
technical details in establishing this appear to be formidable. Finally, a number
of the computational strategies mentioned in Section 1.5 are adaptable to these
generalizations, but we do not have experience in utilization of such adaptations
and so cannot comment on their efficiency.
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2. Posterior propriety and impropriety.

2.1. The marginal distribution. Posterior propriety and admissibility proper-
ties are determined by study of the marginal densiti ofjiven by

) m(x) = f / / FXIOT@O18. V) (B)m (V) dV dB db,

where

1 1 ;
f(x|0) = (T)"/Z exp(—é(x —60) (x— 0))

(8) 1 1 m
= S exp( —5 (i —0) (X —01')),
1 1 - tvy—1
(@18 H.D) = o rarrs P =5 20— BV IO — B)
i=1
9)

= 1< . rytp-1 .
—W”"(‘ég“” —BIHDTHE —m).

NOTATIONAL CONVENTION. It will be useful to write
(10) m(X) ~ g(X)
if there existC1 > 0 andC> > 0 such thaty x,
(11) C18(X) =m(X) < C28(X).

(This is related to the notion of “credence,” as defined in [29].) Thus, under
Condition 1 we can write

moo~ [ [ [ [ rx6)x@18.H,D)(8)

[l—li<j(di _dj)]ll[d1>d2>~~->dk
x [| 4+ D|@2—a1)|D|ou

(12)
| dDaHdB db.

Standard calculations yield the following expressionsri@x) for the various
cases ofr (B), where we defing@ = % Y X
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LEMMA 2.1. For n(B) = 1 (Case 1 scenario) and m > 2, the marginal
density of X satisfies

1
oo [ [ TormeEai

1 _ B )
x exp(-E ;(Xi —%)'H (1 + D) Hx — x))n(H, D)dD dH
(13)

N (Il;i<;(di — A iy >do>--=dy)
- |l + D|l@2—ar+m=D/2I| D

x em(—% > (% —%'H (1 + D) *H(x; — >‘<)> dDdH.
i=1

When m = 1, the marginal density of X does not exist if 7 (D) has infinite mass.

LEMMA 2.2. If 7(B) is N¢(0, A) (the Case 2 scenario, wherewe set % =0
for convenience), the marginal density of X is

1
X
mo o // I + D™ =D72|l + D + mHAH!|1/2

x exp(—% > (% —'H (I + D) tH(x; — )'())
i=1

X eXlO(—%m(Hi)’(l +D+ mHAH’)‘%H)‘())n(H, D)dDdH

(14)

N f f [T < (di — dp)1 gy >dp>->d)
e~ || + D|laz—a1+(m=1)/21|| 4 D 4+ mHAH?|Y/2|D|%1

X exp(—% > (i —R'H (I + D) TH(x; — )"())

i=1

X eXIO(—%m(HX)’(I +D+ mHAH’)_l(HS()> dDdH.

LEMMA 2.3. For 7(B) = Nr(0,AA) (the Case 3 scenario, where we set
B° = 0 for convenience), where 7 (1) satisfies Condition 2, the marginal density
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of X is

1
X
oo o //f I + D|=D/2|l + D + maAHAH!|1/2

X expl 1 X —X)'H (1 +D)"HX —%)
2
i=1

x exp(—%m(Hf()’(l +D+ mxHAHf)—l(Hf()>
x (H, D)m (») dAdDdH

N/// [(I1i<;(di — d)1 iy dy=-=dy)
~ T +D|[a2—a1+(m—1)/2]|| +D+m)»HAHf|1/2|D|“l

(15)

X eXp(—% > (% —'H (1 + D) tH(x; — )'())
i=1

X exp(—%m(H)_()’(l +D +mkHAH’)_1(H>?)>
x t(A)drdDdH.

2.2. Impropriety of the posterior. The next several theorems discuss the
conditions under which the posterior distribution is proper. The following two
lemmas are used.

LEMMA 2.4. Ifak x k matrix H isorthonormal, h;(x),i =1,2,...,m, are
vector-valued functions, and A is positive semidefinite, then

0< exp(—% Y lih; <x)||2>
(16) =t

< exp(—% > (hi(x)'H (1 +D +A)—1Hh,~(x)) <1
i=1
PROOF The upper bound is clear. On the other hadt{] + D+ A)~1H <|
sinceH is orthonormal and; > 0, so that
lI(h; () H (1 +D + A)"tHh; 0 || < 1h; (0112,
which yields the lower bound in (16).0]

LEMMA 2.5. Let p; and p; be the maximum and the minimum eigenvalue
of A, respectively. Then
17) Il 4+D|<|l +D+mpl| <|l + D+ mHAH'|
<[l + D+ mpil| < A+ mp)|l + D
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and
X' (I + D +mp1l) "X <X (I + D+ mHAH")"1x

(18) ) 1
<X (I + D+ mpgl) X

PROOF Using the notationA < B to denote thatB — A is nonnegative
definite, we have
(19) okl <HAH' < pal,
sinceA is nonnegative definite artd is orthonormal. Hence,
(20) | +D+mpxl <1 +D+mHAH" <1 + D +mp1l,
from which (17) follows directly. From (20), clearly,

(I +D+mpih L < +D+mHAH) L < (1 + D +mp)~L.

Equation (18) follows immediately, completing the proof]

Now we give the conditions under which the posterior distribution is proper for
each of the three casesofB).

2.2.1. Case 1 scenario. Since we are only considering improper(V),
Lemma 2.1 shows that we need to consider amby 2.

THEOREM2.6. Ifn(B)=1,m>2,k>2,and 7 (H, D) satisfies Condition 1,
then the posterior distribution existsif and only if a1 < 1and as > 3‘7’” + (k—1)l.

PROOF  The posterior distribution is proper if and only i<0m (x) < co. The
lower bound is clearly satisfied, so we only need to consider the upper bound.
From (13) and Lemma 2.4, it is clear that, wittconsidered fixed, the posterior
exists if and only if

[Hi<j (di — dj)]ll[d1>d2>~-~>dk]
(21) m(X) ~/ | 4 D|lez—arn—D /2| D[ dD < oo.

To determine necessary conditions for (21) to hold, firstfixdo, ..., dy—1 and
consider the integral ovef; in (21), which is

des 1 k—1 l
C/o AP (1 + dy )lez—ar+(n=1)/2] ljl(di_d") ddy.

Clearly,

1
d* (14 dy)laz—art(m=1)/2] '

k-1 l C
|: H(di - dk):| ~ =T asd, — 0
i=1

ai
dk
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and, wherug > 1,
dr-1 1
— dd = o0.
/o am ot

It follows that a necessary condition for (21) to hold:is< 1.
Next, fixdo, ds, ..., d; and consider the integral ovéy in (21),

0 1 k !
¢ i dP(1+ dy)lez—artm=1/2] - i:HZ(dl_d") dd.

Counting the orders ofl; for both the numerator and the denominator in the
integral above, we see that this integral is infinite whign- 1) — (a2 + (m —
1)/2) > —1. Thus another necessary condition for (21) to hold is

3—m

az > + (k — D).

Next we show that the conditions given in the theorem are sufficient. Since
0<i<1],

(i< (di — d)V Iidy>dy> >y
[| + D|laz—a1+(m=1)/2]|p|a1

[T;<; @)Y
= / I +D

|laz—a1+(m=1)/2]|D|a1
SN (k—i)l—ay
< 1_[/ d;
— 1Yo (14 d;)lae—art+im=1)/2]
i=1

dd;.

Sincea; < 1 and(k —i)l > 0, itis clear that each of these integrals is finite near O.
Ford; near infinity, the corresponding integral is finitd¥—m) /24 (k — i)l < a».
This is true for alli under the condition of the theorem, completing the proaf.

2.2.2. Case 2 scenario.

THEOREM 2.7. If B~ Ni(0,A), k > 2, and 7 (H, D) satisfies Condition 1,
then the posterior distributionexistsifand onlyifa; < landaz > 1— 5+ (k—1)1.

ProoF Clearly, we only need to find the necessary and sufficient condition
for m(X) < oo. From (14) in Lemma 2.2 and Lemma 2.4, it is clear that

dDdH

m(X) ~ // (TT;<;(di — dj)]ll[d1>d2>...>dk]
[l + Dlez—a1+(=D720|I 1D + mHAH'[%/2|D}x
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Again letting p1 and p; denote the maximum and minimum eigenvalueAgfit
follows from (17) thatn(x) < oo if and only if

([Ti<;(di —dj)Y
|| + D|(@2—a1tm/2)|D|a1

Aidy>do>->dy] * dD < oco.
The proof then proceeds in identical fashion to that of Theorem Z5.
2.2.3. Case 3 scenario.

THEOREM 2.8. Suppose that g ~ Ny (0, AA), k > 2, m()) satisfies Condi-
tion 2 and 7 (H, D) satisfies Condition 1. The necessary and sufficient conditions
for the posterior distribution to exist are a1 < 1, a2 > 1 — 5 + (k — 1)/ and

k

ProOF Asin the proof of Theorem 2.7, it is clear that

(I1;i<;(di — A1 Ldy=do>->dy]
m(x) ~ /f/ B I 1D AR D ()4 dDdH.
Using (17), itis clear that the posterior density exists if and only if

i< (di —dp1 - Tiay>dy>>dy]
@ 1=[[ D D B D 1 e R dhdD < oe.

Clearly,
1 _(d; —d; 'y ——
I 2/ {/ [Ht<]( ])] [d1>d> di] dD}n-()L)d)\‘
0 |l + D|laz—ar+m=1/2I|D|a1|(1 4 cA)l + D|1/2
!
> /l{f (ILi<;j(di —dp)I Tiay>dy>->dy] dD}n(k) 5
0 || + D|laz—a1+(m=1)/2]|D|a1|(1 4 ¢)| + D|1/2

> C [Hi<j(di _dj)]ll[d1>d2>--->dk]
[+ D|(az—a1+m/2)|D|a1

’

the last inequality holding because of Condition 2(i). Proceeding as in Theo-
rem 2.6, a necessary condition fbto be finite is

a1 <1 and a2>l—%+(k—1)l.

On the other hand, by (ii) of Condition 2,

o0 < i (di — A Ty >dy> >
12/ {/ [1_[!<,/( 1 _/)] [d]_ d2 dk] dD}?T()\-)d)\-
1 || + D|laz—a1+(m=1)/21|D|a1|(1 + cA)l 4+ D|/2
> C/OO = 1 i / (ITi<;(di — dj)]ll[d1>d2>'">dk]
= 1 (L4 ca)k2 B ' || + D|(@2—a1+m/2)|D|a1
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This integral is infinite whe < 1 — k/2. So another necessary condition for (22)
toholdisb > 1—k/2.
Next let us prove that the conditions are sufficient. Using

k 1 1

<
/_1:[1 L+ Cr+dj)Y?2 = 1+ Cr+dpY2(1+ Cr)*k-D/2°

we have

/ <// T < (di — dp)V Hay>dp>->dg) (A d2dD
- [| + D|laz—a1+m=1/2(1 4 CA + d1)Y/2(1 + cx)(k—l)/2|D|a1n

- (Mi<jdi) A ddD
—/ / 4 Dl art D721+ Ch + d)V2(1+ Ciy & D72 pjar * M 444D

As in the proof of Theorem 2.7, the integrals over---d, are finite under the
stated conditions, so that

d}_(k_l)l_al]

I'= Cf/ (1 + dp)laz—ar+m=1/21(1 4 Cx 4 d1)Y/2(1 + Cr)*k=D/2
< C//(l+dl)—[az—l—(m—l)/Z—(k—l)l]

x (1+ CA+d) Y2+ cr)~® D2z dxrdd;.

Break this integral up into four integrals ovéd, ¢) x (0,¢), (0,¢) x (c, 00),

(c,00) x (0,¢) and (c, 00) x (¢, 00). Bounding the first three integrals is easy,

using Condition 2. The last integral is bounded as in the proof of Lemma 1 of [7].
O

7(A) drdd;

2.2.4. Summary of posterior propriety and impropriety. The cases of most
interest aré = 0 and! = 1. The following corollaries of Theorems 2.6, 2.7 and 2.8
deal with these cases.

COROLLARY 2.9. Suppose/=0and k > 2.

(a) Inthe Case 1 scenario (r(B8) = 1), when m > 2, the posterior distribution
existsif and only if @y < 1 and az > 352,

(b) In the Case 2 scenario (B ~ N¢(0, A)), the posterior distribution exists if
andonlyifa; <landaz > 1- 7.

(c) Inthe Case 3 scenario (B ~ N (0, AA), A ~ (1)), the posterior distribu-
tionexistsifand onlyifa; <1,a2>1— % andb > 1— 5.

COROLLARY 2.10. Suppose/=1andk > 2.

(&) Inthe Case 1 scenario (r(B8) = 1), when m > 2, the posterior distribution
existsif and only if ay < 1and ap > k — 5.
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(b) In the Case 2 scenario (8 ~ N (0, A)), the posterior distribution exists if
andonlyifay <landaz >k — 7.

(c) Inthe Case 3 scenario (B ~ Ni(0, LA), A ~ (})), the posterior distribu-
tion existswhenay <1,a, >k — % andb > 1 5.

It follows that the most commonly used objective priors for covariance matrices
cannot be used in the hierarchical setting. The nonhierarchical independence
Jeffreys prior [ =1, a1 = a» = (k + 1)/2] and the nonhierarchical reference prior
(I =0,a1 = a2 = 1) yield improper posteriors. The constant prido=(1, a1 =
a2 = 0) yields a proper posterior only whert 2 m — 1 for Case 1, and when
2k < m for Case 2 and Case 3. This implies that the number of blechkas to be
at least 2 + 2 for Case 1 and”+ 1 for Case 2 and Case 3.

In contrast, the hierarchical independence Jeffreys ptier [,a1 = 0,a2 =
(k+1)/2] yields a proper posterior whem > k for Case 1 and: > k— 1 for Cases
2 and 3, considerably weaker conditions. Furthermore, the hierarchical reference
prior (a) ( =0, a1 =0, a2 = 1) and the hierarchical reference prior (b4 O,
a1 = az = (2k — 1)/ (2k)] always yield a proper posterior, except when= 1 in
Case 1.

It is quite surprising that posterior propriety for the hierarchical reference
priors does not require: to grow with k (as is necessary for the hierarchical
independence Jeffreys prior). One needs on the order fk blocks in order
for the hyper-covariance matriX to be identifiable, which is usually viewed as
being equivalent to posterior propriety. Such equivalence is clearly not the case
here; in the simplest Case 1 scenario, for instance, mnty2 blocks are needed
for posterior propriety of the reference priors, regardless of the valke of

To understand why this is so, consider the transformed version of the problem
in Section 1.4. Note that the domain bBff is a compact set and the reference
prior assigns a proper uniform distribution to this set, so the only parameters
that intuitively need data to have proper posteriors firand D. These vectors
consist of 2 unknowns, which intuitively can be handled by thie @ordinate
observations corresponding #o = 2. This general posterior propriety is a very
attractive property of the hierarchical reference priors in that it is often difficult
in complicated hierarchical models to ensure that conditions sueh :as are
satisfied at all levels and components of the hierarchy.

3. Admissibility and inadmissibility.

3.1. Introduction. In this section we give conditions under which the hi-
erarchical Bayes estimai® (x) (the posterior mean) of is admissible and
inadmissible for quadratic loss (2). We restrict consideration to the priors for which
[ =0, since these are the priors we will recommend and analysisfd@ requires
different techniques.
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Our study utilizes the following powerful results from [9]. Define

(23) i(r) = / m(x)dg (X),
1
(24) m(r) = / g 4000,

whereg (-) is the uniform probability measure on the surface of the sphere of radius
r=|IX].

REsuLT3.1. If 8" (xX) — x is uniformly bounded and
o0
(25) / [P Y ()] dr = 00
C
for somec > 0, thend™ (x) is admissible.
ResuLT3.2. If
o
(26) / rl_mkm(r) dr < o0
C
for somec > 0, thend™ (x) is inadmissible.

3.2. Preliminary lemmas. The following lemmas are needed.

LEMMmA 3.3. (a)lfa <1,r+a > 1andci and ¢, are positive constants, then

o

dd ~ C1min{Cz, v1™""%},

v
27) fv= fo Wexp(—m)

for some positive constants C1 and C».
(b)Ifa>—-1,u>0andv > 0, then

"
(28) g, v) E/O tYeVdt <C min{v_(““), ,LL(“+1)}
for some positive constant C.
For the proof see the Appendix.

LEMMA 3.4. Assuming theintegrals exist,

1
(29) / g(H'DH) Ijgy>dy>->qy) dD dH = E/fg(HtDH)dDdH.
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PROOF Suppose thatly > d> > --- > dy > 0 are eigenvalues o and
di,ds,....dy) is a different ordering of(dy, da, ..., d;). Let D* = diag(d],
ds,....d). Since there exists an orthonormal mattiX such thaD = H*'D*H*,
it follows that

/fg(HtDH)I[dl>d2>...>dk]dDdH
(30) =f/g((H*H)tD*(H*H))I[dl>d2>l..>dk]dDdH

://g((H*H)’D*(H*H))I*dD*dH,

the last step following from the change of variables fr@m— D* (which has
Jacobian 1), wheré* corresponds to the new ordering. Next, note that, siftte
represents the invariant Haar density,

f/g((H*H)tD*(H*H))I*dD*dH ://g(HtD*H)I*dD*dH.

Hence/ g(H'D*H)I dD is the same for any orderingof the eigenvalues, and the
result follows since there a¥e orderings. [

NOTATIONAL CONVENTION. We need to generalize the notation in (10).
Indeed, let

(31) m(X) ~ g(c,x) stand for g(c,X) <m(x) < g(c,Xx)
for some (possibly vectorg)andc’. For instance, in (33) below,= (C1, C2, C3).
The earlier notation was the special case whgtex) = cg(x).

We conclude this section with presentation of needed upper and lower bounds
(using thex notation) for the marginal densities in Cases 1, 2 and 3.

LEMMA 3.5. IntheCase 1 scenario and with/ = 0,

1
m(X) ~ C/_/ |D|a1|| + Dl(m—l)/2+a2—a]_
(32) Lm
x exp(—— S0 — 'H (1 + D) TH(x; — >‘<)> .dDdH.
2 i=1

PrROOF This follows directly from (13) in Lemma 2.1 and Lemma 3.4]

LEMMA 3.6. Inthe Case 2 scenario and with! =0,
1
m(x) ~ C1 /f ID|41|C5l + D|m/2+az—a1

1 m
x exp(—E > XiH!(Cal + D)‘le,-> -dDdH.
i=1

(33)
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PROOFE From (14) in Lemma 2.2 and Lemma 3.4,

1
m(X)’V// [D|a1]l _|_D|(m—1)/2+a2—a1|| +D+mHAHt|1/2

1z _ _ _
(34) x exp(—E i:Zl(x,- —X)'H' (1 + D) H (X — x))

1
X eXp(—ém(HX)’(l +D+ mHAH’)_l(HX)> -dDdH.

Applying Lemma 2.5 to (34),

1
o=cff
m( )— |D|a1|| +D|(mfl)/2+a27a1|| +D+m,0k||1/2

x eXp(—% > (% = R'H (I + D) TH(x; — 2))
i=1

X exp(—%m(Hi)’(l + D + mp1l )_1(H>'<)> .dDdH

1
= C.// |D|91|l + D|(m=D/2+az—a1|| 4 D|1/2

X exp(—% Z(Xi —)'H (I + D+ mp1l) " *HX; — >‘<)>
i=1

X exp(—%m(Hi)f(l + D +mp1l )‘1(H>‘<)) .dDdH

1
=¢ // ID4L|l + D|m/2taz—a1

1 m
X exIO(—E Y xH (1 + D+mPl|)_1HXi> -dDdH.
i=1

Similarly,
> C / / 1
"= DI+ D+ mpyl e

1 m
X eXp<—§ D oxiH (1 + D)‘le,-) -dDdH.
i=1

This completes the proof.(]
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LEMMA 3.7. IntheCase 3 scenario and with/ = 0,

1
mx) ~ Cl//f [D|91|l 4 D|(m—1/2+az—a1|(1 + Cod)l + D|1/2

(35) X exp(—% g(xi —)H (I + D) H(x; — X))
X exp(—%m(Hx)f[(l + C3M)| + D]_l(HX))
x t(A)drdDdH.

ProOOF From (15) in Lemma 2.3 and Lemma 3.4,

1
X) &
mX) //./ |D|a1|| 4 D|(m—D/2+az—a1|| 4 D 4+ mAHAH!|1/2

X exp(—% Y i —%)'H (I + D) TH(x; — >‘<)>

i=1
1
x exp(—ém(Hf()’(I +D+ mkHAHt)_l(Hi()) (X)) drdDdH.

The proof is then exactly like that of Lemma 3.6

3.3. Uniformly bounded property. Let §” (x) be the posterior mean @éfwith
respect to the posterior distribution. To prove admissibility by Brown’s results,
we first need to show that™ (x) — x is uniformly bounded. Le$™ (X),x1 =
(87 (%), 83 (X), ..., 87, (X))", so thatdT (X) is the subvector 08" (x) corresponding
to #;. By symmetry, it is clearly sufficient to show théf (x) — x1 is uniformly
bounded.

LEMMA 3.8. Supposethat z1, z»,...,2, arek x 1vectorsand y isthek x 1
vector (y1, y2, - -, y)', With y, = (X4 z2)/2, where z;; isthe jth element of z;.
Define

C1 1z _
c,D,z1,20,...,2,) = —————eXp| —= Z(C3l +D 1z,~ ,
g(c.D,z1,2 ") = 1BHIc, T D p( 2; {(C3l + D) )

where the C; are positive constants. If u + v > 1and u < 1, then

S0 +D)y|g(c.D, 21,2, ...,2,)dD
[g(c,D,z1,22,...,2y,)dD

(36)

isuniformly bounded over z1, 5, ..., z,.
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PROOFE In (36),

C1

Numerato </ l+D) y|————
| F< | (1 +D) y”|D|u|C2|+D|v

x exp(—— > Z(C3l + D)~ 12,) dD

i=1
[vnl k 1
Z./l (jl_[zld‘;‘(chrdj)v)

xexp< 2(C3+d)ZzU)dd

For each: we will bound thek-dimensional integral. If # n, by Lemma 3.3 with
a =u andr = v itis clear that

/Oo L e L S22 )aq,
0 d(Catdy)’ T\ 2Catdy) 50 )Y

m 1-u—v
§C1min{C2, (Zz%) }

i=1

If j =n, applying Lemma 3.3 witla =« andr = v + 1 [again using the fact that
(1+d,)/(C2 + d,) is uniformly bounded] yields

m

. L ep( o322 ) da;
1+d; dj(Ca+dp? "\ 2AC3td) ™

m —u—v
§C/1min{C§, (Zzlzj) }

i=1

Therefore,
INumeratoy
X m oy 1-u—v
< Z|:|yn|C/1min[Cé, (Zzl?n> } Il C1m|n<C2, (Zzu> H
n=1 i=1 j#n
In (36),

Denominatok= C} ﬁ/oo - exp( 1t i 2>dd
Pl dicy+dpy 2Cy+dy) =)
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Applying the lower bound of Lemma 3.3, with=« andr = v, yields
0o 1 1 i
C; / ——eXpl —=———— 2 )dd;
Lo @ (Ch+d)) p( 2(cg+d,-),.zzlz”) /

m 1-u—v
zC’{miniC}‘,(szo }

i=1
Thus
k m 1-u—v
Denominator | | [C{ min{Cg, (Z%) ”
i=1 i=1
Combining the numerator and the denominator, we have

‘fH’(I + D) lyg(c, D, zg, zz,...,zm)dD‘
fg(clﬂ D7 217 22’ ey Z}’I’l)dD

< (i[wcimin{% (izfn>_u_v}

n=1 i=1

sl (£ )

(Bfermeles (£2) )

3 <|yn|C’1min{C’2, (Xry22) 7Y o Camin(Cy, (2?;15,.)1-"—"})'
S\ Cimin{Cy, (X 22y i, CEmin{Cs, (U7 25) )

Clearly
I Cimin{Ca, (X7Lyz5) ") -
in CIMIN(CS, (1L 22500y
Using the condition: + v > 1, we have that for largg " ; z2, = y?
|ynl CEMIN{Cy. (7 25) ™" ")
Cimin{C3, (XiLy 25, )

behaves agy, |/y?, while for smally? it behaves a€3|y,| < C4, So that the ratio
is clearly uniformly bounded. Thus
S0 +D)Yyllg(€.D.21. 23, ... Zn)dD _
fg(c/,D,Zl,ZZ,,Zm)dD - ’
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completing the proof. O

THEOREM 3.9. Assumethat #(B) =1, m > 2,k > 2,and = (H, D) satisfies
Condition 1. Also suppose that we choose [ = 0. If a1 < 1 and as > 3*7'” then

8™ (X) — x is uniformly bounded.

PROOF  We only need to show th&f (x) — X1 is uniformly bounded. Itis well
known that

(37) 1) =Xy = (Vm(X))1/m(x),

whereV denotes the gradient. Exactly as in the proof of Lemma 3.5, it can be
shown that
(I + H'DH) "1 (x1 — %)

|l + D|m=1)/2

RZIONE H— /

X exp(—% Z(X,- —X)H( + D)—lH(Xi — f())

i=1

x w(H,D)dH dDH

- I+ D) *Hxg — %)
- |D|91|l + D|(m—1)/2+az—a1

x exp(—% > (% = R'H (I + D) HH(x; — >‘<)) -dDdH.
i=1

Hence, defining; = H(x; — X), and using the lower bound in Lemma 3.5 for the
denominator in (37), one obtains (for appropriate constart9y
S/ +D)1z1)|g(c.D, 21, 25, ..., Zy) dD dH

ffg(C’, D,z,20,...,2,)dDdH

~ I 10 +D)7Yylig(c, D, 21,22, ..., 2,) dDH
B [[g(¢.D,z1,22, ..., 2m)dDdH

167 (X) — X1l <

’

wherey andg are as in Lemma 3.8, with=a1 andv =a» — a1 + (m — 1)/2.
Now Lemma 3.8 shows that, if + v=a2+ (m — 1)/2> 1 andu = a1 < 1,
then

/||(| +D)"Yyllg(c, D, 21, 2o, ..., ) dD < K/g(c’, D.21.2s.....2,)dD.

Hence|| 67 (X) — x1|| < K and the theorem is established.]
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THEOREM 3.10. Assume that 7(B) is Nix(B% A), k > 2, and =(H,D)
satisfies Condition 1. Also suppose that we choose/ = 0.1fa; < 1andaz > 1—- 7,
then §” (x) — x is uniformly bounded.

PROOF  The proof is very similar to that in Theorem 3.9:
1ol < [ [ 104+ =0+ (1 +V +mA) %

1
" 11 + DJlaz—ar+m=D/2I|| + D + mHAH!|¥2|Der

IS - VU Ay
X exp( 2i;(x, X)'H (I + D)™ "H(x; x))
X exp(—%m(H)'()t(l +D+ mHAHt)l(Hi()) dDdH.
Note that
1A +V) "2 — %) + (1 +V +mA) x|
<1 +V)" o = Rl + 1+ V)KL,

One now proceeds as in the proof of Theorem 3.9 with each term of (38), making
use of Lemma 3.6 and arguments similar to the proof in that lemima.

(38)

THEOREM 3.11. Assume that 7(B8) is Nk(ﬂo, AA), k> 2, 7(H, D) satisfies
Condition 1 and 7 (A) satisfies Condition 2. Also suppose that we choose ! = 0. If
ap<liap>1—7andb>1— % then 87 (x) — X is uniformly bounded.

Proor Define §7(x|A) to be the posterior mean with given. From
Theorem 3.10, we know that

sup||8”™ (X|A) — X|| = K (1) < 0o.
X

With a modification of the proof of Theorem 3.10, it can be shown fiét) is
continuous. Also, ag — oo, the posterior distribution converges to that corre-
sponding torr (B) = 1, so we know from Theorem 3.9 that lim., K (1) < oc.

As 1 — 0, the posterior converges to the special case of Theorem 3.10 in which
A =0, so we knowK (0) < co. It follows that K (1) is itself bounded. Finally,
letting 7 (A|X) denote the posterior distribution afgivenx, which was shown to
exist under the given conditions, it is clear that

167 () — xI[? = | ET*P[87 (x|2) — 12
< ETHM)87 (x) —xI|? < ETCPIK ()2,

SinceK (1) is bounded, it follows thafé™ (x) — x|| is uniformly bounded, and the
proof is complete. [
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3.4. Admissibility and inadmissibility results. To prove admissibility or inad-
missibility based on Results 3.1 and 3.2, we need only determine whether (25) is
infinite or (26) is finite. Since Lemmas 3.5, 3.6 and 3.7 provide effectively equiva-
lent upper and lower bounds an(x), it suffices to evaluate (25) and (26) for these
equivalent bounds.

3.4.1. Case 1 scenario.

THEOREM3.12. Assumethat 7 (B)=1,m > 2,a; < land 7 (H, D) satisfies
Condition 1 with I = 0. If k = 2 and a2 > 1, then the posterior mean is
admissible under quadratic loss. If 35 < a; < 3 — 1, then the posterior mean

isinadmissible.

PROOF Letz = (zj1,2i2,...,2ik) = HX — X). Defineyjz =YLz By
Lemma 3.5,

1
m(X)NC// |D|a1|| +D|(m—1)/2+a2—(11
1 m
X exp(—é g(xi —X)'H'(1 + D) T H(x; — >‘<)) -dDdH

2

//1_[ a1(1+d )(m 1/2+az—a1 p( m)dDdH

o0 1 y.
-C exp| — J dd; | dH.
/ [El/o I dyy e 2<1+dj>> J}

Applying the upper bound of Lemma 3.3 with= (m — 1)/2+ a2 — a1 anda = a;
yields

2

1 J
expl — dd;
dj*(1+d;)m—D/2ta-a p< 2(1+dj>> !

A~ Cymin{Cy, (y)@-m/2-a2),

Thus

k
(39) m(X) ~ Cf|: l_[ C1min{Ca, (yjz)(s—m)/Z—az}j| dH.
j=1
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To prove admissibility, note that

m(r) = f{ LTS

* : 2y(3-m)/2
<C C H C , “ —n —az d dH.
- /[/{X:xllzr}}_[:l 1min{Ca, (y}) } ¢(X)}

The inner integral, with respect t, is essentially consideringto be uniformly
distributed on the surface of the sphere of radjug = . SinceH is an
orthonormal matrix((Hx1)?, (Hx2), ..., (HX,,)")! also has a uniform distribution
on the surface of the sphere of radiugrom the result in Section 49, Subsection 1,
of [24], it follows that, for each giveH,

2 .2
yi V5 yk . m—1m-—1 m—1 k)
- g [ ~ Dirichlet , , = ).
(r2 r2 Zy’) ( 2 2 2 2

Thus,

mi(r) < C// Hmln Ca, (y3)@—m/2-az)
Zk 1}2<” i=1

(m—3)/2 1k (k=2)/2 2 2
x ]‘[(yl) (1— —Zyl> d(i—%)---d(i—’é)dH.

The inner integral is clearly constant oudrand can be dropped, along with the
factor (1 — Z _1 )} 2/r2) (sincek > 2). Then elimination of the range restriction
on theyl yields

koo m-5/2 2
() < CT] [~ mincz, o7)1@m/z-el). (yl ) . <y_2 )
i=1

I" r

ko roo

the last inequality using the fact that niip, v} < 2(C;* + v=1)~L. The final
integrals are finite ifn > 2 andas > 1, so then

m(r) < Crkm=D,

Hence

—dr,

/coo[rmk—lm(r)]—ldrz/coo —

which is infinite if k = 2. Since the conditions = 2 andaz > 1 also imply that
6" (X) — x is bounded by Theorem 3.9, the proof of admissibility using Result 3.1
is complete.
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To prove inadmissibility, note from (39) that

m(r) = / = de0

lIx[|=r} m(X)
(41) -1

ff (/HClmin{Cz, (yf-)“‘m)/z‘“Z}dH) dé (%).
= \J

Note that

[ff(H)dH]_lf [urartan it ran=o,

so that
k

-1
m(r)gclf[/{x_nxn (]‘[ n{Ca, (y5)®/2~ ”2}) d¢(x)] dH

2var—(3—m)/2
<0, /UX " Hmax Ca, () }dqb(x)}dH

(42)

Continuing exactly as in the proof of admissibility (but employing the bound
y? < r?)yields

k 2 y! (m—-3)/2 y2
ni) =] /0 max{Cs, <y,-2)”2—(3—'">/2}( ) d(ﬁ)

Dot o) ()

r

< C + Czrk(2a2+m_3).

Hence

o0 o

/ r(lfmk)m(r) dr <C + Cz/ y(Zkaz—3k+1) dr,

C C
which is finite only ifaz <3 — 1. If m > 2, a1 <1 andaz > (3 —m)/2,
then §7 (x) — x is uniformly bounded, and Result 3.2 completes the proof of
inadmissibility. (It was not strictly necessary to establish the uniform boundedness
condition for inadmissibility, but it is necessary to verify that the posterior mean
exists, and the uniform boundedness condition clearly establishes that this is so.)

O

Theorem 3.12 fails to cover the situation in whiéh= 2 andas = 1 and
the situationk > 3 anday > % — % We suspect that the posterior mean is also
inadmissible in these two situations, but were unable to prove it. (The main
hurdle is to find a way to avoid use of the too-strong inequdljty (H) dH]~* <
JIf(H)ItdH)
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3.4.2. Case 2 scenario.

THEOREM3.13. Assumethat 7(B) is Nx(B%, A), a1 <1,k > 2 and = (H, D)
satisfies Condition 1 with [ = 0. If a» > 1 — % then the posterior mean is
admissible. If Z‘T’” <ap<1l-— % then the posterior mean isinadmissible.

PROOF Letz = (zi1, zi2, - -, zik) = HX;. Defineyjz. = 71:121'2;- By (33) we
have

1
m(X) ~ Cl// ID]a1|Col + D|m/2+a2—a1

X exp(--Zx H (C3l + D)_lel> -dDdH
i=1

2
_lefl_[ al(C2+d jym/2taz=a p( 2(C3 dj ))dDdH

j=1"J

y2
_Cl/[n/ dal(C2+d ym/2+az—ay exp< m) dd; :|dH.

Applying the upper bound of Lemma 3.3 with= a2 — a1 + m/2 to the inner
integral above yields

! ex Y )dd~
diN(Ca 4 djym/ZHaz—a 2(Cz+dj))
< Cymin{C3, (y)1"/272).

Thus
k
(44) m(x) ~ c/[ [ €1 min{cs, (yjz.)l—m/z—@}} dH
j=1

To prove admissibility, note that

m(r) = / m(X) d¢ (X)
{x: |xll=r}
(45)

- 2\1-m/2
* H * 2 —m —ay
<C/[/X xll=r} ]_[Cl min{C3, (¥7) }dqﬁ(x)} dH.

The inner integral with respect p is essentially considering to be uniformly
distributed on the surface of the sphere of radjid = . SinceH is an
orthonormal matrix((Hx1)?, (Hx2)?, ..., (HX,,)")! also has a uniform distribution
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on the surface of the sphere of radiugrom the result in Section 49, Subsection 1,
of [24], it follows that, for each giveRr,
m m)
oy )

2 .2 2
y1i Y2 yk> Diri (
= == ..., %) ~Dirichlet
(rz 2 2

NS

Thus,
k kooy2\m/2=l 2
= flmncs. o= [1(5)" o)
i=1 i=1 N\ r

Again dropping the integral ovét and using the inequality mj@'s, v} < 2(C2‘l+
v}~ results in the bound

ko o2 ) L/ Y2\ g2
m(r) < C[] fo (€37 + (D~ m/Ead] (—2) d<r—’2)
i=1

r

2 k
< Cr_km[/r (C;‘_1 + v(“2+m/2_1))1v(m_2)/2dv:| .
0

The order of the integral in the last expression is easily seen @ (b&1%) if
a» <1; 0(logr) if ap=1;andO (1) if a» > 1. Hence

o0
C/ pl-kd=a) g ifap <1,
C
00 o0
/ Y rdr > C/ r(logr)~*dr, if az =1,
c C
o0
Cf rdr, if ap > 1.

This is clearly infinite ifap > 1 — 1/k. By Theorem 3.10, this condition also
implies thaté™ (x) — x is bounded, so use of Result 3.1 completes the proof of
admissibility.

To prove inadmissibility, note from (44) and the fagl f(H)dH] ™! <
[Lf(H)]"1dH that

1
= —d
mir) {x: [IxlI=r} m(X) px)

k 1
i 2y1-m/2—ap
= /{x: X||:r}</ [T Camin{C, ) }dH> d¢(x)

Jj=1

k
<C max{ C», (y2)%2tm=2/21 4 x}a’H.
< /“X:M:F}L{l (Ca, (42 }dg (%)
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Continuing as with the proof of admissibility, one obtains

£ 2
m(r) <C ]_[/0 max{Ca, (y,-z)az_(m_z)/z}(y—’2
i=1

L

>(m—2)/2

(%)
r r2
ko o2 Y2\ (=272 ;2
<C[] / [Cz+(y,-2)“2‘<m‘2)/2]<—’2) d(—’z)
i=1 0 r r

< C 4 Cyrk@aztm=2),
Hence
oo oo
[ PA=m0 () dr < C + Cz/ p(@haz=2k+D) g,
c c

which is finite only ifap <1 —1/k. If a1 <1 andaz > (2—m)/2, thend™ (x) — X
is uniformly bounded and so the posterior mean exists, and Result 3.2 completes
the proof of inadmissibility. [J

3.4.3. Case 3 scenario.

THEOREM 3.14. Assume that 7(B) is Nx(B%, AA), m > 2, a1 < 1, 7 (H, D)
satisfies Condition 1 with / = 0 and = () satisfies Condition 2. If (i) k > 2,
azzl—%andb>1; or (ii) k23,a2>1—% and 0 <b < 1; or (iii) k=2,
ar>1— % and 0 < b < 1, then the posterior mean is admissible under quadratic
loss.

PrROOF Starting with (35) from Lemma 3.7 (setting all constants to 1 for
notational simplicity) yields

: 1
X)) ~
mx) ///jl:[]_d;-ll(l—i—dj)(m—l)/2+a2—a1(]_+k +dj)1/2

1[ & (Hxi —%))3 (H%)?
XeXp(_E[i; 1+d; +m1+/\+de

X w(A)drdDdH.

Let
m(H (X — %) (H%)?

w; = vVi=m——0
J ’ J ’
; IXII2 IXII2

Under¢ (x), the uniform distribution on the surface of the sphere of radisg|X||,
by the result in Section 49, Subsection 1, of [24], we have
m—11 1)

5 5 g )

j=12 ...k

. -1
(wl,...,wk,vl,...,vk)~DII’ICh|et<m2
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Thus, arguing as in previous theorems, droppihgnd letting thew; andv; range
freely over(0, 1), yields

i(r) = /” o000

k 1,1 1 1
<TG L =
—J 5o Jo Jo djl(l—i-dj)(m—l)/2+az—a1(1+k+dj)1/2

<o e i)
A\ 2l1+q "1v2+4,

x w" VL2 quy s dvjdd; }n(x)dx

J

Make the change of variables = w;(1+d;) andt; =v;(1+d; + 1), j =
1,2,...,k. The region of integration becomes

1
Ry={0<s;<——,0<tj<—""—,i=12... k.
N { VST T T v d }
Then

(A+d))s)Hm=32(A+d; + 1)t ~Y2

m(r)<//// H{ “l j 1y/2 ’ 1/2

Ry (1+dj)m—D/2tar—ar(1 4 ) +d;)V/

r2
X eXp(—E[Sj +tj])

X (L4+d;)(1+dj + 1) ds; dt; ddj}n(x)dx

/]// 1—[ (m=3)/2,-1/2
R | “l<1+d ety

2
%[sj + zj]) ds;dt; dd_,-}n(x) d

X exp(—
k
:/]l_[:l“djl(lJrldj)az—al

X |:/0 5; exp(—?sj)dsj}
2

YAtdith) r
X [/0 1 exp(—Etj) dtj}ddj]n(k)dk.
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Applying Lemma 3.3(b) to the inner integrals above yields

m<r)<c/n[./d“1(l+d)“2 a

x min{r="=Y (14 d;)~m"1/2)

(46)
x min{r=t, (14+d; + k)_l/z}ddl,}n(k)dk.
Consider first the situatioh > 1. Thenx (1) has finite mass and so [using
L+dj+0)2<A+dp~?

1

m(r) < C[ da(lT dyi—a

min{r~"=Y (14 a)~m-D/2)
k
x min{r %, (1+d)"Y?) ddj] .

Break up the inner integral into integrdisand/, over (0, 2 — 1) and(r2 — 1, 00),
respectively. Then, sincg < 1,

r?2—1 1 1 1
= /0 da(l+ dye—ar pm=1) dd < Cr=™(14 r21-a2)),
00
= frz—l de(l +1d)“2—“l 1+ d)l(m—l)/z a +1d)1/2 dd < Cr?-2a=m,
Hence
mi(r) < Clly+ I < cr—™* (1+ r2k(l—a2))
and

r

o0
mk—1-— -1
‘/C [r m(r)] er i md}’

This is finite ifap > 1 — 1/k.
Next consider the case0b < 1. Clearly

minir~t, 1+ d; +1)"Y3)
=min{r1, (1+d; + 1) "Y22A-brte
x min{r=t, (14d; 4 ») Y321
< @+ mingr L, (14 d) A2
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Hence (46) can be bounded as

_ oo 1
m(r) < C|:/0 —da1(1+ D

x min{r="=Y (1 +d)~"D/2)

(k=1)
x min{r %, 1+ d)"Y?) dd}

00 1
x/o da1(1+d)az—a1
x min{r="D (1 +d)~"D/2)
x minfr—t, (14 d)~Y2)#=1=9) qq

[using the fact tha¢l + 1) *~17¢/2 7 (1) has finite mass]. Proceeding exactly as in
theb > 1 case yields

mr) < Cr[Zk—Zkaz—km+2(l—b)+£]

so that

/Oo[rmk_lm(r)]_ldr > C /OO r(2k—2k612+1—2b+8) dr,
C C

which is infinite if ap > 1 — % + ¢’. Since¢’ was arbitrary, the condition for
admissibility when O< b < lisax > 1— % By Theorem 3.11 these conditions
also imply thats”™ (x) — x is uniformly bounded, except whén= 2, in which case
the restrictiorb > 0 must be added. This completes the proof of admissibilify.

3.4.4. Admissibility and inadmissibility for the common priors. Let us apply
these results to the versions of the reference prior discussed in the Introduction.
For B, the Case 1 constant prior leads to admissibility only in the éase2,
and hence is not a prior we recommend. The Case 2 conjugate prior can readily
yield admissible estimators, and is certainly reasonable if backed by subjective
knowledge. The Case 3 default prior that was suggested in Section 1.2 is

(47) () o [14 || 8121~ *~D/2,

corresponding to the two-stage priBfa ~ N (O, Al), m(A) oc A~ Y2e=1 (@) \We
therefore focus on admissibility results when this prior is useg@for

In regard to priors forV, note first that the nonhierarchical reference prior
for V cannot be considered, since it corresponds;te- 1, yielding an improper
posterior. The modification

1
VI [T j(di — dj)’

x(V) =
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wherea; < 1, is inadmissible in Case k[B) = 1], but is admissible in Case 2,
and is admissible in Case 3whén-1and 1- 1/k <a; <1,orwhenO<b <1
and 1-b/k < a; < 1. Since we recommend (47), which lias 1/2, this suggests
the choicea; =1 — 1/(2k) = (2k — 1) /(2k). While we were not strictly able to
prove admissibility for this choice, it likely corresponds to admissibility and, in
any case, being at the boundary of admissibility has considerable appeal.

The modified reference prior of the form

1

V) =
T = Ve, @ - dy)

is admissible in Case 1 f =2 anday > 1; in Case 2 or Case 3 1) if ap >
1—1/k;andinCase 3 (&b <1)if ap > 1— b/k. The natural choice ig; =1,

since this is admissible for all andk in Cases 2 and 3, and is almost admissible

in Case 1 wherk = 2. (Recall that we were unable to establish admissibility
or inadmissibility in this case, but again being at the boundary of admissibility
has considerable appeal.) Recalling the discussion from the Introduction, the
recommended default prior distribution of this form is thus

1

V) = .
N =TV @ —dy)

This yields a proper posterior with a posterior mean that is admissible in estimation
under quadratic loss.

APPENDIX

PrROOF OFLEMMA 3.3. (a) It suffices to take; = ¢o = 1 in the proof. This
is becausécy + d)/(c2 + d) is uniformly bounded above and below, so that one
could changéci +d) to (c2 +d), or vice versa. A simple change of variables then
reduces the expression to the cage- 1. Clearly,

f(v)=/1;exp(—é) dd
0o 1+d)yde 2(1+d)
+/w#exp(— v )dd
1 (1+d)yde 2(1+4d)
< e_v/4/1idd+/oo 1 exp<_i) dd
- 0 da 1 dr—i—a 4d

1 . © 1 v
= /4 exp(——) dd.
1-a° +/1 dr+a 4d
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Making the change of the variables- v/d yields

o=ty [2) o))

1 v
— e—v/4+ vl—r—af tr+a—2€—t/4dt
0

— l_e—v/4 + vl—r—al—w(r +a— 1) . 4r+a—1.
—da

Sincer 4+ a > 1, itis easy to show that */4 < Cv1~"~% whenv > 0. Therefore
f() < Crot e

On the other handf (v) is a decreasing function efwhenv > 0, so

00 1
max = 0:/ ———dd
f) = f() o AT dyde
</1ldd+/oo L=t 1 ¢
—Jo d¢ 1 drte” T 1—a r+a-—-1 2

Thus, definingC3z = C»/C1,
f(v) < C1min{Cs, v 74}

To find a lower bound forf (v), note that
) > / _ exp(—é) dd
—J1 A+d)yde 21+ 4d)
> /oo 1 exp(—i> dd
—J1 (2d)yrde 2d

—1/00 ! ex( v)dd
)1 arta 3 2d '

Making the change of the variables= v/d, one obtains
fo) = 1/°(t>r+aex< (%)
v= 2r v v p 2 l2

1 1" rta-2 p( t)
=—v " t" exp|l —= ) dt.
o’ fo 2
If v>1,then

1
fv) > Z_J;Ul—r—a/ tr+a—2 exp<—%) dt = Civl—r—a )
0

o
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If0 <v<1,then

f()_f() 0 (1+d)rda 2(1+d) 2
Let C4 =min{C}, C5}. Thus
f(v) = min{C4, C1p*™" %) = Cymin{C}, v} 74},

whereC) = C3/C1, completing the proof of part (a).
To prove part (b), change variables frorto w = x¢. Then

i)
g(u,v) = v_(‘H’l)/ wle " dw.
0

Now f§ wie ¥ dw < T'(a+1) and [’ we ¥ dw < [§" w'dw = (nv)@+/
(a 4+ 1). Hence

(MU)(‘H_D }

—(a+1) mi
, U v miniI'(a + 1),
g(u,v) < { (a+1) @iD

and the result follows. O
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