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POSTERIOR PROPRIETY AND ADMISSIBILITY OF
HYPERPRIORS IN NORMAL HIERARCHICAL MODELS1
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Hierarchical modeling is wonderful and here to stay, but hyperparameter
priors are often chosen in a casual fashion. Unfortunately, as the number of
hyperparameters grows, the effects of casual choices can multiply, leading
to considerably inferior performance. As an extreme, but not uncommon,
example use of the wrong hyperparameter priors can even lead to impropriety
of the posterior.

For exchangeable hierarchical multivariate normal models, we first
determine when a standard class of hierarchical priors results in proper or
improper posteriors. We next determine which elements of this class lead to
admissible estimators of the mean under quadratic loss; such considerations
provide one useful guideline for choice among hierarchical priors. Finally,
computational issues with the resulting posterior distributions are addressed.

1. Introduction.

1.1. The model and the problems. Consider the block multivariate normal
situation (sometimes called the “matrix of means problem”) specified by the
following hierarchical Bayesian model:

X ∼ Np(θ , I), θ ∼ Np(B,�π),(1)

where

Xp×1 =




X1
X2
...

Xm


 , θp×1 =




θ1
θ2
...

θm


 ,

Bp×1 =




β
β
...

β


 , �πp×p =




V 0 · · · 0
0 V · · · 0
...

...
. . .

...

0 0 · · · V


 ,
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HYPERPRIORS IN NORMAL MODELS 607

where theXi arek × 1 observation vectors,k ≥ 2, theθ i arek × 1 unknown mean
vectors,β is ak × 1 unknown “hyper-mean” vector andV is an unknownp × p

“hyper-covariance matrix.” This is more commonly written as, fori = 1,2, . . . ,m

and independently,Xi ∼ Nk(θ i , I), θ i ∼ Nk(β,V). Note thatp = mk. Efron and
Morris [16, 17] introduced the study of this model from an empirical Bayes
perspective. Today, it is more common to analyze the model from a hierarchical
Bayesian perspective (cf. [2, 18]), based on choice of a hyperpriorπ(β,V). Such
hyperpriors are often chosen quite casually, for example, constant priors or the
“nonhierarchical independence Jeffreys prior” (see Section 1.2)|V|−(k+1)/2. In
this paper we formally study properties of such choices.

The first issue that arises when using improper hyperpriors is that of propriety
of the resulting posterior distributions (cf. [38]). In Section 2 we discuss choices
of π(β,V) which yield proper posterior distributions. That this is of importance is
illustrated by the fact that we have seen many instances of use of|V|−(k+1)/2 for
similar situations, even though it is known to generally yield an improper posterior
distribution when used as a hyperprior (see Section 2).

A more refined question, from the decision-theoretic point of view, is that of
choosing hyperpriors so that the resulting Bayes estimators, for a specified loss
function, are admissible. The particular version of this problem that we will study
is that of estimatingθ by its posterior meanδπ(x), under the quadratic loss

L(θ , δπ) = (θ − δπ)tQ(θ − δπ),(2)

whereQ is a known positive-definite matrix. The performance of an estimatorδ
will be evaluated by the usual frequentist risk function

R(θ , δ) = EX
θ

[
L
(
θ , δ(X)

)]
.(3)

The estimatorδ is inadmissible if there exists another estimator with risk function
nowhere bigger and somewhere smaller. If no such better estimator exists,δ is
admissible.

In Section 3 conditions onπ(β,V) are presented under which the Bayes
estimatorδπ is admissible and inadmissible. The motivation for looking at this
problem is not that this specific decision-theoretic formulation is necessarily of
major practical importance. The motivation is, instead, that use of “objective”
improper priors in hierarchical modeling is of enormous practical importance, yet
little is known about which such priors are good or bad. The most successful
approach to evaluation of objective improper priors has been to study the
frequentist properties of the ensuing Bayes procedures (see [3] for discussion and
many references). In particular, it is important that the prior distribution not be too
diffuse, and study of admissibility is the most powerful tool known for detecting an
over-diffuse prior. Also see [10] for general discussion of the utility of the decision-
theoretic perspective in modern statistical inference.

The results in the paper generalize immediately to the case where the identity
covariance matrixI for theXi is replaced by a known positive-definite covariance
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matrix, but for notational simplicity we only consider the identity case. More
generally, the motivation for this study is to obtain insight into the choice of
hyperpriors in multivariate hierarchical situations. The possibilities for normal
hierarchical modeling are endless, and it is barely conceivable that formal results
about posterior propriety and admissibility can be obtained in general. The hope
behind this study is that what is learned in this specific multivariate hierarchical
model can provide guidance in more complex hierarchical models.

1.2. The hyperprior distributions being studied. We will study hyperprior
densities of the form

π(β,V) = π(β)π(V).

For V, we will study priors that satisfy the following condition, whered1 > d2 >

· · · > dk > 0 are the eigenvalues ofV.

CONDITION 1. For 0≤ l ≤ 1,

C1

|I + V|(a2−a1)|V|a1[∏i<j (di − dj )](1−l)

≤ π(V) ≤ C2

|I + V|(a2−a1)|V|a1[∏i<j (di − dj )](1−l)
,

whereC1 and C2 are positive constants and|A| denotes the determinant ofA.
Many common noninformative priors satisfy this condition, including:

Constant prior. π(V) = 1; herea1 = a2 = 0 andl = 1.

Nonhierarchical independence Jeffreys prior. π(V) = |V|−(k+1)/2; herea1 =
a2 = (k + 1)/2 andl = 1.

Hierarchical independence Jeffreys prior. π(V) = |I + V|−(k+1)/2; here
a1 = 0, a2 = (k + 1)/2 andl = 1.

Nonhierarchical reference prior. π(V) = [|V|∏i<j (di − dj )]−1; herea1 =
a2 = 1 andl = 0. (See [40].)

Hierarchical reference priors.

(a) π(V) = [|I + V|∏i<j (di − dj )]−1; herea1 = 0, a2 = 1 andl = 0.

(b) π(V) = [|V|−(2k−1)/(2k)∏
i<j (di − dj )]−1; herea1 = a2 = (2k − 1)/(2k)

andl = 0.



HYPERPRIORS IN NORMAL MODELS 609

We have already alluded to the nonhierarchical independence Jeffreys prior,
which formally is the Jeffreys prior for a covariance matrix in a nonhierarchical
setting with given mean. Unfortunately, this prior seems to be commonly used
for covariance matrices at any level of a hierarchy, typically yielding improper
posteriors, as will be seen in Section 2. Those who recognize the problem often
instead use the constant prior, or the hierarchical independence Jeffreys prior,
which arises from considering the “marginal model” formed by integrating overβ
in the original model and computing the independence Jeffreys prior for this
marginal model.

Similarly, the nonhierarchical reference prior yields an improper posterior
in hierarchical settings (shown in Section 2). The two versions of hierarchical
reference priors given above arise from quite different perspectives. Prior (a) arises
from considering the marginal model formed by integrating overβ in the original
model, and applying the Yang and Berger [40] reference prior formula to the
covariance matrixI + V that arises in the marginal model. (The differences of
eigenvalues for this matrix are the same as the differences of the eigenvalues
for V.) Prior (b) arises from a combination of computational and admissibility
considerations that are summarized in Sections 1.5 and 1.6, respectively.

Note that if the covariance matrix for theXi were a known�, instead ofI, thenI
in the above priors would be replaced by�. It could not then be said, however, that
the reference prior formula is that which would result from applying the Yang and
Berger [40] reference prior formula to the covariance matrix� + V that arises
in the marginal model, since the differences of eigenvalues of this matrix will no
longer equal the differences of the eigenvalues ofV.

Three commonly considered priors for the hyperparameterβ are:

Case 1. Constant prior. π(β) = 1.

Case 2. Conjugate prior. π(β) is Nk(β
0,A), whereβ0 andA are subjectively

specified.

Case 3. Hierarchical prior. π(β) is itself given in two stages:

β|λ ∼ Nk(β
0, λA), λ ∼ π(λ), λ > 0,(4)

whereβ0 andA are again specified, andπ(λ) satisfies:

CONDITION 2.

(i)
∫ c
0 π(λ)dλ < ∞ for c > 0;

(ii) π(λ) ∼ Cλ−b (b ≥ 0) asλ → ∞ for some constantC > 0.

As discussed in [7], an important example of a Case 3 prior is obtained by
choosing

π(λ) ∝ λ−be−c/λ,
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that is, an inverse Gamma(b − 1, c−1) density. This clearly satisfies Condition 2,
and the resulting prior forβ is

π(β) =
∫

π(β|λ)π(λ)dλ ∝
[
1+ 1

2c
(β − β0)tA−1(β − β0)

]−(k/2+b−1)

,

which is a multivariatet-distribution with medianβ0, scale matrix proportional
to A and 2(b − 1) degrees of freedom. We will be particularly interested in
the improper version of this prior withc = 1/2, β0 = 0, A = I and b = 1/2,
corresponding to

π(β) ∝ [1+ ‖β‖2]−(k−1)/2.(5)

1.3. Related literature. Hierarchical Bayesian analysis has been widely ap-
plied to many theoretical and practical problems (cf. [8, 11, 21, 23]). Results and
many references to decision-theoretic analysis of hierarchical Bayesian models
can be found in [5–7, 18, 31]. Reference [7] considered the following hierarchi-
cal normal model:X = (X1,X2, . . . ,Xp)t ∼ Np(θ,�), with � being a known
positive-definite matrix. The paper considered the common two-stage prior distri-
bution for θ given by θ ∼ Np(β1

¯
, σ 2

π I), (β, σ 2
π) ∼ π1(σ

2
π)π2(β), where 1

¯
is the

p-vector of 1’s andI is the identity matrix, and presented choices ofπ1(σ
2
π)

andπ2(β) which yield proper posteriors and admissible Bayes estimators under
quadratic loss. This is thus the special case of our model wherek = 1, and this
paper can be viewed as an extension of those results to the vector mean problem
(and, hence, our restriction tok ≥ 2).

The more general decision-theoretic background of this paper is the huge
literature on shrinkage estimation, initiated by the demonstration in [33] that the
usual estimator for the mean of a multivariate normal distribution is not admissible
whenp ≥ 3. This huge literature can be accessed from, for instance, [36].

The key to the admissibility and inadmissibility results presented in this
paper is the fundamental paper [9], which provided the crucial insight to allow
determination of admissibility and inadmissibility of Bayes estimators.

1.4. A transformation and revealed concern. It is convenient, for both
intuitive and technical reasons, to writeV = HtDH, where H is the matrix
of eigenvectors corresponding toD = diag(d1, d2, . . . , dk), such thatHtH = I.
Indeed, we will make the change of variables fromV to (D,H), and rewrite the
prior as

π(V) dV = π(H,D)I[d1>d2>···>dk] dDdH;
heredV = ∏

i≤j dVij , dD = ∏k
i=1 ddi , dH denotes the invariant Haar measure

over the space of orthonormal matrices andI[d1>d2>···>dk] denotes the indicator
function over the specified set. (Because of Condition 1, equality of any
eigenvalues has measure 0.)



HYPERPRIORS IN NORMAL MODELS 611

From [19], the functional relationship betweenπ(V) andπ(H,D) is

π(H,D) = π(HtDH)
∏
i<j

(di − dj ).

Thus Condition 1 becomes

CONDITION 1′. For 0≤ l ≤ 1,

C1[∏i<j (di − dj )]l
|I + D|(a2−a1)|D|a1

≤ π(H,D) ≤ C2[∏i<j (di − dj )]l
|I + D|(a2−a1)|D|a1

.

Under this transformation, the common objective priors forV are as follows:

1. The constant prior is nowπ(H,D) = ∏
i<j (di − dj ).

2. The nonhierarchical independence Jeffreys prior isπ(H,D) = |D|−(k+1)/2 ×∏
i<j (di − dj ).

3. The hierarchical independence Jeffreys prior isπ(H,D) = |I + D|−(k+1)/2 ×∏
i<j (di − dj ).

4. The nonhierarchical reference prior isπ(H,D) = |D|−1.
5. The hierarchical reference priors are (a)π(H,D) = |I + D|−1 and (b)π(H,

D) = |D|−(2k−1)/(2k).

This transformation reveals a significant difficulty of any prior that can be
written as a function of|V|: in the (H,D) space, such priors contain the factor∏

i<j (di − dj ), which gives low mass to close eigenvalues, and hence effectively
forces the eigenvalues apart. (The effective prior onH is just constant, which is
natural sinceH ranges over a compact space, and hence has no effect on the
eigenvalues.) This is contrary to common intuition, in that one is often debating
between choice of a covariance matrix with equal eigenvalues or choice of an
arbitrary covariance matrix; if anything this would suggest that one should choose
a prior that pushes the eigenvalues closer together.

This intuition also receives support from the frequentist literature. The inde-
pendence Jeffreys prior (and often-employed modifications such as|I + V|) are of
this suspicious form and, when used at the first level of a normal model, result in
estimates ofV that are proportional toS, the sample covariance matrix. The fre-
quentist literature, starting with [34] and continuing with such works as [22, 26,
27, 30, 40], shows thatS has eigenvalues that are too disperse and that shrinking
the eigenvalues ofS together is necessary for good performance. Since multiples
of S arise as Bayes estimators for priors of the “suspicious” form, there appears to
be a direct analogy between what frequentists observed aboutS and the concern
that these priors force the eigenvalues apart.

In contrast to this behavior, the reference and hierarchical reference priors do
not contain the term

∏
i<j (di −dj ) in the transformed space, and hence are neutral

with respect to expansion or shrinkage of the eigenvalues. Interestingly, in [40]
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(see also [37]), it is shown that the Bayes estimators arising from the reference
prior (in the nonhierarchical model) behave very similarly to the Stein [34] and
Haff [22] estimators, suggesting that such neutral behavior is natural for frequentist
estimators—that is, that shrinking the eigenvalues ofS corresponds to a Bayesian
prior that is neutral about the eigenvalues. (It should be noted that, in the more
recent Bayesian literature, aggressive shrinkage of eigenvalues, correlations or
other features of the covariance matrix is entertained; cf. [14, 15, 25] and the
references therein. This may well be desirable in many practical situations, but
is more aggressive in its prior assumptions than the objective priors we consider.)

1.5. Computation. Hierarchical models are typically handled today by Gibbs
sampling, possibly with rejection or Metropolis–Hastings steps in the Gibbs
sampler (cf. [12, 32]). We briefly indicate considerations in utilizing the priors
discussed in Section 1.2 within such computational frameworks.

Use of the Case 1 (constant) or Case 2 (normal) priors forβ causes no
difficulties; sampling ofβ can simply be carried out with a Gibbs step, as its full
conditional will be a normal distribution. The Case 3 prior is almost as easy to
utilize, because of its representation as a mixture of normals. Indeed, one purposely
introduces the latent variableλ having the density in (4); sampling ofβ is then
done from its full conditional—also givenλ—which is normal, withλ then being
sampled from its full conditional

π(λ|β) ∝ 1

λ(b+k/2)
exp

(
−1

λ

[
c + 1

2
(β − β0)tA−1(β − β0)

])
,

that is, an inverse Gamma(b − 1+ k/2, [c + 1
2(β − β0)tA−1(β − β0)]−1) density.

In particular, the recommended default hyperpriorπ(β) ∝ [1 + ‖β‖2]−(k−1)/2 is
handled as above, samplingλ from the inverse Gamma((k − 1)/2,2/[1+ ‖β‖2])
density.

Dealing with the hyper-covariance matrixV is not as easy (cf. [13]), except
for the constant priorπ(V) = 1, for which the full conditional ofV is simply
an inverse Wishart distribution; alas, this is not a desirable prior in other
respects. More attractive is the hierarchical independence Jeffreys priorπ(V) =
|I + V|−(k+1)/2. Defining W(θ,β) = ∑m

i=1(θ i − β)(θ i − β)t , the resulting full
conditional forV can be written

π(V|θ ,β) ∝ 1

|I + V|(k+1)/2|V|m/2 exp
(
−1

2
tr
(
V−1W(θ,β)

))
,

which, unfortunately, is not of closed form. Still, one can easily sample from this
full conditional using the following accept-reject sampling algorithm:

Propose a candidateV∗ from the inverse Wishart(m,W(θ,β)) density

g(V|S) ∝ 1

|V|m/2+(k+1)/2 · exp
(
−1

2
tr
(
V−1W(θ ,β)

))
.(6)
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Accept the candidate with probabilityP = (|V|/|I + V|)(k+1)/2, returning to the
proposal step if the candidate is rejected, and moving on to another full conditional
if it is accepted.

For largeV or m or small dimensionk, the acceptance probability will be quite
high.

When using the hierarchical independence Jeffreys prior, one can gain efficiency
by working with the marginal distribution ofV, instead of the full conditionals.
This is particularly convenient in the Case 1 scenario, where the overall posterior
distribution can be writtenπ(θ |V,x)π(V|x), the first posterior being a normal
distribution, and hence trivial to sample from, and the marginal posterior ofV
being proportional to the integrand in the first expression of Lemma 2.1, namely

π(V|x) ∝ 1

|I + V|(m+k)/2 exp

(
−1

2

m∑
i=1

(xi − x̄)t (I + V)−1(xi − x̄)

)
.

As discussed in [18] (although they utilized the constant prior forV), one can
construct a rejection sampler forV by simply generatingB = (I + V∗) from the
inverse Wishart(m + k,

∑m
i=1(xi − x̄)(xi − x̄)t ) density, accepting the candidate

V∗ = B − I if it is positive definite and returning to generate a newB if it is not.
This will have a reasonable acceptance probability ifV is large orm is large.

For the hierarchical reference priors, it seems that Metropolis–Hastings must
be used to sample from the full conditionals. The “standard” approach is that
utilized in [40] and [28]. In this approach one first performs the exponential
matrix transform ofV, which translates the set of positive-definite matrices into
unconstrained Euclidean space. Then a hit-and-run Metropolis–Hastings algorithm
is employed to produce the Markov chain. This algorithm can be directly utilized
here, requiring only the change in the acceptance probability induced by using the
hierarchical reference priors instead of the nonhierarchical reference priors.

Since a Metropolis–Hastings step is required anyway for the hierarchical
reference priors, one can again gain efficiency by working with the marginal
distributions ofV, instead of the full conditionals. Taking the Case 3 situation
for illustration, one uses the posterior form

π(θ |β,V,x)π(β|V, λ,x)π(V, λ|x),

where the first two posteriors are simply normal distributions, and hence trivial to
sample, and the marginal posterior of(V, λ) is proportional to the integrand in the
first expression of Lemma 2.3, that is,

π(V, λ|x) ∝ 1

|I + V|(m−1)/2|I + V + mλA|1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)t (I + V)−1(xi − x̄)

)

× exp
(
−1

2
mx̄t (I + V + mλA)−1x̄

)
π(V)π(λ).
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One proceeds by applying the exponential matrix transform toV and then running
a hit-and-run algorithm for the transformedV andλ. For each(V, λ) in the chain
(or probably better—for, say, every 100th in the chain) one can then generateβ

from the normalπ(β|V, λ,x) and thenθ from the normalπ(θ |β,V,x).
If one wishes to stick to Gibbs sampling for the hierarchical reference priors (as

would be the case, e.g., if one were working with a complex model for which
marginalization could not be carried out), and further desires an easy-to-code
algorithm, one could use Metropolis–Hastings on the full conditional forV with
the proposal in (6). (For justification as to why this is the best inverse Wishart
proposal, see [39].) The acceptance probabilities for the (a) and (b) versions of the
hierarchical reference prior would then be, respectively,

min
{

1,

∏
i<j (d

∗
i − d∗

j )∏
i<j (di − dj )

· |I + V∗| |V|(k+1)/2

|I + V| |V∗|(k+1)/2

}
,

min
{

1,

∏
i<j (d

∗
i − d∗

j )∏
i<j (di − dj )

· |V|(k−1+k−1)/2

|V∗|(k−1+k−1)/2

}
.

Note, also, that it is generally best to iterate a number of times on this Metropolis
step, keeping only the last value, before moving on to another full conditional (as
this step is considerably less efficient than the others).

For small k or large m, this simple approach will work reasonably well.
For instance, in a simulation reported in detail in [39], the average number of
Metropolis iterations before a move occurred was as indicated in Table 1. Since
the proposal moves widely over the parameter space, a Metropolis scheme that
moves at least once in every 10 iterations is often acceptable; thus, form ≤ 30,
one can use this algorithm to do the calculation withk up to 7. With largerm,
such as 100, the algorithm is still acceptable fork = 15. When this scheme is not
efficient enough, the exponential matrix transform hit-and-run approach mentioned
above has proven to be very effective (but harder to program).

TABLE 1
Average number of nonmoves

m

k 20 30 50 100

3 6.89 4.92 2.14 1.06
5 9.83 5.74 2.96 1.21
7 13.52 8.50 4.03 2.27

10 18.74 10.86 5.42 3.46
12 33.67 19.63 7.61 5.07
15 127.35 42.98 17.89 9.36
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1.6. Summary and generalizations. The results in the paper require significant
technical machinery. This machinery is not necessary for understanding the
basic conclusions, so we present the most important conclusions and potential
generalizations here. Note that the conclusions depend on intuitive appeal (e.g.,
Section 1.4), posterior propriety (Section 2), admissibility (Section 3) and
computational simplicity (Section 1.5).

None of the priors onβ significantly affects posterior propriety, or caused
difficulties in the posterior computation. Hence admissibility is the most important
criterion for deciding between them. It seems that use of the constant prior
π(β) = 1 results in inadmissibility, except for the casek = 2. (This is, of course,
not a surprise, in that two dimensions is typically the cut-off for admissibility with
constant priors on means.) The Case 2 conjugate prior is, perhaps, reasonable,
if one has subjective information aboutβ. Among the Case 3 default priors, the
prior π(β) ∝ [1+ ‖β‖2]−(k−1)/2 is excellent from the perspective of admissibility
for all k, and is the prior that we actually recommend for default use. Part of the
motivation here is the many studies that have shown the great success of these
mixture-of-normals priors in shrinkage estimation in particular (cf. [1, 20, 35]),
and robust Bayesian estimation in general (cf. [4]). There is the caveat, however,
that this prior should probably only be applied when theβi are roughly
“exchangeable,” which might well require some reparameterization to ensure. Note
that we even recommend use of this prior whenk = 2. It is often thought that
shrinkage should only be used whenk ≥ 3, but it can be used to practical advantage
even whenk = 2 (even though there are no longer uniform dominance results).

Of considerably more importance than the prior onβ is the prior onV. The
two priors for V that we have seen most commonly used in practice are
the constant prior (or, equivalently, a “vague proper inverse Wishart” prior) and
the nonhierarchical Jeffreys prior (or a vague proper inverse Wishart equivalent).
Use of the nonhierarchical Jeffreys prior is simply a mistake, in that it results in
an improper posterior (and use of the vague proper inverse Wishart equivalent
is no better, in that it essentially yields a posterior with almost all its mass in a
spike nearV = 0). The constant prior requiresm, the number of blocks, to be
about 2k in order to achieve posterior propriety. Intuitively, at mostk blocks are
needed for identifiability ofV, so this is a strong indication of the inadequacy
of the constant prior. In this regard, the hierarchical independence Jeffreys prior
π(V) = |I + V|−(k+1)/2 requires onlyk blocks (k + 1 if the constant prior onβ is
used) for posterior propriety.

We were not able to establish any admissibility results for these priors, but
Tatsuya Kubokawa (private communication) has been able to show by different
techniques that thel = 0 prior results in inadmissibility for Case 1 whena1 = 0
anda2 < 1 + k/2 − 1/k and, for the special case of Case 2 of knownβ, when
a1 = 0 anda2 < (k + 1)/2 − 1/k. Since the constant prior onV is a1 = a2 = 0,
this clearly shows that the constant prior is badly inadmissible (i.e., is far from
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the boundary of admissibility). Kubokawa’s results do not settle the question of
admissibility of the hierarchical independence Jeffreys prior.

Either the constant prior or the hierarchical independence Jeffreys prior is easy
to handle computationally so, if computational ease is the primary concern, our
recommendation would be to use the hierarchical independence Jeffreys prior.
As mentioned earlier, however, it is not immediately obvious how to generalize
this prior to other hierarchical settings, although replacingI by the covariance
matrix from the lower level is a good general solution when the lower level has an
exchangeable structure.

The two proposed hierarchical reference priors, (a)π(V) = [|I + V|∏i<j (di −
dj )]−1 and (b) π(V) = [|V|−(2k−1)/(2k)∏

i<j (di − dj )]−1, are very appealing.
They always result in proper posteriors ifm ≥ 2, a practically very useful
and surprising fact whenm < k (explained in Section 2.2.4). They also both
yield admissible (or nearly admissible) estimators in Cases 2 and 3, and are
computationally of similar complexity. Choice (a) is an actual hierarchical
reference prior, in that it can be derived by a reference prior argument. In contrast,
(b) was a rather ad hoc modification. Hence (a) should be the preferred choice for
the actual model we consider. Again, however, it can be difficult in more general
hierarchical models to know what to use in place ofI, and choice (b) does not
require this additional input.

A very useful generalization (e.g., in common meta-analysis situations) would
be to consider the setting

Xi ∼ Nk(θ i ,�i ), θ i ∼ Nk(ziβ,V),

independently fori = 1, . . . ,m, where the�i are known positive-definite matrices,
the zi are givenk × h covariate matrices andβ is now h × 1. Reasonable
adaptations of the priors discussed above are:

1. Replace the covariance matrixI in the definitions of the priors forV
by �̃ = 1

m

∑m
i=1 �i . (Again, this is not necessary if one uses the prior

[|V|−(2k−1)/(2k)∏
i<j (di − dj )]−1.)

2. Replace the prior in (5) byπ(β) = [1+β tZtZβ]−(h−1)/2, whereZ is the matrix
(zt

1zt
2 · · · zt

m)t .

The results in the paper almost certainly go through for the generalization to
known �i . We would also guess that the results are true for the generalization
to covariates (the extension was true for the casek = 1, as shown in [7]), but the
technical details in establishing this appear to be formidable. Finally, a number
of the computational strategies mentioned in Section 1.5 are adaptable to these
generalizations, but we do not have experience in utilization of such adaptations
and so cannot comment on their efficiency.
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2. Posterior propriety and impropriety.

2.1. The marginal distribution. Posterior propriety and admissibility proper-
ties are determined by study of the marginal density ofX, given by

m(x) =
∫ ∫ ∫

f (x|θ)π(θ |β,V)π(β)π(V) dVdβ dθ ,(7)

where

f (x|θ) = 1

(2π)p/2 exp
(
−1

2
(x − θ)t (x − θ)

)

= 1

(2π)p/2 exp

(
−1

2

m∑
i=1

(xi − θ i )
t (xi − θ i )

)
,

(8)

π(θ |β,H,D) = 1

(2π)p/2|V|m/2 exp

(
−1

2

m∑
i=1

(θ i − β)tV−1(θ i − β)

)

= 1

(2π)p/2|D|m/2 exp

(
−1

2

m∑
i=1

(θ i − β)tHtD−1H(θ i − β)

)
.

(9)

NOTATIONAL CONVENTION. It will be useful to write

m(x) ≈ g(x)(10)

if there existC1 > 0 andC2 > 0 such that,∀x,

C1g(x) ≤ m(x) ≤ C2g(x).(11)

(This is related to the notion of “credence,” as defined in [29].) Thus, under
Condition 1 we can write

m(x) ≈
∫ ∫ ∫ ∫

f (x|θ)π(θ |β,H,D)π(β)

× [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|(a2−a1)|D|a1

dDdHdβ dθ .

(12)

Standard calculations yield the following expressions form(x) for the various
cases ofπ(β), where we definēx = 1

m

∑m
i=1 xi .
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LEMMA 2.1. For π(β) = 1 (Case 1 scenario) and m ≥ 2, the marginal

density of X satisfies

m(x) ∝
∫ ∫ 1

|I + D|(m−1)/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)
π(H,D) dDdH

≈
∫ ∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2]|D|a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)
dDdH.

(13)

When m = 1, the marginal density of X does not exist if π(D) has infinite mass.

LEMMA 2.2. If π(β) is Nk(0,A) (the Case 2 scenario, where we set β0 = 0
for convenience), the marginal density of X is

m(x) ∝
∫ ∫ 1

|I + D|(m−1)/2|I + D + mHAHt |1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mHAHt )−1(Hx̄)

)
π(H,D) dDdH

≈
∫ ∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2]|I + D + mHAHt |1/2|D|a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mHAHt )−1(Hx̄)

)
dDdH.

(14)

LEMMA 2.3. For π(β) = Nk(0, λA) (the Case 3 scenario, where we set

β0 = 0 for convenience), where π(λ) satisfies Condition 2, the marginal density
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of X is

m(x) ∝
∫ ∫ ∫ 1

|I + D|(m−1)/2|I + D + mλHAHt |1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mλHAHt )−1(Hx̄)

)

× π(H,D)π(λ)dλdDdH

≈
∫ ∫ ∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2]|I + D + mλHAHt |1/2|D|a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mλHAHt )−1(Hx̄)

)

× π(λ)dλdDdH.

(15)

2.2. Impropriety of the posterior. The next several theorems discuss the
conditions under which the posterior distribution is proper. The following two
lemmas are used.

LEMMA 2.4. If a k × k matrix H is orthonormal, hi (x), i = 1,2, . . . ,m, are
vector-valued functions, and A is positive semidefinite, then

0< exp

(
−1

2

m∑
i=1

‖hi (x)‖2

)

≤ exp

(
−1

2

m∑
i=1

(hi(x))tHt (I + D + A)−1Hhi(x)

)
≤ 1.

(16)

PROOF. The upper bound is clear. On the other hand,Ht (I + D + A)−1H ≤ I
sinceH is orthonormal anddi ≥ 0, so that

‖(hi(x))tHt (I + D + A)−1Hhi(x)‖ ≤ ‖hi(x)‖2,

which yields the lower bound in (16).�

LEMMA 2.5. Let ρ1 and ρk be the maximum and the minimum eigenvalue
of A, respectively. Then

|I + D| ≤ |I + D + mρkI| ≤ |I + D + mHAHt |
≤ |I + D + mρ1I| ≤ (1+ mρ1)

k|I + D|(17)
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and

xt (I + D + mρ1I)−1x ≤ xt (I + D + mHAHt )−1x

≤ xt (I + D + mρkI)−1x.
(18)

PROOF. Using the notationA ≤ B to denote thatB − A is nonnegative
definite, we have

ρkI ≤ HAHt ≤ ρ1I,(19)

sinceA is nonnegative definite andH is orthonormal. Hence,

I + D + mρkI ≤ I + D + mHAHt ≤ I + D + mρ1I,(20)

from which (17) follows directly. From (20), clearly,

(I + D + mρ1I)−1 ≤ (I + D + mHAHt )−1 ≤ (I + D + mρkI)−1.

Equation (18) follows immediately, completing the proof.�

Now we give the conditions under which the posterior distribution is proper for
each of the three cases ofπ(β).

2.2.1. Case 1 scenario. Since we are only considering improperπ(V),
Lemma 2.1 shows that we need to consider onlym ≥ 2.

THEOREM 2.6. If π(β) = 1,m ≥ 2, k ≥ 2, and π(H,D) satisfies Condition 1,
then the posterior distribution exists if and only if a1 < 1 and a2 > 3−m

2 + (k −1)l.

PROOF. The posterior distribution is proper if and only if 0< m(x) < ∞. The
lower bound is clearly satisfied, so we only need to consider the upper bound.
From (13) and Lemma 2.4, it is clear that, withx considered fixed, the posterior
exists if and only if

m(x) ≈
∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2]|D|a1
dD < ∞.(21)

To determine necessary conditions for (21) to hold, first fixd1, d2, . . . , dk−1 and
consider the integral overdk in (21), which is

C

∫ dk−1

0

1

d
a1
k (1+ dk)[a2−a1+(m−1)/2] ·

[
k−1∏
i=1

(di − dk)

]l

ddk.

Clearly,

1

d
a1
k (1+ dk)[a2−a1+(m−1)/2] ·

[
k−1∏
i=1

(di − dk)

]l

∼ C

d
a1
k

asdk → 0
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and, whena1 ≥ 1, ∫ dk−1

0

1

d
a1
k

ddk = ∞.

It follows that a necessary condition for (21) to hold isa1 < 1.

Next, fix d2, d3, . . . , dk and consider the integral overd1 in (21),

C

∫ ∞
d2

1

d
a1
1 (1+ d1)[a2−a1+(m−1)/2] ·

[
k∏

i=2

(d1 − di)

]l

dd1.

Counting the orders ofd1 for both the numerator and the denominator in the
integral above, we see that this integral is infinite when(k − 1)l − (a2 + (m −
1)/2) ≥ −1. Thus another necessary condition for (21) to hold is

a2 >
3− m

2
+ (k − 1)l.

Next we show that the conditions given in the theorem are sufficient. Since
0≤ l ≤ 1,

∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|[a2−a1+(m−1)/2]|D|a1

dD

≤
∫ [∏i<j (di)]l

|I + D|[a2−a1+(m−1)/2]|D|a1
dD

≤
k∏

i=1

∫ ∞
0

d
(k−i)l−a1
i

(1+ di)[a2−a1+(m−1)/2] ddi.

Sincea1 < 1 and(k − i)l ≥ 0, it is clear that each of these integrals is finite near 0.
Fordi near infinity, the corresponding integral is finite if(3−m)/2+(k− i)l < a2.
This is true for alli under the condition of the theorem, completing the proof.�

2.2.2. Case 2 scenario.

THEOREM 2.7. If β ∼ Nk(0,A), k ≥ 2, and π(H,D) satisfies Condition 1,
then the posterior distribution exists if and only if a1 < 1 and a2 > 1− m

2 +(k−1)l.

PROOF. Clearly, we only need to find the necessary and sufficient condition
for m(x) < ∞. From (14) in Lemma 2.2 and Lemma 2.4, it is clear that

m(x) ≈
∫ ∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2]|I + D + mHAHt |1/2|D|a1
dDdH.
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Again lettingρ1 andρk denote the maximum and minimum eigenvalue ofA, it
follows from (17) thatm(x) < ∞ if and only if∫ [∏i<j (di − dj )]l

|I + D|(a2−a1+m/2)|D|a1
· I[d1>d2>···>dk] · dD < ∞.

The proof then proceeds in identical fashion to that of Theorem 2.6.�

2.2.3. Case 3 scenario.

THEOREM 2.8. Suppose that β ∼ Nk(0, λA), k ≥ 2, π(λ) satisfies Condi-
tion 2 and π(H,D) satisfies Condition 1. The necessary and sufficient conditions
for the posterior distribution to exist are a1 < 1, a2 > 1 − m

2 + (k − 1)l and
b > 1− k

2.

PROOF. As in the proof of Theorem 2.7, it is clear that

m(x) ≈
∫ ∫ ∫ [∏i<j (di − dj )]l · I[d1>d2>···>dk]

|I + D|(a2−a1+(m−1)/2)|I + D + mλHAHt |1/2|D|a1
π(λ)dλdDdH.

Using (17), it is clear that the posterior density exists if and only if

I =
∫ ∫ [∏i<j (di − dj )]l · I[d1>d2>···>dk]

|I + D|(a2−a1+(m−1)/2)|D|a1|(1+ cλ)I + D|1/2π(λ)dλdD < ∞.(22)

Clearly,

I ≥
∫ 1

0

{∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|[a2−a1+(m−1)/2]|D|a1|(1+ cλ)I + D|1/2 dD

}
π(λ)dλ

≥
∫ 1

0

{∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|[a2−a1+(m−1)/2]|D|a1|(1+ c)I + D|1/2 dD

}
π(λ)dλ

≥ C

∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|(a2−a1+m/2)|D|a1

dD,

the last inequality holding because of Condition 2(i). Proceeding as in Theo-
rem 2.6, a necessary condition forI to be finite is

a1 < 1 and a2 > 1− m

2
+ (k − 1)l.

On the other hand, by (ii) of Condition 2,

I ≥
∫ ∞

1

{∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|[a2−a1+(m−1)/2]|D|a1|(1+ cλ)I + D|1/2 dD

}
π(λ)dλ

≥ C

∫ ∞
1

1

(1+ cλ)k/2 · 1

λb
dλ ·

∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]
|I + D|(a2−a1+m/2)|D|a1

dD.
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This integral is infinite whenb ≤ 1− k/2. So another necessary condition for (22)
to hold isb > 1− k/2.

Next let us prove that the conditions are sufficient. Using

k∏
j=1

1

(1+ Cλ + dj )1/2 ≤ 1

(1+ Cλ + d1)1/2(1+ Cλ)(k−1)/2 ,

we have

I ≤
∫ ∫ [∏i<j (di − dj )]lI[d1>d2>···>dk]

|I + D|[a2−a1+(m−1)/2](1+ Cλ + d1)1/2(1+ Cλ)(k−1)/2|D|a1
π(λ)dλdD

≤
∫ ∫

(
∏

i<j di)
l

|I + D|[a2−a1+(m−1)/2](1+ Cλ + d1)1/2(1+ Cλ)(k−1)/2|D|a1
π(λ)dλdD.

As in the proof of Theorem 2.7, the integrals overd2 · · ·dp are finite under the
stated conditions, so that

I ≤ C

∫ ∫
d

[(k−1)l−a1]
1

(1+ d1)[a2−a1+(m−1)/2](1+ Cλ + d1)1/2(1+ Cλ)(k−1)/2π(λ)dλdd1

≤ C

∫ ∫
(1+ d1)

−[a2+(m−1)/2−(k−1)l]

× (1+ Cλ + d1)
−1/2(1+ Cλ)−(k−1)/2π(λ)dλdd1.

Break this integral up into four integrals over(0, c) × (0, c), (0, c) × (c,∞),
(c,∞) × (0, c) and (c,∞) × (c,∞). Bounding the first three integrals is easy,
using Condition 2. The last integral is bounded as in the proof of Lemma 1 of [7].

�

2.2.4. Summary of posterior propriety and impropriety. The cases of most
interest arel = 0 andl = 1. The following corollaries of Theorems 2.6, 2.7 and 2.8
deal with these cases.

COROLLARY 2.9. Suppose l = 0 and k ≥ 2.

(a) In the Case 1 scenario (π(β) = 1), when m ≥ 2, the posterior distribution
exists if and only if a1 < 1 and a2 > 3−m

2 .
(b) In the Case 2 scenario (β ∼ Nk(0,A)), the posterior distribution exists if

and only if a1 < 1 and a2 > 1− m
2 .

(c) In the Case 3 scenario (β ∼ Nk(0, λA), λ ∼ π(λ)), the posterior distribu-
tion exists if and only if a1 < 1, a2 > 1− m

2 and b > 1− k
2.

COROLLARY 2.10. Suppose l = 1 and k ≥ 2.

(a) In the Case 1 scenario (π(β) = 1), when m ≥ 2, the posterior distribution
exists if and only if a1 < 1 and a2 > k − m−1

2 .
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(b) In the Case 2 scenario (β ∼ Nk(0,A)), the posterior distribution exists if
and only if a1 < 1 and a2 > k − m

2 .
(c) In the Case 3 scenario (β ∼ Nk(0, λA), λ ∼ π(λ)), the posterior distribu-

tion exists when a1 < 1, a2 > k − m
2 and b > 1− k

2.

It follows that the most commonly used objective priors for covariance matrices
cannot be used in the hierarchical setting. The nonhierarchical independence
Jeffreys prior [l = 1, a1 = a2 = (k + 1)/2] and the nonhierarchical reference prior
(l = 0, a1 = a2 = 1) yield improper posteriors. The constant prior (l = 1, a1 =
a2 = 0) yields a proper posterior only when 2k < m − 1 for Case 1, and when
2k < m for Case 2 and Case 3. This implies that the number of blocksm has to be
at least 2k + 2 for Case 1 and 2k + 1 for Case 2 and Case 3.

In contrast, the hierarchical independence Jeffreys prior [l = 1, a1 = 0, a2 =
(k+1)/2] yields a proper posterior whenm > k for Case 1 andm > k−1 for Cases
2 and 3, considerably weaker conditions. Furthermore, the hierarchical reference
prior (a) (l = 0, a1 = 0, a2 = 1) and the hierarchical reference prior (b) [l = 0,
a1 = a2 = (2k − 1)/(2k)] always yield a proper posterior, except whenm = 1 in
Case 1.

It is quite surprising that posterior propriety for the hierarchical reference
priors does not requirem to grow with k (as is necessary for the hierarchical
independence Jeffreys prior). One needs on the order ofm = k blocks in order
for the hyper-covariance matrixV to be identifiable, which is usually viewed as
being equivalent to posterior propriety. Such equivalence is clearly not the case
here; in the simplest Case 1 scenario, for instance, onlym = 2 blocks are needed
for posterior propriety of the reference priors, regardless of the value ofk.

To understand why this is so, consider the transformed version of the problem
in Section 1.4. Note that the domain ofH is a compact set and the reference
prior assigns a proper uniform distribution to this set, so the only parameters
that intuitively need data to have proper posteriors areβ and D. These vectors
consist of 2k unknowns, which intuitively can be handled by the 2k coordinate
observations corresponding tom = 2. This general posterior propriety is a very
attractive property of the hierarchical reference priors in that it is often difficult
in complicated hierarchical models to ensure that conditions such asm > k are
satisfied at all levels and components of the hierarchy.

3. Admissibility and inadmissibility.

3.1. Introduction. In this section we give conditions under which the hi-
erarchical Bayes estimateδπ(x) (the posterior mean) ofθ is admissible and
inadmissible for quadratic loss (2). We restrict consideration to the priors for which
l = 0, since these are the priors we will recommend and analysis forl > 0 requires
different techniques.
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Our study utilizes the following powerful results from [9]. Define

m(r) =
∫

m(x) dφ(x),(23)

m(r) =
∫ 1

m(x)
dφ(x),(24)

whereφ(·) is the uniform probability measure on the surface of the sphere of radius
r = ‖x‖.

RESULT 3.1. If δπ(x) − x is uniformly bounded and∫ ∞
c

[rmk−1m(r)]−1 dr = ∞(25)

for somec > 0, thenδπ(x) is admissible.

RESULT 3.2. If ∫ ∞
c

r1−mkm(r) dr < ∞(26)

for somec > 0, thenδπ(x) is inadmissible.

3.2. Preliminary lemmas. The following lemmas are needed.

LEMMA 3.3. (a)If a < 1, r +a > 1 and c1 and c2 are positive constants, then

f (v) ≡
∫ ∞

0

1

(c1 + d)rda
exp

(
− v

2(c2 + d)

)
dd ≈ C1 min{C2, v

1−r−a},(27)

for some positive constants C1 and C2.
(b) If a > −1, µ > 0 and v > 0, then

g(µ, v) ≡
∫ µ

0
tae−vt dt ≤ C min

{
v−(a+1),µ(a+1)}(28)

for some positive constant C.

For the proof see the Appendix.

LEMMA 3.4. Assuming the integrals exist,∫ ∫
g(HtDH)I[d1>d2>···>dk] dDdH = 1

k!
∫ ∫

g(HtDH) dDdH.(29)
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PROOF. Suppose thatd1 > d2 > · · · > dk > 0 are eigenvalues ofV and
(d∗

1, d∗
2, . . . , d∗

k ) is a different ordering of(d1, d2, . . . , dk). Let D∗ = diag(d∗
1,

d∗
2, . . . , d∗

k ). Since there exists an orthonormal matrixH∗ such thatD = H∗tD∗H∗,
it follows that∫ ∫

g(HtDH)I[d1>d2>···>dk] dDdH

=
∫ ∫

g
(
(H∗H)tD∗(H∗H)

)
I[d1>d2>···>dk] dDdH

=
∫ ∫

g
(
(H∗H)tD∗(H∗H)

)
I ∗ dD∗ dH,

(30)

the last step following from the change of variables fromD → D∗ (which has
Jacobian 1), whereI ∗ corresponds to the new ordering. Next, note that, sincedH
represents the invariant Haar density,∫ ∫

g
(
(H∗H)tD∗(H∗H)

)
I ∗ dD∗ dH =

∫ ∫
g(HtD∗H)I ∗ dD∗ dH.

Hence
∫

g(HtD∗H)Ĩ dD is the same for any ordering̃I of the eigenvalues, and the
result follows since there arek! orderings. �

NOTATIONAL CONVENTION. We need to generalize the notation in (10).
Indeed, let

m(x) ≈ g(c,x) stand for g(c,x) ≤ m(x) ≤ g(c′,x)(31)

for some (possibly vectors)c andc′. For instance, in (33) below,c = (C1,C2,C3).
The earlier notation was the special case whereg(c,x) = cg(x).

We conclude this section with presentation of needed upper and lower bounds
(using the≈ notation) for the marginal densities in Cases 1, 2 and 3.

LEMMA 3.5. In the Case 1 scenario and with l = 0,

m(x) ≈ C

∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)
· dDdH.

(32)

PROOF. This follows directly from (13) in Lemma 2.1 and Lemma 3.4.�

LEMMA 3.6. In the Case 2 scenario and with l = 0,

m(x) ≈ C1

∫ ∫ 1

|D|a1|C2I + D|m/2+a2−a1

× exp

(
−1

2

m∑
i=1

xt
iH

t (C3I + D)−1Hxi

)
· dDdH.

(33)
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PROOF. From (14) in Lemma 2.2 and Lemma 3.4,

m(x) ≈
∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1|I + D + mHAHt |1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mHAHt )−1(Hx̄)

)
· dDdH.

(34)

Applying Lemma 2.5 to (34),

m(x) ≤ C

∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1|I + D + mρkI|1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mρ1I)−1(Hx̄)

)
· dDdH

≤ C

∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1|I + D|1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D + mρ1I)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mρ1I)−1(Hx̄)

)
· dDdH

≤ C

∫ ∫ 1

|D|a1|I + D|m/2+a2−a1

× exp

(
−1

2

m∑
i=1

xt
iH

t (I + D + mρ1I)−1Hxi

)
· dDdH.

Similarly,

m(x) ≥ C

∫ ∫ 1

|D|a1|I + D + mρ1I|m/2+a2−a1

× exp

(
−1

2

m∑
i=1

xt
iH

t (I + D)−1Hxi

)
· dDdH.

This completes the proof.�
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LEMMA 3.7. In the Case 3 scenario and with l = 0,

m(x) ≈ C1

∫ ∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1|(1+ C2λ)I + D|1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t [(1+ C3λ)I + D]−1(Hx̄)

)

× π(λ)dλdDdH.

(35)

PROOF. From (15) in Lemma 2.3 and Lemma 3.4,

m(x) ≈
∫ ∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1|I + D + mλHAHt |1/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mλHAHt )−1(Hx̄)

)
· π(λ)dλdDdH.

The proof is then exactly like that of Lemma 3.6.�

3.3. Uniformly bounded property. Let δπ(x) be the posterior mean ofθ with
respect to the posterior distribution. To prove admissibility by Brown’s results,
we first need to show thatδπ(x) − x is uniformly bounded. Letδπ(x)p×1 =
(δπ

1 (x), δπ
2 (x), . . . , δπ

m(x))t , so thatδπ
i (x) is the subvector ofδπ(x) corresponding

to θ i . By symmetry, it is clearly sufficient to show thatδπ
1 (x) − x1 is uniformly

bounded.

LEMMA 3.8. Suppose that z1, z2, . . . , zm are k × 1 vectors and ỹ is the k × 1
vector (y1, y2, . . . , yk)

t , with yn = (
∑m

i=1 z2
in)

1/2, where zij is the jth element of zi .
Define

g(c,D, z1, z2, . . . , zm) = C1

|D|u|C2I + D|v exp

(
−1

2

m∑
i=1

zt
i (C3I + D)−1zi

)
,

where the Ci are positive constants. If u + v > 1 and u < 1, then∫ ‖(I + D)−1y‖g(c,D, z1, z2, . . . , zm)dD∫
g(c′,D, z1, z2, . . . , zm)dD

(36)

is uniformly bounded over z1, z2, . . . , zm.
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PROOF. In (36),

|Numerator| ≤
∫

‖(I + D)−1y‖ C1

|D|u|C2I + D|v

× exp

(
−1

2

m∑
i=1

zt
i (C3I + D)−1zi

)
dD

≤ C1

k∑
n=1

∫ |yn|
1+ dn

(
k∏

j=1

1

du
j (C2 + dj )v

)

× exp

(
− 1

2(C3 + dj )

m∑
i=1

z2
ij

)
ddj .

For eachn we will bound thek-dimensional integral. Ifj 
= n, by Lemma 3.3 with
a = u andr = v it is clear that

∫ ∞
0

1

du
j (C2 + dj )v

exp

(
− 1

2(C3 + dj )

m∑
i=1

z2
ij

)
ddj

≤ C1 min

{
C2,

(
m∑

i=1

z2
ij

)1−u−v}
.

If j = n, applying Lemma 3.3 witha = u andr = v + 1 [again using the fact that
(1+ dn)/(C2 + dn) is uniformly bounded] yields

C1

∫ ∞
0

1

1+ dj

· 1

du
j (C2 + dj )v

exp

(
− 1

2(C3 + dj )

m∑
i=1

z2
ij

)
ddj

≤ C′
1 min

{
C′

2,

(
m∑

i=1

z2
ij

)−u−v}
.

Therefore,

|Numerator|

≤
k∑

n=1

[
|yn|C′

1 min

{
C′

2,

(
m∑

i=1

z2
in

)−u−v} ∏
j 
=n

C1 min

{
C2,

(
m∑

i=1

z2
ij

)1−u−v}]
.

In (36),

Denominator= C′
1

k∏
j=1

∫ ∞
0

1

du
j (C′

2 + dj )v
exp

(
− 1

2(C′
3 + dj )

m∑
i=1

z2
ij

)
ddj .
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Applying the lower bound of Lemma 3.3, witha = u andr = v, yields

C′
1

∫ ∞
0

1

du
j (C′

2 + dj )v
exp

(
− 1

2(C′
3 + dj )

m∑
i=1

z2
ij

)
ddj

≥ C∗
1 min

{
C∗

2,

(
m∑

i=1

z2
ij

)1−u−v}
.

Thus

Denominator≥
k∏

i=1

[
C∗

1 min

{
C∗

2,

(
m∑

i=1

z2
ij

)1−u−v}]
.

Combining the numerator and the denominator, we have∣∣∣∣
∫

Ht (I + D)−1yg(c,D, z1, z2, . . . , zm)dD∫
g(c′,D, z1, z2, . . . , zm)dD

∣∣∣∣
≤

(
k∑

n=1

[
|yn|C′

1 min

{
C′

2,

(
m∑

i=1

z2
in

)−u−v}

× ∏
j 
=n

C1 min

{
C2,

(
m∑

i=1

z2
ij

)1−u−v}])

×
(

k∏
j=1

[
C∗

1 min

{
C∗

2,

(
m∑

i=1

z2
ij

)1−u−v}])−1

=
k∑

n=1

(|yn|C′
1 min{C′

2, (
∑m

i=1 z2
in)

−u−v}
C∗

1 min{C∗
2, (

∑m
i=1 z2

in)
1−u−v} ·∏

j 
=n

C1 min{C2, (
∑m

i=1 z2
ij )

1−u−v}
C∗

1 min{C∗
2, (

∑m
i=1 z2

ij )
1−u−v}

)
.

Clearly

∏
j 
=n

C1 min{C2, (
∑m

i=1 z2
ij )

1−u−v}
C∗

1 min{C∗
2, (

∑m
i=1 z2

ij )
1−u−v} ≤ C.

Using the conditionu + v > 1, we have that for large
∑m

i=1 z2
in = y2

n

|yn|C′
1 min{C′

2, (
∑m

i=1 z2
in)

−u−v}
C∗

1 min{C∗
2, (

∑m
i=1 z2

in)
1−u−v}

behaves as|yn|/y2
n, while for smally2

n it behaves asC3|yn| < C4, so that the ratio
is clearly uniformly bounded. Thus∫ ‖(I + D)−1y‖g(c,D, z1, z2, . . . , zm)dD∫

g(c′,D, z1, z2, . . . , zm)dD
≤ C,
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completing the proof. �

THEOREM 3.9. Assume that π(β) = 1, m ≥ 2, k ≥ 2, and π(H,D) satisfies
Condition 1. Also suppose that we choose l = 0. If a1 < 1 and a2 > 3−m

2 , then
δπ(x) − x is uniformly bounded.

PROOF. We only need to show thatδπ
1 (x)−x1 is uniformly bounded. It is well

known that

δπ
1 (x) − x1 = (∇m(x))1/m(x),(37)

where∇ denotes the gradient. Exactly as in the proof of Lemma 3.5, it can be
shown that

‖(∇m(x))1‖ =
∥∥∥∥∥−

∫ ∫
(I + HtDH)−1(x1 − x̄)

|I + D|(m−1)/2

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× π(H,D) dHdD

∥∥∥∥∥
≤

∫ ∫ ‖(I + D)−1H(x1 − x̄)‖
|D|a1|I + D|(m−1)/2+a2−a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)
· dDdH.

Hence, definingzi = H(xi − x̄), and using the lower bound in Lemma 3.5 for the
denominator in (37), one obtains (for appropriate constantsc, c′)

‖δπ
1 (x) − x1‖ ≤

∫∫ ‖(I + D)−1z1‖g(c,D, z1, z2, . . . , zm)dDdH∫∫
g(c′,D, z1, z2, . . . , zm)dDdH

≤ C

∫∫ ‖(I + D)−1y‖g(c,D, z1, z2, . . . , zm)dDdH∫∫
g(c′,D, z1, z2, . . . , zm)dDdH

,

wherey andg are as in Lemma 3.8, withu = a1 andv = a2 − a1 + (m − 1)/2.
Now Lemma 3.8 shows that, ifu + v = a2 + (m − 1)/2 > 1 andu = a1 < 1,

then∫
‖(I + D)−1y‖g(c,D, z1, z2, . . . , zm)dD ≤ K

∫
g(c′,D, z1, z2, . . . , zm)dD.

Hence‖δπ
1 (x) − x1‖ ≤ K and the theorem is established.�
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THEOREM 3.10. Assume that π(β) is Nk(β
0,A), k ≥ 2, and π(H,D)

satisfies Condition 1. Also suppose that we choose l = 0. If a1 < 1 and a2 > 1− m
2 ,

then δπ(x) − x is uniformly bounded.

PROOF. The proof is very similar to that in Theorem 3.9:

‖(∇m(x))1‖ ≤
∫ ∫

‖(I + V)−1(x1 − x̄) + (I + V + mA)−1x̄‖

× 1

|I + D|[a2−a1+(m−1)/2]|I + D + mHAHt |1/2|D|a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)

× exp
(
−1

2
m(Hx̄)t (I + D + mHAHt )−1(Hx̄)

)
dDdH.

Note that

‖(I + V)−1(x1 − x̄) + (I + V + mA)−1x̄‖
≤ ‖(I + V)−1(x1 − x̄)‖ + ‖(I + V)−1x̄‖.

(38)

One now proceeds as in the proof of Theorem 3.9 with each term of (38), making
use of Lemma 3.6 and arguments similar to the proof in that lemma.�

THEOREM 3.11. Assume that π(β) is Nk(β
0, λA), k ≥ 2, π(H,D) satisfies

Condition 1 and π(λ) satisfies Condition 2. Also suppose that we choose l = 0. If
a1 < 1, a2 > 1− m

2 and b > 1− k
2, then δπ(x) − x is uniformly bounded.

PROOF. Define δπ(x|λ) to be the posterior mean withλ given. From
Theorem 3.10, we know that

sup
x

‖δπ(x|λ) − x‖ ≡ K(λ) < ∞.

With a modification of the proof of Theorem 3.10, it can be shown thatK(λ) is
continuous. Also, asλ → ∞, the posterior distribution converges to that corre-
sponding toπ(β) = 1, so we know from Theorem 3.9 that limλ→∞ K(λ) < ∞.
As λ → 0, the posterior converges to the special case of Theorem 3.10 in which
A = 0, so we knowK(0) < ∞. It follows that K(λ) is itself bounded. Finally,
letting π(λ|x) denote the posterior distribution ofλ givenx, which was shown to
exist under the given conditions, it is clear that

‖δπ(x) − x‖2 = ∥∥Eπ(λ|x)[δπ(x|λ) − x]∥∥2

≤ Eπ(λ|x)‖δπ(x|λ) − x‖2 ≤ Eπ(λ|x)[K(λ)]2.
SinceK(λ) is bounded, it follows that‖δπ(x) − x‖ is uniformly bounded, and the
proof is complete. �
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3.4. Admissibility and inadmissibility results. To prove admissibility or inad-
missibility based on Results 3.1 and 3.2, we need only determine whether (25) is
infinite or (26) is finite. Since Lemmas 3.5, 3.6 and 3.7 provide effectively equiva-
lent upper and lower bounds onm(x), it suffices to evaluate (25) and (26) for these
equivalent bounds.

3.4.1. Case 1 scenario.

THEOREM 3.12. Assume that π(β) = 1, m ≥ 2, a1 < 1 and π(H,D) satisfies
Condition 1 with l = 0. If k = 2 and a2 > 1, then the posterior mean is
admissible under quadratic loss. If 3−m

2 < a2 < 3
2 − 1

k
, then the posterior mean

is inadmissible.

PROOF. Let zi = (zi1, zi2, . . . , zik) = H(xi − x̄). Definey2
j = ∑m

i=1 z2
ij . By

Lemma 3.5,

m(x) ≈ C

∫ ∫ 1

|D|a1|I + D|(m−1)/2+a2−a1

× exp

(
−1

2

m∑
i=1

(xi − x̄)tHt (I + D)−1H(xi − x̄)

)
· dDdH

= C

∫ ∫ k∏
j=1

1

d
a1
j (1+ dj )(m−1)/2+a2−a1

exp
(
− y2

j

2(1+ dj )

)
dDdH

= C

∫ [
k∏

j=1

∫ ∞
0

1

d
a1
j (1+ dj )(m−1)/2+a2−a1

exp
(
− y2

j

2(1+ dj )

)
ddj

]
dH.

Applying the upper bound of Lemma 3.3 withr = (m − 1)/2+a2−a1 anda = a1

yields

∫ ∞
0

1

d
a1
j (1+ dj )(m−1)/2+a2−a1

exp
(
− y2

j

2(1+ dj )

)
ddj

≈ C1 min
{
C2, (y

2
j )(3−m)/2−a2

}
.

Thus

m(x) ≈ C

∫ [
k∏

j=1

C1 min
{
C2, (y

2
j )(3−m)/2−a2

}]
dH.(39)
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To prove admissibility, note that

m(r) =
∫
{x : ‖x‖=r}

m(x) dφ(x)

≤ C

∫ [∫
{x : ‖x‖=r}

k∏
j=1

C1 min
{
C2, (y

2
j )(3−m)/2−a2

}
dφ(x)

]
dH.

(40)

The inner integral, with respect toφ, is essentially consideringx to be uniformly
distributed on the surface of the sphere of radius‖x‖ = r . Since H is an
orthonormal matrix,((Hx1)

t , (Hx2)
t , . . . , (Hxm)t )t also has a uniform distribution

on the surface of the sphere of radiusr . From the result in Section 49, Subsection 1,
of [24], it follows that, for each givenH,(

y2
1

r2 ,
y2

2

r2 , . . . ,
y2
k

r2 ,1− 1

r2

k∑
i=1

y2
i

)
∼ Dirichlet

(
m − 1

2
,
m − 1

2
, . . . ,

m − 1

2
,
k

2

)
.

Thus,

m(r) ≤ C

∫ ∫
{∑k

i=1 y2
i ≤r2}

k∏
i=1

min
{
C2, (y

2
i )(3−m)/2−a2

}

×
k∏

i=1

(
y2
i

r2

)(m−3)/2
(

1− 1

r2

k∑
i=1

y2
i

)(k−2)/2

d

(
y2

1

r2

)
· · · d

(
y2
k

r2

)
dH.

The inner integral is clearly constant overH and can be dropped, along with the
factor (1 − ∑k

i=1 y2
i /r2) (sincek ≥ 2). Then elimination of the range restriction

on they2
i yields

m(r) ≤ C

k∏
i=1

∫ ∞
0

min
{
C2, (y

2
i )[(3−m)/2−a2]} ·

(
y2
i

r2

)(m−5)/2

d

(
y2
i

r2

)

≤ Cr−k(m−1)
k∏

i=1

∫ ∞
0

[
C−1

2 + (y2
i )−[(3−m)/2−a2]]−1

(y2
i )(m−3)/2 dy2

i ,

the last inequality using the fact that min{C2, v} ≤ 2(C−1
2 + v−1)−1. The final

integrals are finite ifm ≥ 2 anda2 > 1, so then

m(r) ≤ Cr−k(m−1).

Hence ∫ ∞
c

[rmk−1m(r)]−1 dr ≥
∫ ∞
c

1

rk−1 dr,

which is infinite if k = 2. Since the conditionsk = 2 anda2 > 1 also imply that
δπ(x) − x is bounded by Theorem 3.9, the proof of admissibility using Result 3.1
is complete.
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To prove inadmissibility, note from (39) that

m(r) =
∫
{x : ‖x‖=r}

1

m(x)
dφ(x)

≤
∫
{x : ‖x‖=r}

(∫ k∏
j=1

C1 min
{
C2, (y

2
j )(3−m)/2−a2

}
dH

)−1

dφ(x).

(41)

Note that [∫
f (H)dH

]−1

≤
∫

[f (H)]−1 dH if f (H) > 0,

so that

m(r) ≤ C1

∫ [∫
{x : ‖x‖=r}

(
k∏

j=1

min
{
C2, (y

2
j )(3−m)/2−a2

})−1

dφ(x)

]
dH

≤ C1

∫ [∫
{x : ‖x‖=r}

k∏
j=1

max
{
C2, (y

2
j )a2−(3−m)/2}dφ(x)

]
dH.

(42)

Continuing exactly as in the proof of admissibility (but employing the bound
y2
i ≤ r2) yields

m(r) ≤ C

k∏
i=1

∫ r2

0
max

{
C2, (y

2
i )a2−(3−m)/2}(y2

i

r2

)(m−3)/2

d

(
y2
i

r2

)

≤ C

k∏
i=1

∫ r2

0

[
C2 + (y2

i )a2−(3−m)/2](y2
i

r2

)(m−3)/2

d

(
y2
i

r2

)

≤ C + C2r
k(2a2+m−3).

(43)

Hence ∫ ∞
c

r(1−mk)m(r) dr ≤ C + C2

∫ ∞
c

r(2ka2−3k+1) dr,

which is finite only if a2 < 3
2 − 1

k
. If m ≥ 2, a1 < 1 and a2 > (3 − m)/2,

then δπ(x) − x is uniformly bounded, and Result 3.2 completes the proof of
inadmissibility. (It was not strictly necessary to establish the uniform boundedness
condition for inadmissibility, but it is necessary to verify that the posterior mean
exists, and the uniform boundedness condition clearly establishes that this is so.)

�

Theorem 3.12 fails to cover the situation in whichk = 2 and a2 = 1 and
the situationk ≥ 3 anda2 ≥ 3

2 − 1
k
. We suspect that the posterior mean is also

inadmissible in these two situations, but were unable to prove it. (The main
hurdle is to find a way to avoid use of the too-strong inequality[ ∫ f (H) dH]−1 ≤∫ [f (H)]−1 dH.)
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3.4.2. Case 2 scenario.

THEOREM 3.13. Assume that π(β) is Nk(β
0,A), a1 < 1, k ≥ 2 and π(H,D)

satisfies Condition 1 with l = 0. If a2 ≥ 1 − 1
k
, then the posterior mean is

admissible. If 2−m
2 < a2 < 1− 1

k
, then the posterior mean is inadmissible.

PROOF. Let zi = (zi1, zi2, . . . , zik) = Hxi . Definey2
j = ∑m

i=1 z2
ij . By (33) we

have

m(x) ≈ C1

∫ ∫ 1

|D|a1|C2I + D|m/2+a2−a1

× exp

(
−1

2

m∑
i=1

xt
iH

t (C3I + D)−1Hxi

)
· dDdH

= C1

∫ ∫ k∏
j=1

1

d
a1
j (C2 + dj )m/2+a2−a1

exp
(
− y2

j

2(C3 + dj )

)
dDdH

= C1

∫ [
k∏

j=1

∫ ∞
0

1

d
a1
j (C2 + dj )m/2+a2−a1

exp
(
− y2

j

2(C3 + dj )

)
ddj

]
dH.

Applying the upper bound of Lemma 3.3 withr = a2 − a1 + m/2 to the inner
integral above yields

∫ ∞
0

1

d
a1
j (C2 + dj )m/2+a2−a1

exp
(
− y2

j

2(C3 + dj )

)
ddj

≤ C∗
1 min{C∗

2, (y2
j )1−m/2−a2}.

Thus

m(x) ≈ C

∫ [
k∏

j=1

C∗
1 min{C∗

2, (y2
j )1−m/2−a2}

]
dH.(44)

To prove admissibility, note that

m(r) =
∫
{x : ‖x‖=r}

m(x) dφ(x)

≤ C

∫ [∫
{x : ‖x‖=r}

k∏
j=1

C∗
1 min{C∗

2, (y2
j )1−m/2−a2}dφ(x)

]
dH.

(45)

The inner integral with respect toφ is essentially consideringx to be uniformly
distributed on the surface of the sphere of radius‖x‖ = r . Since H is an
orthonormal matrix,((Hx1)

t , (Hx2)
t , . . . , (Hxm)t )t also has a uniform distribution
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on the surface of the sphere of radiusr . From the result in Section 49, Subsection 1,
of [24], it follows that, for each givenH,

(
y2

1

r2 ,
y2

2

r2 , . . . ,
y2
k

r2

)
∼ Dirichlet

(
m

2
,
m

2
, . . . ,

m

2

)
.

Thus,

m(r) ≤ C

∫ ∫ k∏
i=1

min{C∗
2, (y2

i )1−m/2−a2} ·
k∏

i=1

(
y2
i

r2

)m/2−1

d

(
y2
i

r2

)
dH.

Again dropping the integral overH and using the inequality min{C2, v} ≤ 2(C−1
2 +

v−1)−1 results in the bound

m(r) ≤ C

k∏
i=1

∫ r2

0

[
C∗

2
−1 + (y2

i )−(1−m/2−a2)
]−1

(
y2
i

r2

)m/2−1

d

(
y2
i

r2

)

≤ Cr−km

[∫ r2

0

(
C∗

2
−1 + v(a2+m/2−1))−1

v(m−2)/2 dv

]k

.

The order of the integral in the last expression is easily seen to beO(r2(1−a2)) if
a2 < 1; O(logr) if a2 = 1; andO(1) if a2 > 1. Hence

∫ ∞
c

[rmk−1m(r)]−1 dr ≥




C

∫ ∞
c

r1−2k(1−a2) dr, if a2 < 1,

C

∫ ∞
c

r(logr)−k dr, if a2 = 1,

C

∫ ∞
c

r dr, if a2 > 1.

This is clearly infinite ifa2 ≥ 1 − 1/k. By Theorem 3.10, this condition also
implies thatδπ(x) − x is bounded, so use of Result 3.1 completes the proof of
admissibility.

To prove inadmissibility, note from (44) and the fact[ ∫ f (H) dH]−1 ≤∫ [f (H)]−1 dH that

m(r) =
∫
{x : ‖x‖=r}

1

m(x)
dφ(x)

≤
∫
{x : ‖x‖=r}

(∫ k∏
j=1

C1 min{C2, (y
2
j )1−m/2−a2}dH

)−1

dφ(x)

≤ C

∫ [∫
{x : ‖x‖=r}

k∏
j=1

max
{
C2, (y

2
j )a2+(m−2)/2}dφ(x)

]
dH.
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Continuing as with the proof of admissibility, one obtains

m(r) ≤ C

k∏
i=1

∫ r2

0
max

{
C2, (y

2
i )a2−(m−2)/2}(y2

i

r2

)(m−2)/2

d

(
y2
i

r2

)

≤ C

k∏
i=1

∫ r2

0

[
C2 + (y2

i )a2−(m−2)/2](y2
i

r2

)(m−2)/2

d

(
y2
i

r2

)

≤ C + C2r
k(2a2+m−2).

Hence ∫ ∞
c

r(1−mk)m(r) dr ≤ C + C2

∫ ∞
c

r(2ka2−2k+1) dr,

which is finite only ifa2 < 1− 1/k. If a1 < 1 anda2 > (2− m)/2, thenδπ(x) − x
is uniformly bounded and so the posterior mean exists, and Result 3.2 completes
the proof of inadmissibility. �

3.4.3. Case 3 scenario.

THEOREM 3.14. Assume that π(β) is Nk(β
0, λA), m ≥ 2, a1 < 1, π(H,D)

satisfies Condition 1 with l = 0 and π(λ) satisfies Condition 2. If (i) k ≥ 2,
a2 ≥ 1 − 1

k
and b > 1; or (ii) k ≥ 3, a2 > 1 − b

k
and 0 ≤ b < 1; or (iii) k = 2,

a2 > 1− b
2 and 0 < b < 1, then the posterior mean is admissible under quadratic

loss.

PROOF. Starting with (35) from Lemma 3.7 (setting all constants to 1 for
notational simplicity) yields

m(x) ≈
∫ ∫ ∫ k∏

j=1

1

d
a1
j (1+ dj )(m−1)/2+a2−a1(1+ λ + dj )1/2

× exp

(
−1

2

[
m∑

i=1

(H(xi − x̄))2
j

1+ dj

+ m
(Hx̄)2

j

1+ λ + dj

])

× π(λ)dλdDdH.

Let

wj =
m∑

i=1

(H(xi − x̄))2
j

‖x‖2 , vj = m
(Hx̄)2

j

‖x‖2 , j = 1,2, . . . , k.

Underφ(x), the uniform distribution on the surface of the sphere of radiusr = ‖x‖,
by the result in Section 49, Subsection 1, of [24], we have

(w1, . . . ,wk, v1, . . . , vk) ∼ Dirichlet
(

m − 1

2
, . . . ,

m − 1

2
,

1

2
, . . . ,

1

2

)
.
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Thus, arguing as in previous theorems, droppingH and letting thewi andvi range
freely over(0,1), yields

m(r) =
∫
‖x‖=r

m(x) dφ(x)

≤
∫ k∏

j=1

{∫ 1

0

∫ 1

0

∫ 1

0

1

d
a1
j (1+ dj )(m−1)/2+a2−a1(1+ λ + dj )1/2

× exp
(
−r2

2

[
wj

1+ dj

+ vj

1+ λ + dj

])

× w
(m−1)/2−1
j v

−1/2
j dwj dvj ddj

}
π(λ)dλ.

Make the change of variablessj = wj(1 + dj ) and tj = vj (1 + dj + λ), j =
1,2, . . . , k. The region of integration becomes

Rst =
{

0< sj ≤ 1

1+ dj

,0< tj ≤ 1

1+ dj + λ
, i = 1,2, . . . , k

}
.

Then

m(r) ≤
∫ ∫ ∫ ∫

Rst

k∏
j=1

{
((1+ dj )sj )

(m−3)/2((1+ dj + λ)tj )
−1/2

d
a1
j (1+ dj )(m−1)/2+a2−a1(1+ λ + dj )1/2

× exp
(
−r2

2
[sj + tj ]

)

× (1+ dj )(1+ dj + λ)dsj dtj ddj

}
π(λ)dλ

≤
∫ ∫ ∫ ∫

Rst

k∏
j=1

{
1

d
a1
j (1+ dj )a2−a1

s
(m−3)/2
j t

−1/2
j

× exp
(
−r2

2
[sj + tj ]

)
dsj dtj ddj

}
π(λ)dλ

=
∫ k∏

j=1

{∫ 1

d
a1
j (1+ dj )a2−a1

×
[∫ 1/(1+dj )

0
s
(m−3)/2
j exp

(
−r2

2
sj

)
dsj

]

×
[∫ 1/(1+dj+λ)

0
t
−1/2
j exp

(
−r2

2
tj

)
dtj

]
ddj

}
π(λ)dλ.
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Applying Lemma 3.3(b) to the inner integrals above yields

m(r) ≤ C

∫ k∏
j=1

[∫ 1

d
a1
j (1+ dj )a2−a1

× min
{
r−(m−1), (1+ dj )

−(m−1)/2}
× min{r−1, (1+ dj + λ)−1/2}ddj

]
π(λ)dλ.

(46)

Consider first the situationb > 1. Thenπ(λ) has finite mass and so [using
(1+ dj + λ)−1/2 ≤ (1+ dj )

−1/2]

m(r) ≤ C

[∫ ∞
0

1

da1(1+ d)a2−a1
min

{
r−(m−1), (1+ d)−(m−1)/2}

× min{r−1, (1+ d)−1/2}ddj

]k

.

Break up the inner integral into integralsI1 andI2 over(0, r2−1) and(r2−1,∞),
respectively. Then, sincea1 < 1,

I1 =
∫ r2−1

0

1

da1(1+ d)a2−a1
· 1

r(m−1)
· 1

r
dd ≤ Cr−m(1+ r2(1−a2)

)
,

I2 =
∫ ∞
r2−1

1

da1(1+ d)a2−a1
· 1

(1+ d)(m−1)/2 · 1

(1+ d)1/2 dd ≤ Cr2−2a2−m.

Hence

m(r) ≤ C[I1 + I2]k ≤ Cr−mk(1+ r2k(1−a2)
)

and ∫ ∞
c

[rmk−1m(r)]−1 dr ≥
∫ ∞
c

r

1+ r2k(1−a2)
dr.

This is finite ifa2 ≥ 1− 1/k.
Next consider the case 0≤ b ≤ 1. Clearly

min{r−1, (1+ dj + λ)−1/2}
= min{r−1, (1+ dj + λ)−1/2}2(1−b)+ε

× min{r−1, (1+ dj + λ)−1/2}2b−1−ε

≤ (1+ λ)(b−1−ε/2) min{r−1, (1+ dj )
−1/2}2b−1−ε.
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Hence (46) can be bounded as

m(r) ≤ C

[∫ ∞
0

1

da1(1+ d)a2−a1

× min
{
r−(m−1), (1+ d)−(m−1)/2}

× min{r−1, (1+ d)−1/2}dd

](k−1)

×
∫ ∞

0

1

da1(1+ d)a2−a1

× min
{
r−(m−1), (1+ d)−(m−1)/2}

× min{r−1, (1+ d)−1/2}(2b−1−ε) dd

[using the fact that(1+λ)(b−1−ε/2)π(λ) has finite mass]. Proceeding exactly as in
theb > 1 case yields

m(r) ≤ Cr [2k−2ka2−km+2(1−b)+ε],

so that ∫ ∞
c

[rmk−1m(r)]−1 dr ≥ C

∫ ∞
c

r(2k−2ka2+1−2b+ε) dr,

which is infinite if a2 ≥ 1 − b
k

+ ε′. Sinceε′ was arbitrary, the condition for
admissibility when 0≤ b < 1 is a2 > 1 − b

k
. By Theorem 3.11 these conditions

also imply thatδπ(x)− x is uniformly bounded, except whenk = 2, in which case
the restrictionb > 0 must be added. This completes the proof of admissibility.�

3.4.4. Admissibility and inadmissibility for the common priors. Let us apply
these results to the versions of the reference prior discussed in the Introduction.
For β, the Case 1 constant prior leads to admissibility only in the casek = 2,
and hence is not a prior we recommend. The Case 2 conjugate prior can readily
yield admissible estimators, and is certainly reasonable if backed by subjective
knowledge. The Case 3 default prior that was suggested in Section 1.2 is

π(β) ∝ [1+ ‖β‖2]−(k−1)/2,(47)

corresponding to the two-stage priorβ|λ ∼ N(0, λI), π(λ) ∝ λ−1/2e−1/(2λ). We
therefore focus on admissibility results when this prior is used forβ.

In regard to priors forV, note first that the nonhierarchical reference prior
for V cannot be considered, since it corresponds toa1 = 1, yielding an improper
posterior. The modification

π(V) = 1

|V|a1
∏

i<j (di − dj )
,
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wherea1 < 1, is inadmissible in Case 1 [π(β) = 1], but is admissible in Case 2,
and is admissible in Case 3 whenb > 1 and 1− 1/k ≤ a1 < 1, or when 0< b < 1
and 1−b/k < a1 < 1. Since we recommend (47), which hasb = 1/2, this suggests
the choicea1 = 1 − 1/(2k) = (2k − 1)/(2k). While we were not strictly able to
prove admissibility for this choice, it likely corresponds to admissibility and, in
any case, being at the boundary of admissibility has considerable appeal.

The modified reference prior of the form

π(V) = 1

|I + V|a2
∏

i<j (di − dj )

is admissible in Case 1 ifk = 2 anda2 > 1; in Case 2 or Case 3 (b > 1) if a2 ≥
1− 1/k; and in Case 3 (0< b < 1) if a2 > 1− b/k. The natural choice isa2 = 1,
since this is admissible for allb andk in Cases 2 and 3, and is almost admissible
in Case 1 whenk = 2. (Recall that we were unable to establish admissibility
or inadmissibility in this case, but again being at the boundary of admissibility
has considerable appeal.) Recalling the discussion from the Introduction, the
recommended default prior distribution of this form is thus

π(V) = 1

|I + V|∏i<j (di − dj )
.

This yields a proper posterior with a posterior mean that is admissible in estimation
under quadratic loss.

APPENDIX

PROOF OFLEMMA 3.3. (a) It suffices to takec1 = c2 = 1 in the proof. This
is because(c1 + d)/(c2 + d) is uniformly bounded above and below, so that one
could change(c1 +d) to (c2 +d), or vice versa. A simple change of variables then
reduces the expression to the casec2 = 1. Clearly,

f (v) =
∫ 1

0

1

(1+ d)rda
exp

(
− v

2(1+ d)

)
dd

+
∫ ∞

1

1

(1+ d)rda
exp

(
− v

2(1+ d)

)
dd

≤ e−v/4
∫ 1

0

1

da
dd +

∫ ∞
1

1

dr+a
exp

(
− v

4d

)
dd

= 1

1− a
e−v/4 +

∫ ∞
1

1

dr+a
exp

(
− v

4d

)
dd.
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Making the change of the variablest = v/d yields

f (v) = 1

1− a
e−v/4 +

∫ 0

v

(
t

v

)r+a

exp
(
− t

4

)(
− v

t2

)
dt

= 1

1− a
e−v/4 + v1−r−a

∫ v

0
t r+a−2e−t/4 dt

≤ 1

1− a
e−v/4 + v1−r−a

∫ ∞
0

t (r+a−1)−1e−t/4 dt

= 1

1− a
e−v/4 + v1−r−a�(r + a − 1) · 4r+a−1.

Sincer + a > 1, it is easy to show thate−v/4 ≤ Cv1−r−a whenv ≥ 0. Therefore

f (v) ≤ C1v
1−r−a.

On the other hand,f (v) is a decreasing function ofv whenv ≥ 0, so

maxf (v) = f (0) =
∫ ∞

0

1

(1+ d)rda
dd

≤
∫ 1

0

1

da
dd +

∫ ∞
1

1

dr+a
dd = 1

1− a
+ 1

r + a − 1
= C2.

Thus, definingC3 = C2/C1,

f (v) ≤ C1 min{C3, v
1−r−a}.

To find a lower bound forf (v), note that

f (v) ≥
∫ ∞

1

1

(1+ d)rda
exp

(
− v

2(1+ d)

)
dd

≥
∫ ∞

1

1

(2d)rda
exp

(
− v

2d

)
dd

= 1

2r

∫ ∞
1

1

dr+a
exp

(
− v

2d

)
dd.

Making the change of the variablest = v/d , one obtains

f (v) ≥ 1

2r

∫ 0

v

(
t

v

)r+a

exp
(
− t

2

)(
− v

t2

)
dt

= 1

2r
v1−r−a

∫ v

0
t r+a−2 exp

(
− t

2

)
dt.

If v ≥ 1, then

f (v) ≥ 1

2r
v1−r−a

∫ 1

0
t r+a−2 exp

(
− t

2

)
dt = C′

1v
1−r−a .
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If 0 ≤ v < 1, then

f (v) ≥ f (1) =
∫ ∞

0

1

(1+ d)rda
exp

(
− 1

2(1+ d)

)
dd = C′

2.

Let C′
3 = min{C′

1,C
′
2}. Thus

f (v) ≥ min{C′
3,C

′
1v

1−r−a} = C′
1 min{C′

4, v
1−r−a},

whereC′
4 = C′

3/C′
1, completing the proof of part (a).

To prove part (b), change variables fromt to w = xt . Then

g(µ, v) = v−(a+1)
∫ µv

0
wae−w dw.

Now
∫ µv
0 wae−w dw < �(a + 1) and

∫ µv
0 wae−w dw <

∫ µv
0 wa dw = (µv)(a+1)/

(a + 1). Hence

g(µ, v) < v−(a+1) min
{
�(a + 1),

(µv)(a+1)

(a + 1)

}
,

and the result follows. �
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