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Postglacial relative sea level change 
and glacier activity in the early and 
late Holocene: Wahlenbergfjorden, 
Nordaustlandet, Svalbard
Anders Schomacker  1, Wesley R. Farnsworth2, Ólafur Ingólfsson2,3, Lis Allaart1, 
Lena Håkansson2, Michael Retelle2,4, Marie-Louise Siggaard-Andersen5, 
Niels Jákup Korsgaard  6, Alexandra Rouillard1,5 & Sofia E. Kjellman1

Sediment cores from Kløverbladvatna, a threshold lake in Wahlenbergfjorden, Nordaustlandet, 
Svalbard were used to reconstruct Holocene glacier fluctuations. Meltwater from Etonbreen spills over 
a threshold to the lake, only when the glacier is significantly larger than at present. Lithological logging, 
loss-on-ignition, ITRAX scanning and radiocarbon dating of the cores show that Kløverbladvatna 
became isolated from Wahlenbergfjorden c. 5.4 cal. kyr BP due to glacioisostatic rebound. During the 
Late Holocene, laminated clayey gyttja from lacustrine organic production and surface runoff from the 
catchment accumulated in the lake. The lacustrine sedimentary record suggests that meltwater only 
spilled over the threshold at the peak of the surge of Etonbreen in AD 1938. Hence, we suggest that this 
was the largest extent of Etonbreen in the (mid-late) Holocene. In Palanderbukta, a tributary fjord to 
Wahlenbergfjorden, raised beaches were surveyed and organic material collected to determine the age 
of the beaches and reconstruct postglacial relative sea level change. The age of the postglacial raised 
beaches ranges from 10.7 cal. kyr BP at 50 m a.s.l. to 3.13 cal. kyr BP at 2 m a.s.l. The reconstructed 
postglacial relative sea level curve adds valuable spatial and chronological data to the relative sea level 

record of Nordaustlandet.

Nordaustlandet is a key locality for understanding the glacial history of Svalbard. Recent studies suggest that 
during the Last Glacial Maximum (LGM), ice domes in the Svalbard-Barents Sea Ice Sheet were centered over 
the southern opening of the Hinlopen Strait and Nordaustlandet1–3. �is is not compatible with postglacial 
isostatic rebound evidence reconstructed from raised beaches around the Svalbard archipelago, which sug-
gests a maximum LGM ice load over Kong Karls Land to the southeast of Nordaustlandet4,5. �e location of 
LGM ice domes, timing, and implications for ice sheet dynamics is still debated6,7. Postglacial relative sea level 
changes on Nordaustlandet and eastern Spitsbergen are not well constrained in time and space. Blake8 recon-
structed the relative sea level history of Lady Franklin�orden in northwest Nordaustlandet, and suggested a Late 
Weichselian-Holocene marine limit of at least 50 m above high tide (a.h.t.). A study9 from Svartknaus�ya at the 
south coast of Nordaustlandet suggested a marine limit of more than 70 m a.h.t. Marine isolation ages from lakes 
on Nordaustlandet provide ancillary information about the postglacial relative sea level changes10–12.

At present, about 80% of Nordaustlandet is glaciated, mainly by the two ice caps Austfonna (7800 km2) 
and the smaller Vestfonna (2455 km2)1,13,14. �e location between these two ice caps makes the inner part of 
Wahlenberg�orden an important site for studying Holocene glacier variations. Flink et al.15 suggested that the 
Wahlenberg�orden trough acted as an ice stream onset zone during the LGM, feeding westerly �owing ice into 
an ice stream in the Hinlopen Strait16. �e inner part of the �ord was deglaciated prior to 11.3 cal. kyr BP15,17, and 
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Etonbreen, a major surge-type outlet glacier of Austfonna, now terminates in the inner part of Wahlenberg�orden. 
�e last surge of Etonbreen was captured on oblique aerial photographs from 193818. To study the Holocene gla-
cier activity, we obtained sediment cores from a proglacial threshold isolation basin, Kløverbladvatna, located 
at this part of the �ord. �is new sediment sequence provides an opportunity to link the terrestrial geological 
record to the marine record15,17. Flink et al.15 found increased sedimentation rates in inner Wahlenberg�orden 
during the late Holocene, which may suggest surge activity of Etonbreen, or at least greater glacial activity. At the 
sea �oor, a multi-crested terminal moraine and stacked debris �ow lobes suggest that Etonbreen has advanced 
several times in the late Holocene. Flink et al.15 showed that the last surge of Etonbreen in 1938 reached a posi-
tion approximately 7 km further out than its present glacier margin. It is, however not known when or how 
many times Etonbreen advanced to this position (or positions further upglacier) prior to the 1938 surge. �e 
Ice Ra�ed Debris (IRD) record from the middle part of Wahlenberg�orden indicates increased IRD �ux during 
the last c. 1000 years, which also suggests larger glacial activity than earlier17. Previous lake sediment studies 
from Nordaustlandet have focused on palaeoecological and palaeoclimatic reconstructions10–12,19, and have not 
been targeting proglacial threshold lakes that potentially contain glacial on/o� signals20–22. Data highlighting 
Holocene glacier variations on Svalbard are important to understanding the observed recent ice loss and place it 
in a long-term perspective22–26. �e aim of this study is (1) to reconstruct the late Holocene glacier �uctuations of 
Etonbreen, based on threshold lake sediment cores from Kløverbladvatna, and (2) to decipher the postglacial rel-
ative sea level changes in Palanderbukta, Wahlenberg�orden, based on radiocarbon dating of raised beach ridges. 
Finally, we discuss our results and their implications for reconstructions of the relative sea level change, spatial 
pattern of glacioisostatic rebound, and palaeoglaciology following the last deglaciation of northeast Svalbard.

Setting
Nordaustlandet. Nordaustlandet is a c. 15,000 km2 island located in the northeastern part of the Svalbard 
archipelago (Fig. 1). �e Svalbard Branch of the West Spitsbergen Ocean Current transports warm Atlantic water 
to the Arctic Ocean north of Nordaustlandet27. Despite its high latitude of 79°10′–80°33′N, this region a�ords a 
relatively mild climate compared to similar latitudes elsewhere in the high Arctic. Bamber et al.28 and Isaksson 
et al.29 suggested that the ice caps on Nordaustlandet are precipitation controlled and dependent on seasonally 
open sea-ice conditions around the island. Estimated glacier equilibrium altitudes at central Nordaustlandet are 
300–400 m a.s.l.13.

Kløverbladvatna, Wahlenbergfjorden. Lake Kløverbladvatna (79°46′N; 21°43′E) is located on 
Oxfordhalvøya in the innermost part of the 50 km long Wahlenberg�orden at the western part of Nordaustlandet, 
Svalbard (Fig. 1 and Supplementary Fig. S1). �e bedrock on Oxfordhalvøya is dominated by Neoproterozoic 
clastic sedimentary rocks30. �e lake level is currently 8 m a.s.l., and Kløverbladvatna (c. 0.23 km2) is fed by surface 
runo� in a local catchment (c. 1.5 km2) at Oxfordhalvøya. An abandoned, dry channel indicates that the lake was 
previously fed by meltwater from Etonbreen (Supplementary Fig. S1). �e threshold for meltwater drainage into 
this channel is located at an altitude of 32 m a.s.l. and cuts through raised beach ridges.

Palanderbukta. Palanderbukta is a c. 20 km long tributary �ord south of Wahlenberg�orden (Fig. 1 and 
Supplementary Fig. S1). �e study area (79°34′N; 20°40′E) is located on the south shore of Palanderbukta at 
the mouth of Palanderdalen, a valley separating the two ice caps Glitnefonna and Vegafonna on Scaniahalvøya. 
Carboniferous-Permian clastic sedimentary rocks, evaporites, and carbonate rocks as well as dolerites character-
ize the bedrock geology30. At the mouth of Palanderdalen, a gently sloping plain of raised beach ridges dominates 
the landscape. A meltwater river running northwards through the valley has eroded geological sections into the 
raised marine sediments. Currently the river is forming a large delta, prograding into Palanderbukta.

Results
Kløverbladvatna, Wahlenbergfjorden: lake sediment cores. We recovered one 76-cm-long surface 
core (KLØV S2) with the gravity corer, and two piston cores (KLØV P2 and KLØV P1B) (Supplementary Fig. S2). 
KLØV P2 contained 185 cm of sediment, and KLØV P1B contained 102 cm of sediment. �e cores were retrieved 
with an overlap between KLØV S2 and KLØV P2 and between KLØV P2 and KLØV P1B, respectively. �e 
Ti/(inc + coh) values in the lowermost 51 cm (76–25 cm) of KLØV S2 followed the same trend as the upper-
most 29 cm of KLØV P2. Also the overlap between KLØV P2 and KLØV P1B could be correlated using Ti/
(inc + coh), with the lowermost 29 cm (185–156 cm) of KLØV P2 corresponding to the top 44.5 cm in KLØV P1B 
(Supplementary Fig. S2).

Figure 2–4 show optical and X-ray imagery of the three cores as well as a sedimentological log, LOI and 
XRF data. We identi�ed four main sedimentary facies in the cores; red-brown clay-silt with outsized clasts, 
olive-grey clay-silt with outsized clasts, laminated clayey gyttja, and red-brown clay-silt. �e red-brown clay-silt 
facies occurs as homogeneous or weakly laminated sediment with LOI values of 4–5%. We interpret this facies as 
deposited in a lacustrine environment with major input of glacial meltwater to the basin20,21. �e LOI values and 
weak laminations indicate that there is also some organic production in the lake during deposition. We interpret 
the red-brown color as indicating a source in the Early Devonian Rijp�orden granite and granitoid rocks below 
Etonbreen30,31. �e laminated clayey gyttja facies consists of 1–10 mm thick black and red-brown lamina. �is 
facies has LOI values of 5–13% and the red-brown laminae correspond to peaks in the Ti record (Supplementary 
Fig. S3). We interpret this facies as deposited in a lacustrine environment with high organic production and with 
the red-brown laminae representing minerogenic input from catchment runo� to the basin. �us, the red-brown 
laminae are interpreted to originate from erosion of previously deposited glacial sediments. �e facies of clay-silt 
with outsized clasts occurs both in red-brown and olive-grey color. �e clasts are mainly of gravel size but occur 
up to 4 cm in size. �is facies has LOI values of 3–9%. Macrofossils of Zostera (marine eelgrass) and a paired 
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bivalve shell of the marine species Nuculana pernula were observed in the facies. We interpret this facies as 
marine mud with IRD. �e red-brown color suggests a sediment source from the Rijpbreen granitoid substratum 
of Etonbreen. However, we do not interpret the red color as an on/o� glacial signal to the basin. Outsized clasts 
occur both in the olive-grey and the red-brown sediments of this facies, suggesting ice ra�ing during deposition 
in both cases.

Core KLØV P1B (Fig. 2) consists entirely of the clay-silt facies with outsized clasts. At 25 cm depth, the color 
changes gradationally from red-brown to olive-grey. �ere are no major variations in the normalized Ti signal 
or in the Ca/Fe ratio throughout the core. �e peak at c. 15 cm depth is caused by a 4 cm large clast, and the color 
change is not associated with any changes in the LOI or XRF signals. Most likely, the color change indicates a 
waning source of sediments from erosion of the Rijp�orden granite and granitoid rocks below Etonbreen30,31. 
One sample from 77 cm depth of a paired bivalve shell of the marine species Nuculana pernula was radiocarbon 
dated, yielding a 2σ age range of 9768–9500 cal. yr BP (Supplementary Table S1). �e sedimentary facies, marine 

Figure 1. (a) Overview map of Svalbard. �e main settlement, Longyearbyen, is marked with a black circle. 
White box indicates the study area in northeast Svalbard, shown in (c). (b) Position of Svalbard (black frame) 
in the North Atlantic. Warm ocean currents around Svalbard are shown in red, and cold in blue. NAC: North 
Atlantic Current; WSC: West Spitsbergen Current; ESC: East Spitsbergen Current. Bathymetry was obtained 
from IBCAO version 3.070. (c) Map of the study area at Nordaustlandet, northeast Svalbard.
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bivalve shell and relatively uniform LOI and XRF signal suggest that all the sediments retrieved in KLØV P1B 
were deposited in a marine environment32,33.

Core KLØV P2 (Fig. 3) consists of a lower part (185–74 cm) of the clay-silt facies with outsized clasts. �e 
color is red-brown from 185–180 cm and olive-grey from 180–74 cm and most likely caused by a change in the 
sediment source as described above for KLØV P1B. At 74 cm, there is a sharp contact to the laminated clayey gyt-
tja facies which constitutes the uppermost part of this core (74–0 cm). �e LOI peaks at 10% at this transition, and 
the Ti/(inc + coh) record reaches a local minimum. �e Ca/Fe ratio shows a prominent change from relatively 
high values below 74 cm to near-zero values above 74 cm. �e lower part of the core is characterized by low LOI 
values and relatively large Ti/(inc + coh) and Ca/Fe ratios. �e laminated clayey gyttja facies (74–0 cm) is gener-
ally characterized by LOI values of 5–6% and low, stable Ti/(inc + coh) and Ca/Fe ratios. Ten samples for radio-
carbon dating were obtained from this core (Supplementary Table S1). At 89 cm and 149.5 cm Zostera (marine 
eelgrass) was observed and dated (Supplementary Table S1). �e remaining eight radiocarbon ages are from Salix 
polaris macrofossils (Supplementary Table S1). �e age-depth model for KLØV P2 is based on these ten radiocar-
bon ages. Together, the sedimentary facies, the sharp contact at 74 cm, and the distinct change in the Ca/Fe ratio, 
which agrees with the LOI trend, suggest that the sediments below 74 cm were deposited in a marine environment 
prior to basin isolation32–34. �is is supported by the two radiocarbon dated samples of Zostera marine eelgrass. 
Apart from c. 5 cm of organic richer gyttja above the transition at 74 cm, the uppermost 74 cm of laminated clayey 
gyttja suggests deposition in a lake with no major changes in in�ow source, as indicated by stable LOI levels 
and little variation in the Ti/(inc + coh) record33,35,36. Radiocarbon age Ua-53789 is based on a sample immedi-
ately below the marine-lacustrine transition and yields a 2σ age interval of 5473–5313 cal. yr BP (Supplementary 
Table S1). �is age estimate is interpreted as the time of basin upli� (isolation) above the sea level.

Core KLØV S2 (Fig. 4) consists of a lower part (76–13 cm) of the laminated clayey gyttja facies, a middle 
part of the red-brown clay-silt facies (13–6 cm), and an upper part of the laminated clayey gyttja (6–0 cm). �e 
contacts to the clay-silt at 13 and 6 cm are very sharp and appear clearly in the X-ray image of the core. �e LOI 
in the lower part of the core is generally 5–6% but reaches peak values of 12–13% at particularly organic-rich 
intervals. �ese peaks coincide with local minima in the Ti/(inc + coh) record. In the clay-silt facies (13–6 cm), 
LOI decreases to 4–5%. �is coincides with a distinct peak in Ti/(inc + coh), indicating increased input of miner-
ogenic material21,33,35–37. �is unit and its clear association with low LOI values and a peak in Ti/(inc + coh) sug-
gest a major change in depositional environment. We interpret this as a dramatically increased in�ow of glacial 
meltwater to the lake, comparable with evidence from other studies of threshold lake sedimentation20,21,33,36,37. 
�ere is currently no in�ow of glacial meltwater to Kløverbladvatna, and we therefore interpret the upper 6 cm of 

Figure 2. Sediment proxies for KLØV P1B: Core photograph, X-ray image, lithology, calibrated 14C ages 
(median age; see also Supplementary Table S1), LOI (%), and XRF data for Ti normalized by the incoherent 
and coherent signal (Ti/(inc + coh)) and for Ca/Fe. �e XRF data are plotted as raw data and with a 25-point 
running average.
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laminated clayey gyttja as formed in the present-day environment. �is similarity in the lithology also suggests 
that the laminated clayey gyttja facies is deposited in an environment similar to the present, i.e. surface runo� to 
the lake but no glacial meltwater in�ow. �ree samples of Salix polaris macrofossils were obtained from KLØV S2 
for radiocarbon dating (Supplementary Table S1). �e age-depth model (Supplementary Fig. S3) is based on these 
three ages and suggests constant sedimentation rate since 1883–1607 cal. yr BP. �e uppermost sample at 13.5 cm 
yields an age of 134 ± 36 14C yr BP (Supplementary Table S1), suggesting that the sediments above this depth were 
deposited during the last 1–2 centuries.

Palanderbukta, Wahlenbergfjorden: observations and ages of raised beaches and marine sedi-
ments. �e beach ridges and raised marine sediments located in Palanderbukta at the mouth of Palanderdalen 
were surveyed for shells, dri�wood, whalebones, and pumice (Fig. 5). Palander River divides the beach ridge 
plain, and material for radiocarbon dating was collected on both the western and eastern sides of the river (Fig. 6). 
Dateable material was identi�ed on 11 beach ridges ranging from 2–81 m a.s.l. (Supplementary Table S2). Shell 
fragments sampled on the highest beach ridge, 81 m a.s.l., yielded an age of 38.4 cal. kyr BP, and were hence 
not used for reconstruction of the postglacial sea level history (Supplementary Table S2; Lab ID Ua-52519). 
Additionally, a sample of an in situ paired Mya truncata was taken at c. 13 m a.s.l. from the river-cut geological 
section (yellow star; Fig. 6) Dri�wood was found up to an elevation of 27 m a.s.l.

�e ages from highest elevations are from shell fragments sampled from within the beach gravels (Figs 5 and 6).  
Pumice was identi�ed and sampled 20 m a.s.l. (blue circle in Fig. 6) and is believed to correspond to roughly 6.5 
14C kyr BP11,38–40 (Fig. 5b). �is corresponds to a calibrated age of c. 7.4 kyr BP for the pumice level. A di�erence 
in morphological exposure (i.e. color and weathering) of the beach ridges occurs at c. 65 m a.s.l. on the west side 
of the valley (white dotted line; Fig. 6). �is transition is interpreted to re�ect the maximum limit of postglacial 
sea level in Palanderbukta. �e surface of the beach ridge plain appears more weathered above c. 65 m a.s.l., and 
the radiocarbon age of 38.4 cal. kyr BP at 81 m a.s.l. (Fig. 5e; Supplementary Table S2) indicates that it formed in 
the Weichselian. It has most likely been exposed to weathering and pedogenesis for a longer total duration than 
the beach ridge plain below c. 65 m a.s.l41.

Based on the radiocarbon ages and elevations of material collected in Palanderbukta, we construct the �rst rel-
ative sea level curve for this region (Fig. 7, Supplementary Table S2). We constrain the curve with ten data points 

Figure 3. Sediment proxies for KLØV P2: Core photograph, X-ray image, lithology, calibrated 14C ages (median 
age; see also Supplementary Table S1), LOI (%), and XRF data for Ti normalized by the incoherent and coherent 
signal (Ti/(inc + coh)) and for Ca/Fe. �e XRF data are plotted as raw data and with a 25-point running average.
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ranging in elevation from 50 to 2 m a.s.l. and respectively dating beach ridges ranging in age from 10.7 to 3.1 cal. 
kyr BP (Supplementary Table S2). �e greatest rate of regression is seen in the uppermost (and oldest) section of 
the curve, where the relative sea level drops c. 10 meters in a little over 400 years. �e marine limit at the site is 
un-dated, but our data show that it formed prior to deposition of the uppermost sample at 10.7 cal. kyr BP, and 
most likely a�er or during deglaciation of Wahlenberg�orden at 11.3 cal. kyr BP15,17.

A geological section on the western �ank of the Palander River was lithostratigraphically logged. �e lower 
part of the section is a silty, matrix-supported, clast-rich diamict. It contains striated, sub-rounded to sub-angular, 
cobbles and boulders of mixed lithology up to 30 cm in diameter (Fig. 8). Shell fragments were observed in the 
diamict. �e diamict was overlain by roughly 20–30 cm of crudely strati�ed silt and �ne sand seemingly void of 
outsized clasts or shells. �ese silts and sands grade into slightly coarser massive silt and sand with occasional 
outsized cobbles and boulders as well as abundant shells. Two meters above the diamict, the silts grade into planar 
cross-bedded sands, gravels, and cobbles. �e sequence coarsens upward to large cobbles and boulders in the 
upper 6–7 meters of the section and is capped by well sorted beach gravels and cobbles (Fig. 8). A radiocarbon 
dated Mya truncata bivalve shell sampled roughly 30 cm above the diamict gives an age of 10.3 cal. kyr BP (Fig. 8; 
Supplementary Table S2; Lab ID Ua-52513). �e sequence of coarsening-upwards sediments is interpreted as 
deposited in a shallow, regressional marine environment42–44.

Discussion
�e sedimentary record from Kløverbladvatna reveals two periods of glacier activity in the catchment, char-
acterized by (1) the presence of outsized clasts within the marine phase and (2) the red-brown mud within the 
lacustrine phase. �e marine muds in KLØV P1B and the lower part of KLØV P2 contain outsized clasts inter-
preted as IRD. �is agrees with observations of outsized clasts throughout the Holocene from a marine sedi-
ment core dated to 11.3–0.2 cal. kyr BP and retrieved from the central part of Wahlenberg�orden17. However, 
the IRD record from that core starts to increase from c. 3.1 cal. kyr BP and peaks during the last c. 1000 years. 
Notably, Bartels et al.17 report a color change from brownish grey and pale brown below 450 cm to olive grey 
above 450 cm at 9 cal. kyr BP. A contemporary and similar color change is seen in KLØV P1B and KLØV P2 
(Figs 2, 3, and Supplementary Fig. S3). �e disappearance of red muds c. 9 cal. kyr BP is most likely caused 
by reduced meltwater in�ux from glaciers eroding the Early Devonian Rijp�orden granite and granitoid rocks 
(e.g., below Etonbreen)30,31. �e presence of IRD throughout the marine part of the Kløverbladvatna sedimentary 
record, however, suggests sea ice and/or calving glaciers in the �ord until the basin was isolated 5473–5313 cal. 
yr. BP (Fig. 3). �is evidence supports new modeling projections45 and may indicate that not only did some 
Svalbard glaciers survived the Holocene thermal optimum, but tidewater margins persisted in some locations. 

Figure 4. Sediment proxies for KLØV S2: Core photograph, X-ray image, lithology, calibrated 14C ages (median 
age; see also Supplementary Table S1), LOI (%), and XRF data for Ti normalized by the incoherent and coherent 
signal (Ti/(inc + coh)) and for Ca/Fe. �e XRF data are plotted as raw data and with a 25-point running average.
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�e red-brown clay-silt facies present from 13–6 cm in KLØV S2 indicates that glacial meltwater spilled over 
the threshold and into the basin (Fig. 4). �is is similar to threshold lakes elsewhere, where such units of clay/
silt have been interpreted as originating from glacial meltwater in�ow20,21,33,36,37. Radiocarbon age Ua-52330 at 
13.5 cm yielding 134 ± 36 14C yr BP (Supplementary Table S1) suggests that this event occurred during the last 
two centuries. �e laminated clayey gyttja in KLØV P2 and KLØV S2 indicates a depositional environment sim-
ilar to the present, i.e. surface runo� from the catchment to the lake and no in�ow of glacial meltwater across the 
threshold. Such gyttja has been described from sedimentary records of threshold lakes in periods of no meltwater 
in�ow and from other lakes that are only occasionally glacier-fed21,33,36,37,46. Hence, we do not �nd any evidence 
of glacial meltwater in�ow to the basin between the isolation (5473–5313 cal. yr. BP) and the deposition of the 
clay-silt unit in KLØV S2 (134 ± 36 14C yr BP) (Supplementary Table S1). We interpret the clay-silt unit as clear 
evidence of glacial meltwater in�ow across the 32 m a.s.l. threshold, and most likely this occurred during the 
1938 surge of Etonbreen13,15,47. An oblique aerial photograph recorded in the summer of 1938 shows Etonbreen 
during its surge (Supplementary Fig. S4). Kløverbladvatna is seen in the foreground but no meltwater exceeds 
the threshold at this time. �e ridges marked by a circle in Supplementary Fig. S4 were not eroded at the time of 
photography but today, a dry channel leading all the way to Kløverbladvatna cuts through them (Supplementary 
Fig. S1). In agreement with Lefauconnier and Hagen18, this suggests that the surge had not reached its maximum 
at the time of photography but most likely did shortly a�er, allowing glacial meltwater to erode the ridges and 
cross the 32 m a.s.l. threshold into Kløverbladvatna. According to the sedimentary record from Kløverbladvatna, 
this event marks the largest glacier extent of Etonbreen through the last 9.6 kyr BP. Hence, this study supports the 
geomorphological evidence from the sea �oor of inner Wahlenberg�orden indicating that Etonbreen reached its 
maximum late Holocene position at the multi-crested end moraine at this time15. Even though the multi-crested 
nature of this ridge suggests that Etonbreen surged or advanced to this position earlier, we �nd no evidence that 
meltwater spilled into Kløverbladvatna during such events. �is could indicate either that the glacier was too thin 
for meltwater to exceed the threshold during earlier advances, or that the multi-crested end moraine was formed 
only during the 1938 surge by marginal �uctuations occurring at the location of the moraine ridge. Alternatively, 
one of the distal moraine crests date to the early Holocene prior to the radiocarbon dating from KLØV P1B 
(Lab. No. Ua-52334; 9768–9500 cal. yr BP; Supplementary Table S1). We �nd no evidence on Oxfordhalvøya of 
a terrestrial counterpart of the multi-crested moraine, and the landscape is characterized by raised beaches. �is 
might suggest that Etonbreen advanced into a high relative sea level to produce one of the outermost moraine 
ridge crests. �is is because the southwestern Oxfordhalvøya exhibits beach ridges down to sea level with no 
evidence of moraines. �erefore, the outermost moraine ridge may predate the Late Holocene, when the lower 
elevation beach ridges were formed. �e combination of marine, terrestrial, and lacustrine archives could indicate 

Figure 5. Samples from Palanderbukta for radiocarbon dating for reconstruction of the postglacial relative sea 
level history. Ages in (a), (c), and (d) are indicated as 2σ calibrated ranges (Supplementary Table S2). (a) Log of 
dri�wood, 27 m a.s.l. (b) Pumice clast, 20 m a.s.l. suggesting an age of c. 6.5 14C kyr BP (c. 7.4. cal. kyr BP)38.  
(c) Whalebone, 25 m a.s.l. (d) Shell fragments emerging at the surface, 81 m a.s.l.
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that the outer moraine ridge was deposited sometime between the deglaciation of Wahlenberg�orden at 11.3 cal. 
kyr BP and the radiocarbon dating from KLØV P1B. However, the sedimentary record from Kløverbladvatna, 
spanning from 9768–9500 cal. yr BP to the present (Supplementary Table S1) suggests that the glacier reached 
its maximum during this period in the 1938 surge. Even though it is shortly a�er the Little Ice Age, it agrees with 
many studies suggesting that Svalbard glaciers reached their late Holocene maxima during or at the end of the 
Little Ice Age17,25,48–51.

We were not able to date the postglacial marine limit in Palanderbukta at 65 m a.s.l., but it most likely 
formed in the 600-yr long time window between the 11.3 cal. kyr BP deglaciation of Wahlenberg�orden15,17 and 

Figure 6. Annotated aerial photograph from 2011 of Palanderbukta, Nordaustlandet, provided by the 
Norwegian Polar Institute (ID: 13831/147). Elevation contours drawn in yellow and sample locations indicated 
by triangles. Above the braided alluvial fan, extensive raised beach ridges can be seen on both sides of the 
Palander River, with pre-Holocene raised beaches identi�ed on the western �ank of the valley above c. 65 m 
a.s.l. River-cut section is marked by yellow star and pumice subsample indicated by a blue circle at an elevation 
of 20 m a.s.l. �e modern beach is transgressive and shaded blue. © Norwegian Polar Institute. �e aerial 
photograph is used with courtesy of the Norwegian Polar Institute. From https://toposvalbard.npolar.no.

Figure 7. Postglacial relative sea level curve for Palanderbukta, Nordaustlandet. A 5th order polynomial trend 
line is used to represent the curve. �e age and altitude of the pumice is a�er Schytt et al.38. For comparison, the 
isolation age of Kløverbladvatna is also shown.
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formation of the uppermost dated beach ridge in Palanderbukta at 10.7 cal. kyr BP. On a line, Palanderbukta 
is located exactly between Svartknausflya, southern Nordaustlandet (marine limit of 70 m a.h.t)9 and Lady 
Franklin�orden in northwestern Nordaustlandet (marine limit of 50 m a.h.t.)8. Hence, a marine limit of 65 m 
a.s.l. in Palanderbukta (Fig. 6) agrees well with the marine limits at these sites. Schytt et al.38 suggested that the 
pumice level with an age of 6.5 14C kyr BP would be expected at 20 m a.s.l. in Palanderbukta. �eir age corre-
sponds to a calibrated age of c. 7.4 kyr BP, which agrees well with our RSL curve (Fig. 7). �e Kløverbladvatna 
basin isolation age of 5473–5313 cal. yr BP validates our reconstruction of the RSL in Palanderbukta. At this time, 
the RSL was c. 10 m a.s.l. in Palanderbukta according to Fig. 7. �e isolation threshold (and current lake level) of 
Kløverbladvatna is 8 m a.s.l. Considering the 30 km distance between the two sites, we regard this as good coher-
ence. Consistent with our RSL reconstruction, fragments of Mya truncata shells in beach sediments 45 m a.s.l. in 
de Geerbukta on northeast Spitsbergen, 60 km west of Palanderbukta, yielded a median age of 10.5 cal. kyr BP25. 
�e RSL curves from Lady Franklin�orden and Svartknaus�ya are the only other long RSL reconstructions from 
Nordaustlandet5,6. More postglacial RSL reconstructions are still much needed from east and northeast Svalbard 
to reconstruct the detailed spatial pattern of isostatic rebound, verify numerical ice sheet models and possibly 
identify center(s) of upli� and Late Weichselian ice dome(s)1,3,6.

�is study from Wahlenberg�orden highlights the complex spatial variability in glacier response during 
the deglaciation and early Holocene warming. Farnsworth et al.25 showed that a nearby major outlet glacier, 
Gullfaksebreen, in De Geerbukta at the west side of the Hinlopen Strait advanced in the early Holocene, a period 
characterized by mild climate and peak insolation (Fig. 1). �is contrasts with the glacial history of Etonbreen 
as reconstructed from the Kløverbladvatna sedimentary record and interpretation of the marine geological 
record15,17. Etonbreen was most likely smaller in the early Holocene than during the Little Ice Age such as com-
monly described from Svalbard glaciers49,50. Further studies of threshold lake sediments could potentially reveal 
more about the Holocene glacier variations in Svalbard such as known from other glaciated areas20–22,33,36. Such 
lacustrine studies could reduce the bias towards younger deposits because of the poor preservation potential of 
glacial landforms and sediments on land in Svalbard52.

In summary, the lake sediment record from Kløverbladvatna reveals the environmental history from 9768–
9500 cal. yr BP to the present, and our RSL data from Palanderbukta extends it back to c. 10.7 cal. kyr BP. �e early 
Holocene was characterized by shallow marine conditions with accumulation of the clay-silt facies with outsized 
clasts in the Kløverbladvatna basin and a rapid regression as documented by the RSL curve from Palanderbukta. 
Later, the Kløverbladvatna lake basin was isolated from Wahlenberg�orden 5473–5313 cal. yr BP as a result of 
glacioisostatic upli�. Ice ra�ed debris (outsized clasts) in the marine part of the Kløverbladvatna sedimentary 

Figure 8. (a) Lithostratigraphical log of the upper 10 meters exposed in the Palanderbukta river-cut section. 
A coarsening upwards sequence capped with beach gravels overlie a silty, matrix-supported, clast-rich diamict. 
�e interpretation of the main depositional environments is indicated. (b) Overview of the site. �e sections 
are c. 10 meters high in the le� part of the photograph. (c) Close-up of the section with indication of the main 
lithofacies.
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record indicates glacier and/or sea ice activity in Wahlenberg�orden until the basin isolation. �is supports recent 
modelling projections of some Svalbard glaciers surviving the Holocene thermal optimum. �e presence of ice 
ra�ed debris in the sediment cores even suggests that glaciers could have been calving into Wahlenberg�orden in 
the early Holocene. �e geological sections in Palanderbukta reveal that the site was not glacially overridden a�er 
deposition of the Mya truncata rich silts and sands. However, outsized clasts in this facies may indicate that gla-
ciers still terminated in the inner parts of Palanderbukta in the Early Holocene. �is is supported by the sea �oor 
geomorphology of Palanderbukta, which suggests a slow, gradual retreat of a grounded ice margin in the shallow 
�ord15. In Kløverbladvatna, we �nd evidence of glacial meltwater in�ow across the threshold at the culmination of 
the AD 1938 surge of Etonbreen, but not earlier. �is suggests that the glacier reached its late Holocene maximum 
immediately a�er the Little Ice Age.

Our reconstruction of the postglacial relative sea level history of Palanderbukta is consistent with data on 
Holocene relative sea level changes from elsewhere at Nordaustlandet, and from northeast Spitsbergen. �e alti-
tude of the postglacial marine limit increase along a transect from Lady Franklin�orden to Palanderbukta and 
Svartknaus�ya supporting a larger center of ice mass located to the southeast of Nordaustlandet.

Methods
Lake sediment cores. �e bathymetry of Kløverbladvatna was surveyed with a hand-held depth sounder 
(Hondex PS-7 Transducer LCD Digital Sounder) for point measurements, and cores were retrieved from the 
central, deepest part of the basin at a depth of 17.5 m. Coring was carried out from a small zodiac using a hand-
held lightweight piston corer with 60 mm diameter coring tubes. �e coring was performed through a hose in the 
�oor of the zodiac, which was anchored in a stable position on the lake surface. Additionally, surface sediments 
were obtained with a hand-held lightweight gravity corer. �e lithology and stratigraphy of the cores were vis-
ually inspected and logged immediately a�er splitting and cleaning the cores in the laboratory. �e cores were 
analyzed using an ITRAX core scanner providing optical and radiographic line scan images along with records of 
element contents measured using X-ray �uorescence technique (XRF)53 and magnetic susceptibility (MS)54. �e 
XRF and MS records were measured with 1 mm averages and 4 mm intervals, respectively. We use the Ti signal to 
illustrate the changes between organic and minerogenic sediment. �is is commonly used to infer the amount of 
glacial meltwater input to proglacial lakes33,35,37,53. We normalized the Ti peak area (counts per second) with the 
incoherent (inc) and coherent (coh) Rh scatter peaks from the X-ray tube (Ti/(inc + coh)) to remove scattering 
from the instrument as suggested by Kylander et al.55. �e ratio between Ca and Fe peak areas was used to detect 
the transition from marine to lacustrine sediments (i.e., basin isolation)33. Stratigraphic correlation between the 
cores was established with AnalySeries 2.0.4.256, using tie-point in the elemental data. Loss-on-ignition (LOI) was 
measured to determine the total organic content57. Samples of 2 cm3 were taken every 2 cm and dried at 110 °C for 
24 hours. �e dry samples were ignited at 550 °C during four hours to determine the amount of organic material 
(LOI). Alongside with the Ti/(inc + coh) signal, the LOI record illustrates transitions between organic and min-
erogenic sediment.

To establish the chronology of the sediment cores, we sampled macrofossils retrieved from residues of 0.5 mm 
sieving, identi�ed and isolated using a binocular microscope. Radiocarbon ages were obtained through acceler-
ator mass spectrometry (AMS) at the Ångström Laboratory, Uppsala University. All radiocarbon ages were cali-
brated in the online CALIB 7.1 so�ware58 using the IntCal13 and Marine13 calibration curves for the terrestrial 
and marine macrofossils, respectively. Since the Marine13 curve has a built-in global marine reservoir e�ect of 
−440 ± 52 years, a local ∆R value for the Spitsbergen area of 105 ± 24 years was applied59. �e reported radio-
carbon ages are given in calibrated years before present (‘cal. yr BP’; BP = 1950)60. Age-depth relationships for the 
core sequence were established with the Bayesian based code ‘Bacon’ v. 2.261 in ‘R’ v. 3.4.062.

Postglacial relative sea level change. We determined the location of dri�wood, whalebones, and mol-
lusk shells on raised beach landforms in Palanderbukta by hand-held GPS, using a mean value of three instru-
ments. To obtain an accurate elevation above sea level, we extracted the elevation of the raised beach ridges from 
the ArcticDEM using the hand-held GPS coordinates. Average slopes in the surveyed area are <10%, keeping the 
slope-induced error on elevation to a minimum. �e ArcticDEM has absolute errors of 2–3 m RMSE in the plane 
and c. 2 m in the vertical. Most of the error is due to biases, and when these are removed through co-registration 
by translations, the error is reduced to 0.2 m RMSE63. All elevations were extracted from the same ArcticDEM 
strip, and with the slope-induced error being negligible, the internal 2σ error from the ArcticDEM to the eleva-
tion measurements is 0.4 m. In Palanderbukta, the relief of each raised beach is typically c. 1 m, which also limits 
precision. Hence, a conservative estimate of this sampling uncertainty is 0.5 m. Error propagation yields 1.1 m 
(2σ), which is the error of the heights of the samples relative to each other. As this error shows the internal con-
sistency of the relative sea level curve, we plot this error on Fig. 7. �is provides a homogeneous uncertainty of 
the points, thereby obviating the internal variation in inaccuracy in the GPS elevation measurements. �e error 
of the heights in an external vertical datum, or reference water level, is found by �rst registering the ArcticDEM 
strip to the GPS heights of each sample. We have 11 GPS heights and �nd a bias of 0.7 m and an error (1σ) of 1.5 m 
a�er heights have been corrected for bias. When also accounting for the 0.5 m sampling error, error propagation 
yields a 2σ error of 3.2 m relative to MSL, here de�ned as 0 m on the EGM2008 geoid. �e bias corrected heights 
and the external error are shown in Supplementary Table S2. Mean sea level rather than high tide level is used as 
vertical reference, because the area is microtidal with only 1–2 m between low and high tide5,64. We assume that 
the area has been microtidal at least since the LGM65,66. �e sampled organic material from the beach ridges was 
AMS radiocarbon dated at the Ångström Laboratory, Uppsala University. �e internal, dense parts of whalebone 
samples were subsampled and submitted for dating. Ages were calibrated as described above. A relative sea level 
curve was constructed from the pairs of calibrated radiocarbon ages and raised beach altitudes5,67,68. In Svalbard, 
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elevations of raised beaches re�ect the interplay between postglacial eustatic sea level rise and glacioisostatic 
rebound following the deglaciation of the Svalbard-Barents Sea ice sheet4–6,8,69.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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