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Abstract

Network-layer innovation has proven surprisingly difficult, in part because internetworking protocols ignore com-
peting economic interests and because a few protocols dominate, enabling layer violations that entrench technologies.
Many shortcomings of today’s internetwork layer result from its inflexibility with respect to the policies of the stake-
holders: users and service providers. The consequences of these failings are well-known: various hacks, layering
violations, and overloadings are introduced to enforce policies and attempt to get the upper hand in various “tus-
sles”. The result is a network that is increasingly brittle, hostile to innovation, vulnerable to attack, and insensitive to
concerns about accountability and privacy.

Our project aims to design, implement, and evaluate through daily use a minimalist internetwork layer and aux-
iliary functionality that anticipates tussles and allows them to be played out in policy space, as opposed to in the
packet-forwarding path. We call our approach postmodern internetwork architecture, because it is a reaction against
many established network layer design concepts. The overall goal of the project is to make a larger portion of the
network design space accessible without sacrificing the economy of scale offered by the unified Internet.

We will use the postmodern architecture to explore basic architectural questions. These include:

e What mechanisms should be supported by the network such that any foreseeable policy requirement can be
explicitly addressed?

e To what extent can routing and forwarding be isolated from each other while maintaining an efficient and
usable network?

e What forms of identity should be visible within the network, and what forms of accountability do different
identities enable?

e What mechanisms are needed to enable efficient access to cross-layer information and mechanisms such that
lower layers can express their characteristics and upper layers can exert control downward?

We plan to build and evaluate a complete end-to-end networking layer to help us understand feasible solutions to
these questions.

The Internet has fulfilled the potential of a complete generation of networking research by producing a global
platform for innovation, commerce, and democracy. Unfortunately, the Internet also amply demonstrates the com-
plexity and architectural ugliness that ensue when competing interests vie for benefits beyond those envisioned in
the original design. This project is about redesigning the waist of the architectural hourglass to foster innovation,
enhance security and accountability, and accomodate competing interests.



1 Postmodern Internetwork Architecture

Network-layer innovation has proven surprisingly difficult, in part because a few protocols dominate, which enables layer
violations that entrench technologies. These layer violations support the policies that were not explicitly designed for
within the existing architecture. For example, few policy goals, such as privacy, accountability, and even performance,
are supported by explicit mechanisms. Disruptions such as denial of service attacks, spoofing, and routing outages
expose imperfections in the architecture every day. The research community has identified many problems in the Internet
architecture and proposed solutions [31, 108, 32, 109, 43], most of which are constrained because they aim for some
backward-compatibility.

Many shortcomings of today’s internetwork layer result from its inflexibility with respect to the policies of the
stakeholders: users and service providers. The consequences of these failings are well-known: various hacks, layering
violations, and overloadings are introduced to enforce policies and attempt to get the upper hand in various “tussles” [34].
The result is an Internet that is increasingly brittle, hostile to innovation, vulnerable to attack, and insensitive to concerns
about accountability and privacy.

We propose to design, implement, and evaluate through daily use a minimalist internetwork layer and auxiliary
functionality that anticipates tussles and allows them to be played out in policy space, as opposed to in the packet-
forwarding path. We term this design a postmodern internetwork architecture because it is a reaction against many
established network layer design concepts. The overarching goal of the project, and the motivation for choosing a
minimal networking layer, is to make a larger portion of the network design space accessible without sacrificing the
economy of scale offered by agreeing on a common set of protocols. The primary tenets of our postmodern design
are (i) strict separation of concerns, and (ii) inclusion of explicit mechanisms in support of all foreseeable policies
influencing network-layer behavior.

These principles lead to a design with the following novel characteristics:

e \We separate path determination from forwarding to allow users greater control over the paths followed by packets
through the network. At the same time, providers may, if they desire, retain control over transit paths through their
networks for traffic engineering purposes. We also enable users to amortize the cost of determining a path from a
source to a destination over multiple packets (if they choose to do so) via a caching mechanism.

e \We eschew hierarchical identifiers (i.e., anything like IP addresses); components in the topology can thus be
added and rearranged without concern for allocation of scarce resources (topology-based addresses) and without
consulting a global authority.

e We capture an unforgeable record of the path traversed by each packet to provide the accountability that would
curtail denial of service, spam, and other forms of abuse. At the same time, we attempt to provide complete control
to providers over the “opacity” of their network topologies and policies. The portion of the recorded path inside
their network can be used to reconstruct internal topology only with the provider’s cooperation and as controlled
by the provider’s policy. We thus isolate the concern of path selection from that of topology disclosure.

e On the other hand (and to some extent in compensation for this isolation), our architecture requires transparency
of the top-level interconnection of realms. We believe the desire for providers to hide peering relationships is
an artifact of existing protocols (BGP) and the fact that realm-level customer-provider relationships are largely
constrained by topology today.

e \We separate the customer-provider relationship from topology by providing an explicit mechanism for expressing
why each router should forward a packet. A user might be a customer of several transit providers; explicitly
motivating routers to forward packets enables customer-directed routing that would choose among them.

e \We support information flow from the network to the user (for example, about traffic conditions or path availabil-
ity), and policy flow from the user to the elements of the network (for example, preferential drop policies) via
cross-layer “knobs and dials.”

Our research team brings to the project a wealth of experience in several critical areas, including design and im-
plementation of novel network architectures [39, 53, 52, 15, 16, 17]; understanding and inferring service provider poli-
cies [95, 97, 70]; distributed identities and PKIs [73]; and performance optimization using cross-layer hints [64, 98].
In addition, the Pls have a strong record of building real systems and demonstrating end-to-end benefit of architec-
tural decisions and in-network mechanisms. The team has a history of working together and blends complementary



skills in protocol architectures (Calvert/Griffioen/Sterbenz), protocol implementations (all PIs), novel routing schemes
(Calvert/Griffioen), high-speed networks (Sterbenz), security (Bhattacharjee/Spring), topology discovery, routing policy
and network management (Spring). These domain-specific skills will provide invaluable experience in the design and
implementation of the architecture. The team will meet in person semi-annually and hold bi-weekly teleconferences for
planning and accountability.

The rest of the proposal is organized as follows. In the next section, we discuss the motivating policy problems.
Section 3 gives an overview of our postmodern approach. Section 4 describes the design of our minimal internetwork
layer in more detail. Section 5 describes how we will carry out the research and evaluate our designs. Section 6 relates
our proposal to the state of the art and prior work.

2 TheRole of Mechanism and Policy

To arrive at a minimal internetwork architecture, we first ask, what must a network layer support? End-to-end addressing
is the answer of textbooks, but not the answer in practice: address translation, impeded reachability with firewalls, and
isolated virtual private networks are useful and common violations of end-to-end addressing and reachability. The new
answer, after decades of experience and frustration, is that the network layer must support a diversity of mechanisms
to achieve a diversity of policies. Accountability, anonymity, authentication, authorization, censorship, confidentiality,
copyright enforcement, protocol filtering, spam filtering, etc., are all reasonable, sometimes incompatible, policy goals,
none of which is well-supported by the Internet.

How might we enable a network architecture that achieves these policy goals? We first remove addressing, and with
it, routing and at least some aspects of forwarding. By decoupling these functions from the base network layer, we
open the possibility of isolating legitimate from malicious users, constructing policy-compliant source routes to deliver
end-to-end performance guarantees, and providing accountability where needed.

But policies complicate networking. Protocols specify behaviors that enable users to cooperate to achieve some
mutually-beneficial objective; a well-designed protocol admits a wide range of behaviors that achieve the objective. The
purpose of policy, on the other hand, is to constrain local actions in order to elevate the interests of one stakeholder over
another. Examples of policy in today’s network layer include preferring certain packets over others when resources are
scarce [18, 40], preferring to send traffic via some providers over others [94, 103], and which packets to forward across
a trust boundary [30]. In our thin network layer, policy also encompasses who can specify forwarding behavior, select
partial paths, and access information about the topology of a provider network.

Because explicit enforcement mechanisms are missing from IP, header bits are overloaded as implicit enforcement
mechanisms. The canonical example is the use of port numbers to determine whether traffic is associated with benign
or nefarious purposes. This overloading puts the user, who has no alternative mechanism for directing the traffic, at a
disadvantage. The result is inevitably an arms race, as the use of HTTP as a vehicle to get anything and everything
through firewalls attests.

Routing and Policy The interaction of routing and policy in the Internet has received much attention, because the
Border Gateway Protocol [81] allows providers to express policies regarding route preference, and conflicting policies
can result in routing instability. Users have no corresponding method of expressing routing policy. Conventional wisdom
holds that source routing—one alternative for enhanced user control—has been disabled because it circumvents ISP
routing policy. That is, if source routing were in widespread use, traffic engineering would not be effective at relieving
hotspots, and anarchy would ensue. One can imagine that source routing might also circumvent tenuously placed filters
in the middle of the network, allowing traffic that should otherwise not traverse an interface to do so. Conventional
wisdom, however, applies only to conventional source routing. No explicit policy language expresses the means for
routing through the network, and as a result, no intermediate router can decide whether a given source route is compliant.
Simply, even the inter-domain routing invariants described by Gao [44] cannot easily be verified on-line.

Our objective with respect to supporting greater routing flexibility is not to solve the BGP problems of today’s
Internet, but to recognize the complexities of prioritizing routes and of traffic engineering in a cooperative network as
first-class problems that deserve explicit design in the routing architecture. These goals need not rely on complex policy
expressions, but rather, on designed protocols that explicitly consider business rules and assume common-sense business
rules are universal.

Imagine a distance-vector-type routing protocol that includes not only the “cost” of each path, but a specification
of the type of traffic supported along it. We might then build a network that routes only solicited traffic: only traffic
that matches an expression can be delivered to networks and to hosts. In today’s terms, that expression might include



only connection-setup requests (SYN packets) that match a few ports, as well as the packets of existing connections
authorized by both endpoints.

Although annotations about which traffic can be supported along a path might wildly increase the amount of infor-
mation that propagates through the routing protocol, they might be kept only as optimizations: recall that source routing
allows some packets to traverse good paths or, perhaps, to include more motivation for forwarding that bypasses (some
types of) filters for solicited traffic.

The ability to place a filter like this into the routing protocol (or into another routing protocol atop the usual),
however, becomes yet another matter of policy: because state is consumed for every filter and preference, the allocation
of that state may have to be guarded. How to permit the manipulation of per-destination queuing and filtering is an open
question we intend to address.

Applications and Policy As noted above, a common goal of network policy is to enable, prohibit, or charge for certain
applications. Some applications exchange traffic that is performance-sensitive, causing a push for quality of service in
the network that would ostensibly enable such applications. Other applications are more or less suitable for different
networks: corporate networks are less likely to want to support file sharing or personal Web servers. Wireless providers
sell “Web” for one rate, “corporate email” for another, and unfiltered access for a higher price. Unfortunately, the middle
of today’s network is a poor environment for understanding applications—filtering on transport-layer ports and payload
inspection is increasingly difficult, particularly as the amount of encrypted traffic in the network grows.

This highlights another important tussle between users and network providers—one where users have the upper hand.
That is, users can tunnel and encrypt to hide information from providers and other users. Providers, meanwhile, must
turn to deep packet inspection, despite the fact that they have essentially no desire to see the content of the packets.
Instead, providers just need to know where to forward, why they should forward the packet (which is a more general
notion of whether applications are benign, whether a peering relationship exists, etc.) and how the user wants the packet
treated. In fact, given this information, intermediate nodes can directly apply policy to decide whether and what kind of
service to provide the packet.

3 A New Approach: Postmodern Networks

To enable the tussle [34] between users wanting greater control over how their packets are delivered and providers
wanting control over how their networks are used, we propose a postmodern internetwork architecture. The postmodern
internetwork architecture attempts to give providers the hooks they need to enforce policy while giving users the ability
to provide enough instructions and documentation so that providers can and will forward packets as users request.

In view of the policy requirements outlined in the previous section, the postmodern internetwork layer consists of six
functional blocks; each is provided space in the header (Figure 2).

A forwarding directive (“where”) that instructs intermediate nodes how to direct or duplicate the packet. The direc-
tive might be as short as an address or as long as a source route.

Motivation (“why”) that compels intermediate nodes to forward packets, which may consist of no information at all
or a lightweight proof that the sender or receiver is a paying customer.

Accountability tokens (“who”) that allow each conversation to be audited, in some networks to the precise authorized
endpoints, in more anonymous networks, only to the level of large aggregates by following a chain of references.
A “flow id” that indicates packets belong to the same conversation can be included in the accountability token.

Knobs (“how™) that express cross-layer hints to lower layers about forwarding intentions, for example that packet
would be better dropped than retransmitted, that it might expire after some time, or that it should be encoded
with forward error correction. These also provide access to the queuing and scheduling mechanisms needed to
implement end-to-end QoS.

Dials (“what™) that recover information from lower layers, collecting, for example, the maximum observed loss rate
along a path, the cumulative queuing delay, etc., that is needed to make informed decisions about congestion
control, end-system path selection, session-level encoding method, etc.

Each block, as an element of the network layer, may be modified by intermediate nodes. For example, “motivation”
may be added by providers on behalf of their customers. Forwarding directives may increase in detail through provider



networks, but remain coarse outside them. Accountability tokens may be replaced or transformed as packets cross trust
boundaries, so that presenting a legitimate query (with probable cause in the form of evidence of abuse) to each operator
is required to discover the original source. However, to preserve end-to-end semantics, each block may also have portion
that the user can designate to remain unmodified end-to-end, which cannot be modified without detection.

3.1 Setting

The network consists of links interconnected by nodes. Links must support packet transfer, but may do so in any way
using any underlying technology. We expect links to be symmetric or that they can be made to appear symmetric.
Nodes may include single hardware devices or entire sub-networks; a node can be defined recursively as a set of links
interconnected by nodes. We illustrate this recursive definition in Figure 1.

physical nodes

where why who how what
forwarding |, yivation | CCOUNt=| knops| dials
directive ability

payload

conceptual nodes
(recursively defined)

Figure 2: Postmodern header

Figure 1: Network Abstraction: Nodes connect links
and may define trust or realm boundaries.

The network is a hierarchy of nodes structured along the boundaries between organizations (departments, divisions,
companies, consortia, etc.). Trust boundaries divide the network and may block the flow of control information and
data packets. Trust boundaries typically align with node boundaries, but are not required to do so. Providers operate
networks of links to provide a service (e.g., an ISP network, a wireless network, a university backbone, a sensor net,
etc). We use realm to refer to these (virtual) network nodes that often define trust boundaries as well.* Because a realm
is just a (virtual) node connecting links, the realm “as a whole” must support the functional components required by
our postmodern internetwork architecture. Typically, this functionality will be supported at the edge nodes. A realm
may, to connect links to other realms, use any underlying network technology to carry traffic: realms may, for example,
be MPLS-like [83]. Nodes inside a realm that wish to be an endpoint of communication must understand and support
the functional components needed for inter-realm communication, though they need not understand details of remote
realms. The network infrastructure (in particular, links) is typically stable over time-scales of hundreds to thousands of
seconds. However, our architecture is specifically designed to also accommodate links where this is not the case (e.qg.,
links between mobile wireless nodes). In such cases, we need to provide for local mechanisms to “fix up” the problem
without end-node action.

In addition to this conceptual hierarchy of realms and their interconnection, we make two assumptions about future
network characteristics that will enable our design. First, packet header bits are not and should not be precious. Band-
width is sufficiently cheap that the network should favor carrying more information in the header rather than sacrifice
functionality. Second, network hardware is powerful enough to provide the flexibility needed to achieve the performance
goals, provided some attention is paid to promoting parallelism and other performance requirements in the design.

3.2 Design Goals

Within this setting, we have overarching design goals that encompass both our desire for a minimal networking layer
and for the behaviors of the mechanisms within it. Broadly, the goals follow from and elaborate upon our key principles:
separation of concerns and explicit mechanisms to support policies.

1Terms for network aggregates are overloaded; realms here are not identical to NAT realms, Kerberos realms, etc.



e Support for any foreseeable policy requirement via explicit mechanism. This forces tussles to play out explicitly,
under the control of the mechanism, as opposed to “under the covers.”

e Complete isolation of routing and forwarding. Routing (path selection) may be in-band, out-of-band, or some
of both. This provides maximum flexibility with respect to the amount and type of resources devoted to path
selection.

e User control over inter-realm paths, within the constraints imposed by provider-specified policies. This allows for
users to select paths to achieve quality or other policy objectives.

e Isolation of the basic forwarding mechanism from any kind of endpoint identifier. This makes it possible to use
different forms of endpoint ID without modifying the fast forwarding path.

e Complete independence from hierarchical, topology-constrained identifiers (addresses). This obviates global num-
bering authorities, and lowers the cost of modifying the network topology (e.g., in mobile networks).

e Support late binding of provider policies to define which packets are forwardable, and how they are forwarded.
This enables dynamic negotiation of compensation between users and providers, for example based on current
conditions.

e Support single-packet exchange in one round trip.

These objectives, each of which (except the last) is new relative to today’s Internet, would offer significant im-
provements in the elegance of design, in the ability to enable tussles to play out between competing interests, and in
enabling new applications. They focus the following discussion of how we plan to build example mechanisms within
the postmodern internetwork architecture for forwarding, accountability, motivation, and cross-layer knobs and dials.

4 Research Plan

In this section, we describe the three major project thrusts: the design and implementation of a forwarding mechanism
that is independent of routing and does not require hierarchical addresses; the development of mechanisms to support
policies governing accountability and forwarding motivation; and cross-layer mechanisms for performance and manage-
ability.

In what follows, the term user denotes the entity that originates or receives packets; when a user has a role to play in
choosing paths or as a principal in the network, we expect an application or kernel stack to make decisions on the user’s
behalf without explicit involvement. Every user has a provider, or realm. Typically this relationship will be established
out-of-band, though on-the-fly relationships may be supported by some, for example, wireless, providers.

4.1 An Internetwork Forwarding Service

We propose a mechanism based on loose source routing as one of many possible means of providing forwarding direc-
tives within the postmodern internetwork architecture. Our approach maximizes the separation between forwarding and
routing, so that tradeoffs are exposed and optimizations in each dimension can be exploited. IP, in contrast, entangles
forwarding and routing: every node computes its own mapping from locator (IP address) to path, and that mapping is
applied at every hop. IP “pre-pays” the cost of finding paths to all destinations from all nodes and then amortizes this
cost over all packets. Thus, the marginal cost of path determination is the same for all packets. The IP approach works
reasonably well in a homogeneous, relatively static network. But when paths in network change rapidly (e.g., mobile
nodes), when packet transmission is expensive for some (battery-powered) nodes and nearly free for others, or when
applications require highly constrained paths—more flexibility in the “amortization schedule” is needed.

A second advantage of our approach is that forwarding does not require hierarchical identifiers linked to topology.
Consequently, concerns about scalability and global administration of namespaces are confined to various resolution and
bootstrapping mechanisms, and do not interact with the “fast path.”



4.1.1 Forwarding Mechanism

The forwarding mechanism is based on the following postulates:
e Every link (channel between forwarding elements) has a globally unique linkID that need not be tied to topology.
e Each forwarding element knows the linkIDs of directly attached links.

e The forwarding directive in each packet specifies the links the packet should traverse. For unicast, the forwarding
directive is a sequence of linkIDs; for multicast, it is a tree of linkIDs.

Each forwarding element (FE), upon the arrival of a packet, parses the header to (i) verify that link on which the packet
arrived is consistent with the header, and (ii) determine from the forwarding directive the link(s) over which the packet
should be forwarded. If the forwarding directive is complete, the next link(s) are directly attached to the FE and the
packet directed to each output link specified. Some linkIDs in the forwarding directive are virtual links that tell how
to demultiplex the packet to an application or transport protocol at the destination. Before transmission, the header is
updated to record the link traversal. If any specified next link is not directly attached to the FE, a forwarding fault occurs
and the packet is diverted to a fault-handler, which fills in the “gap” in the path, using routing information. We describe
forwarding fault handling in Section 4.1.3.

This mechanism achieves our goal of separating routing and addressing mechanisms. It also allows forwarding
directive information to be cached, thus supporting our goal of allowing the cost of path determination to be amortized
over multiple packets. Such caching might be accomplished in several ways; we propose to explore two. The first is
simply to record the actual path traversed by the packet in the header (as in the IP record route option). A second option
is to cache the forwarding directive information at each FE. Each FE would store a mapping between the incoming and
outgoing link(s) in ephemeral state [25], where this mapping would persist for a short, fixed duration then disappear.
This would essentially implement tag switching, but with bindings that disappear from the switch after a short time
and are not refreshable. The advantage of this approach (over soft-state) is that it allows the lookup mechanism to be
designed to meet a worst-case throughput requirement. Setting the lifetime to maximize the expected number of times a
path can be re-used before it expires is an engineering decision.

Both caching approaches allow the user to trade off the risk of the path breaking against the cost of re-determining
the path. Explicit caching in the packet gives the user control over how much of the path is re-used. Paths consisting of
links with stable performance might be re-used for a long time. Paths that include mobile links, on the other hand, might
not be re-used at all. Meanwhile, the “dials” mechanism (Section 4.3) provides the information needed to evaluate this
tradeoff quickly: path performance and stability information that does not depend upon the experience of many packets.

Bidirectional paths would allow knowledge accumulated in forwarding a packet through the network to be used by
any reply. To make this possible, it is sufficient to postulate that all links in the network are bidirectional, then rely on
forwarding faults to patch routes that cannot be made symmetric. Some kinds of links that we want to support, such as
satellite and wireless links, are not inherently bidirectional, but asymmetries may be patched by forwarding elements
transparently to the end systems. Whether this approach is reasonable for all of the interesting situations is one of the
research issues to be investigated.

The remaining questions are: how forwarding directives are obtained and constructed, and how forwarding faults are
handled. To answer those questions, we first consider the bigger picture.

4.1.2 Model of Communication

The general communication process involves the following parts and steps (Figure 3):

1. The objective of the communication (an informal notion representing what the user wants to accomplish) is re-
solved into a destination specification, which is identified by a token that is independent of location in the network.
(Intoday’s network, a typical destination specification is a URL, an email address, or a DNS name; the “resolution”
is often handled out-of-band, but may be performed interactively, for example, through Google.)

2. The destination specification is resolved to a locator , which is determined by the destination’s location in the
network. (In today’s network, the locator is the IP address and this resolution step is handled by the DNS.)

3. The locator is resolved to a path through the network. The path depends on the locator, the source’s location,
and the policies of the providers whose networks are used by the source and destination. (In today’s Internet, this
resolution is performed hop-by-hop as the packet travels through the network. Each node determines the next hop
in the path according to its own policies and the destination IP address.)
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Figure 3: Communication steps

In our architecture, the first step would remain more or less unchanged; as in the current architecture, we expect
to support various forms of destination specification, possibly with their own resolution infrastructures. The locator
produced in the second step would be the linkID of an entry link into the realm containing the destination. It is determined
by the topological location of the destination in the network, but need not be identified by a hierarchical address. The
resolution mechanism for this step provides a mapping from destination specifications to (realm, ingress link) pairs.
This mapping might be accomplished using a hierarchical system like the DNS, but more likely would use a global DHT
operated by cooperating providers.

In the third step, as in today’s network, the task of determining a path to the specified location in the network is
divided between the originating user and the providers of realms through which paths between source and destination
pass. Our paths can be considered to consist of a sequence of three segments. (We consider linear paths here; extending
to trees is straightforward.) The exit segment includes all links from the originator to the egress link of the originating
provider. The entry segment consists of the link that enters the destination provider and all subsequent links. The transit
segment consists of everything between the exit segment and the entry segment.

The transit segment will be at most partly specified when the packet leaves the originating realm; it starts out as a
specification of the realms to be traversed by the packet en route to the destination realm; each realm is specified by an
entry and exit link. This sequence of realms may be determined by the user through some out-of-band means, or the
user may choose to allow the originating provider to select the transit path. As the packet enters a realm, a forwarding
fault occurs and a path to the designated exit link is determined according to the traffic engineering goals of the provider
network. The resulting path segment is added to the forwarding directive. Each provider can use a mechanism of its
choice to manage transit paths within its network.

The entry segment is determined by the destination provider once the packet enters the destination realm. We envision
two ways for this to happen. One is for the receiving user to provide the originating user (through some out-of-band
means) with a path token that specifies the path from the entry link to the destination. The other is for the destination
provider to perform the resolution in-band, when the packet enters the destination domain. For this to be possible, the
forwarding directive must contain the destination specification.

Finally, the exit segment is obtained by resolving the originating domain’s egress linkID, either using routing state at
the originating node, or the provider’s mapping system.

4.1.3 Forwarding Faults: Offloading Path Resolution

Forwarding faults occur for one of two reasons: (1) path resolution and refinement is (implicitly) requested by the source,
or (2) the specified path contains an error. Because realms are defined recursively, the path resolution step can be applied
recursively, distributing the work of determining the complete end-to-end path to the sequence of realms on the way to
the destination. This does not require hierarchical addresses; it suffices, for example, for nodes to know the topology
(including linkIDs) within only their realm.

Faults resulting from a path error can support useful features such as mobility. Example path errors include dead
links, malformed paths that include non-existent links, paths that do not comply with network policy, packets headers
with insufficient motivation tokens to use the requested link, or the forwarding behavior requested by the knobs is
unavailable. One response to a path error is to return an error message to the sender so that it can select a new path



and update its routing state. A friendlier alternative is to have the network find a route that will get the packet to its
destination. Because FEs must handle “normal” forwarding faults, there is little harm in reusing the mechanism for error
cases. When transmitting packets, sources specify which of these behaviors they desire, akin to the “don’t fragment” bit
in IP.

Packets that experience forwarding faults are diverted from the “fast path” for handling; one of three cases applies:
(1) the node knows the realm-specific routing information needed to get the packet to its next hop and modifies the
forwarding directive appropriately, or (2) the node knows a node to contact that can map the destination specification
(carried in the forwarding directive) to an intra-realm path (e.g, a realm-specific DSR service) that will reach the des-
tination, or (3) the node forwards the packet to a node that has more knowledge and can assume the responsibility of
forwarding the packet toward its destination.

Another feature of this type of incremental address resolution is that it permits dynamic route adaption to enable fea-
tures such as mobility, load balancing, server selection, and subcasting—all of which can be controlled by the receiver’s
realm. For example, if a path fails because a mobile receiver moved, the faulting node can use either option (2) or (3) to
automatically discover a new route to the destination.

4.1.4 Routing Protocols

The goal of a routing service is to map a destination location to a path for the forwarding layer. Because a key design
goal is separation of concerns, we implement routing as an independent service. Because the network is organized into
hierarchical realms, conventional hierarchical routing approaches similar to those found in the Internet can be applied,
but because our forwarding mechanism uses linkIDs, the routing protocol design differs significantly. In particular, our
routing protocols are concerned exclusively with collecting and disseminating topology information.

e An inter-realm protocol, exchanging sufficient path information to construct at least policy-compliant paths to
entry segments. Policy enforcement is coupled with forwarding, not routing, because any end node can construct
a route. The simplest implementation of an inter-realm protocol would start from BGP, substituting LinkIDs for
autonomous system numbers.

e An intra-realm protocol fills “gaps” left in source routes computed from inter-realm routing information. Because
realms can be arranged hierarchically, the routing protocol may need to act both as an intra-realm protocol and an
inter-realm protocol. Depending on the size of the realm, conventional link-state methods may be used, optionally
with traffic-engineering overrides to fractionally route some traffic away from the shortest paths should links
become over-utilized. A realm may chose to keep its internal paths private, open them to the public, or encrypt
their routes before making them visible outside the realm. In the latter case, the route only becomes meaningful
when it is being resolved inside the realm.

Each realm has discretion over whether the intra-realm routes are erased from the forwarding directive as it leaves the
realm (thus preventing re-use for packets going the opposite direction). Although this decreases efficiency, the secrecy
involved may be valued. It may also be valuable in situations where underlying network makes maintaining virtual
symmetry too expensive.

4.1.5 Research Tasks in Forwarding

Our work has three major components: First, we will implement the forwarding engine on various platforms, including
the linux kernel. Second, we will build the necessary fault-handling and topology-exchange mechanisms for both inter-
and intra-realm use, as described above. Finally, we will experiment with a DHT-based service for resolving destination
specifications from an unstructured space to entry-link locations. The implementation of a DHT using our link-based
forwarding service, without the global connectivity provided by IP, will be an interesting research challenge.

4.2 Motivation and Accountability

In the thin network layer, packets contain explicit motivation and accountability headers that describe why the packet
should be forwarded and who is responsible for that packet. Both of these statements require principals, identities,
and certification to convincingly demonstrate that a packet was or should be handled by a particular entity. Part of our
proposed work is to understand what forms of identities must be exposed to the network. Through our research, we
expect to better understand the following fundamental questions:



e Should network-visible identities represent processes, users, hosts, networks, or some other aggregate? What
identities must be carried with every packet, and which can be amortized across streams of packets? What are the
tradeoffs in performance, security, and flexibility?

e What new forms of end-to-end accountability are enabled by having strong identities in packets? Can actions on
behalf of packets be accounted for across realms?

In the postmodern network, a node will forward a packet only if the packet contains explicit “motivation” bits, but
the packet may not need explicit source or destination addresses. This is the opposite of the current Internet, in which
forwarding motivation is implicit but an explicit “identity” of an IP address is carried in each packet. Because this
identity is trivial to spoof, many network-layer security violations are possible, including DoS attacks.

Identity makes it possible for senders and networks to populate the motivation fields and the accountability fields
with unforgeable tokens. To provide these identities, however, requires addressing the following three questions: Who
issues the identities? What principal is identified? And, how are principals identified?

Consider an extreme design point in which each packet carries a cryptographic identity that would enable network
providers and destinations to unambiguously identify “senders” and the “network path” taken by the packet. We quote
both senders and network path because both can be specified at different granularities, from individual host processes
to whole networks at the sender and from network interfaces to realms along the path. Different granularities may be
easier, for example, allowing a host to offload motivation to its network provider, or may be in keeping with provider
concerns of keeping a secret, autonomous network where only high-level information about network paths can escape.

Identities could conceivably be provided hop-by-hop with each pair of adjoining realms setting up a symmetric key.
Such a solution would of limited use since it either would require each realm to share a key with all other realms, which
does not scale, or identities would only be valid in an adjoining realm. Such scoped identities provide some benefit—it
can capture customer-provider and peer relationships—nbut is ultimately unsatisfactory because end-hosts cannot reliably
identify “who” originated a packet beyond asserting which of their upstream ISPs the packet came from.

Hence, we claim that any useful packet identification scheme must rely on asymmetric keys. To be useful, asymmet-
ric keys require some form of certification authority and PKI (or a key generation authority if Identity-based Signatures
are used [20, 46]). We consider these different approaches next.

Identity Authorities for a Global Network Assume that each entity (hosts or realms) generates the public key it uses
to sign packets. A single global certification authority (CA), possibly an analog to IANA, could be used to certify public
keys, and these certificates could be carried along with signatures on packets. Such a monolithic solution is likely to be
unsatisfactory because all realms would have to trust a single global authority. Such an authority would have immense
power to decide who may access the network and at what price. The authenticity of every identity in the network would
depend on the single authority’s correct and honest behavior. In a CA-based solution, trust in an identity is by fiat:
identities are trusted since the authority is trusted. Such a solution is intrinsically fragile, since the compromise of a
single site or key can devastate the entire identity system, leading us to consider decentralized authorities.

Decentralized Authorities A completely decentralized identity authority will have no single point of failure and will
not require trust by fiat. One possible solution is to use a system in which authority is inferred using trust and reputation,
akin to a global deployment of PGP [110, 22]. Reputation systems and trust metrics are an active research topic [59,
69, 21, 71, 37, 50], and research prototype PKIs based on trust have been built [27, 73]. Part of our work will be to
understand if and how this research can be pushed down to the network layer, where concerns of latency and scalability
pose far greater problems.

We will also investigate hybrid authority systems in which a set of well-known principals (e.g., tier-1 ISPs or some
other entities) establish a clique which then certifies all realm identities using threshold signatures. This scheme requires
that users (or other principals for whom keys are generated) trust a few of many possible cligue members. As long
as the thresholding scheme is constructed so that no certificate can be generated without involving at least one trusted
clique member, all users can trust all keys, without necessarily trusting all of the signing clique. Finally, we will also
experiment with thresholded hierarchical identity based signatures [2] since this would allow network entities to verify
signatures without requiring globally trusted entities or a PKI.

Authenticating Packets Next we assume that identities are certified, using either a centralized or decentralized au-
thority, and focus on questions of which entities are identified and the overhead of carrying packet signatures.



The first question to address is that of which principal should be identified in every packet? In the network layer, is
it sufficient to identify realms, or should higher layer entities be visible at the network layer? Finer-grained identities are
useful for actions that might require higher resolution, for example, blocking individual hosts that are part of a botnet
instead of blocking entire realms.

We will investigate to what extent identities from higher layers help with accountability within the network. For
example, consider network architectures, such as TVA [109] and Off-by-Default [4], that require applications to acquire
credentials before forwarding packets. Application-layer directives (e.g., whether a particular connection should be
allowed or not) are mapped onto objects (credentials) that are interpreted inside the network, and these credentials are
used to stop unwanted traffic close to the source. In general, adding higher-layer identities will enable the network layer
to parse and act upon higher-layer directives. Although such an architecture may not conform to the usual norms of
layering, providing flexible mechanisms for stopping unwanted traffic close to the source is sufficient justification for
rethinking network visible identities.

Generating and carrying public key signatures and associated certificates will incur significant (possibly untenable)
overhead. Different mechanisms may reduce this overhead: instead of signatures per packet, only control packets
or connection-initiation packets could contain signatures. Alternatively, signatures could be “spread” over multiple
packets, such that an end-host (or a logging router) would have to gather a few packets before it could verify a complete
signature. Both these alternatives have been studied: TVA [109] signs control packets to generate credentials, while
EMSS [77] amortizes signature overhead by periodically generating packets that contain the signed hash of a few prior
packets (which are sent without signatures). Both solutions require per-entity state inside the network and additional
mechanisms such as fair queuing to guard against DoS attacks against the verification process.

We propose to investigate efficient mechanisms for carrying packet signatures, including schemes that spread signa-
ture over time (sign only a few select packets) or over space (partial signatures carried in all packets). Current hardware
and router economics prohibit carrying strong signatures in every packet. However, we expect our research to lead both
to a better understanding of the benefits that accrue from having strong identities in packets, and to new mechanisms for
efficiently proving identities in packets.

Identity and Anonymity There is a fear that demanding strong identities in each packet will preclude anonymous
communication. However, this is only the case if the underlying protocol requires source spoofing (which no reasonable
protocol does). It is important to understand that in anonymous communication protocols, users who wish to be anony-
mous choose a pseudonym (typically a public key). The adversary is assumed to know the set of pseudonyms and the
set of hosts participating in the anonymity protocol. The primary goal of the protocol is to keep the mapping between
host and pseudonym secret. Other properties that the protocol maintains include keeping the source of a message secret
from the receiver (sender-anonymity), the recipient of a message secret from the sender (receiver-anonymity), and the
fact that two parties are communicating secret from an observer (sender-receiver anonymity). However, in no case is
the set of hosts participating the protocol kept secret, and thus, a properly designed anonymous communication protocol
will maintain its security properties even if every packet is marked with a network visible user signature.

A slightly different form of anonymous communication enables users to access public services without disclosing
their identities. These protocols use trusted third-party proxies (or sequences of proxies) to access the service and return
content to the anonymous user. Once again, these protocols can be used without modification and without compromising
their security properties.

Accountability Network-wide identities enable strong end-to-end accountability. Assume that each network-level
entity (host/router) has a two-part signature: the first part identifies its realm and the second part identifies the host/router
within the realm. Such signatures could be added to the accountability headers in the postmodern network to to generate
a path signature, a record of the path a packet traversed by a packet. Such a path has two properties: (1) it unambiguously
identifies each realm traversed by the packet, and (2) 1SPs/network providers still maintain complete control over how
much of their topology is divulged. The first property holds since a rogue ISP cannot forge a signature that does not
belong to its realm.? The second property follows since ISPs can (presumably) forge any signature within their domain.
We next describe use of path signatures (network-wide whitelists and blacklists) that we propose to implement and
conduct experiment with.

Filtering and Credential-based Forwarding Path signatures described above can be used to push filters (blacklists)
into the network [76], and can also be used to implement credential-based access to protected resources. We explain

2Rogue |SPs may not put a signature on the packet, but this can be detected at the edge of the rogue |SP's network.
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with an example: suppose host V (the victim) receives packets from host A (the attacker). The packet contains the path
signature which V can use to determine the nodes (not necessarily particular routers, since ISPs may choose to aggregate
parts of their topology) traversed by A’s packets. V can then request its ISP that all packets that match the path signature
be dropped. V’s ISP, with whom V has a financial contract, will honor this request, and may choose to propagate the
filter further. Since the path signature cannot be forged, the offending packet stream and associated upstream providers
are identified unambiguously. The upstream providers may recursively choose to block this traffic, since it reduces
transit traffic on their network. Interestingly, A’s provider may choose to not propagate the filter request; doing so allows
the provider to charge for packets sent by A. In this simple case, the victim (V) needed to block packets from only
one distinguished host (A); however, if multiple hosts in the victim domain are compromised, the attacker can generate
packets with many path signatures that share the same suffix. V may choose to filter based on a suffix that blocks hosts
from the entire offending realm unless they include a credential carried in the motivation header. The motivation header
provides a “dual” to the accountability header, and these two functional blocks allow us to seamlessly implement both
default-on and default-off networks with fine-grained control. In general, the motivation header can be used to subsume
(and implement) credential-based forwarding schemes directly at the network layer including TVA [109], SOS [62],
Mayday [1], and SIFF [107].

4.3 Knobsand Dials

Although layered architectures have the benefits of modularity and preserve the independence of design choices, opaque
layer boundaries are now thought to hide too much, resulting in implicit mechanisms that make the wrong assumptions,
preventing straightforward performance optimizations and complicating diagnosis and management. Replacing opaque
boundaries with translucent boundaries can enable inter-layer control loops that dramatically improve performance, as
well as enhanced monitoring, control, and management capabilities [33, 99, 65].

The canonical example of implicit mechanisms is embodied in TCP, which, because the underlying links layer char-
acteristics are completely hidden, assumes that loss events are caused only by congestion and never by corruption [56];
when it runs over wireless lossy (but uncongested) links, performance suffers because the response (backoff vs. retrans-
mit) cannot explicitly matched to the stimulus (congestion vs. corruption). There has been significant research activity
concentrating on TCP over wireless links [64, 3], with mixed results at best and negative results at worst (e.g. [60]). Our
previous work [64] has shown that an order-of-magnitude improvement bound is theoretically possible if congestion
losses can be discriminated from corruption losses so that TCP takes the proper action: back off only if congested.®

Cross-layer optimizations allow lower layers to express their characteristics via dials to upper layers, which in turn
can exert control downward on lower layers through knobs. The key aspects of our postmodern internetwork architecture
are separation of concerns and explicit mechanisms. Knobs and dials allow control information to be explicitly conveyed
vertically across layers, without loading assumptions and implicit behavior into the protocols.

The vertical control require horizontal signaling within a layer. For example, an end-to-end service may wish to
discover a characteristic of a path, for example, available capacity [102, 57]. At each forwarding hop, the forwarding
element transforms the dial field to lower the recorded available capacity when a bottleneck is reached. Such signaling
can assist network monitoring and management, and also allow applications to monitor service [75].

Dials allows cross-layer optimizations for performance enhancement: the dial field can convey channel conditions
and errors at the desired granularity (per packet or per flow) so that end-to-end protocols can use the proper error and
transmission rate control functions. The application can report its reliability requirements (policy) via knobs, which can
be used by the network to adjust the error control mechanisms applied.

Cross-layer signaling may be in-band, in which a data packet accumulates information about the path it traverses, or
out-of-band, in which probes recover the characteristics of network paths. Because we support knobs and dials in every
packet, our approach supports both in-band operation and out-of-band: probes are simply packets with empty payloads.
This unifies data transport and signaling into a single, simple mechanism. The potential benefits of knobs and dials are
an improvement in performance of the application and manageability of the network service. But there are also costs
measured in the complexity of signaling and state managed, and the possibility of reduction in overall performance
due to side-effects. This has been one of the problems with current ad hoc tweaks to existing protocols that lack the
architectural framework to implement knobs-and-dials in an understandable manner.

We plan to understand and quantify these tradeoffs by exploring and implementing points in a layer vs. mechanism
design matrix[98], and verifying current simulation of this framework. The two key horizontal protocol functions are

30ur work [64] also showed that this theoretical bound is diffi cult to achieve in practice when constrained by the backward-compatible TCP/IP
semantics specifi ed in RFC 1122.
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error control and transmission rate control. At a given layer, these functions can be implemented as closed-loop feedback
(e.g. ARQ), open-loop (e.g. FEC), or not at all. The question them becomes: Given a protocol function, at what
layer(s) should it be implemented (end-to-end, hop-by-hop, or both), using what mechanism (open vs. closed-loop),
given network characteristics (e.g. path loss characteristics), and constrained by application policy (e.g. reliability
requirements)?

We will implement an end-to-end protocol (initially, an augmented UDP with postmodern shim headers and con-
figurable error and transmission control) that supports the postmodern internetwork architecture header in general, and
knobs and dials in particular. We will use a variety of applications to test user-level performance, including Web brows-
ing and media streaming. Hard problems that we plan to tackle within this framework include how to model and analyze
the multivariate complexity of these mechanisms, how to measure and understand bad side-effects and (feature) interac-
tions of local optimizations, and what are the minimal but necessary set of knobs and dials. Further, by implementing
and evaluating cross-layer optimizations within our postmodern internetwork architecture implementation, we hope to
understand the policy issues in enabling knobs and dials across realms.

5 Research Method

Our research philosophy puts great weight on empirical evaluation: we will build implementations, “live” in the network
we construct, and learn about the limitations of our designs with experience. To “live” in the postmodern internetwork
architecture, we must use it for everyday tasks: porting existing applications and gatewaying them to the rest of the
Internet where needed. This is our key goal and benchmark for success.

Using an implementation of the new architecture provides several benefits not achievable through other means. Our
ability to separate routing, forwarding, and addressing can be compellingly demonstrated only by implementing different
mechanisms. Ideas for how to support new applications by exploiting new capabilities in network-layer knobs, dials,
and accountability will come only from experience. Finally, by migrating existing applications to the new network layer
and running all atop a conventional network, we hope to show the architecture’s ability to encompass these and future
technologies.

5.1 Implementation and Evaluation

We now summarize our evaluation plan, which consists of Emulab-based [106] kernel implementation development and
testing, PlanetLab-based [78] wide area deployment, and interfacing with the network to live within it. We expect that the
GENI [45] environment would contribute more realistic reporting of faults and control over virtual links for our knobs
and dials components that, when running as an overlay, may have limited flexibility. For example, overlay links may be
able to probabilistically achieve a specific loss rate using forward error correction, but are clearly unable to guarantee
any high level of service. Such limits demand imagination to infer what would happen given more control, but there is
much experience to be had even using virtual overlay links.

Emulab Experiments

Emulab is a network testbed environment developed by the University of Utah that supports experimentation with
kernel modifications, especially those that affect network stack behavior. The Emulab facility located at the University
of Kentucky is managed and operated by the Pls of this proposal and will serve as an excellent resource for the initial
phase of our development and testing. In particular, we will use Emulab to test a kernel-level implementation of our thin
network layer. We expect to supplant the IP stack of the kernel by tying our own TCP- and UDP-like transport protocols
directly to the thin network layer. The kernel must include the forwarding engine for performance; fault-handling may
be provided by a user-level process that exchanges routing information on-demand to manipulate ephemeral forwarding
state within the kernel. The controlled environment offered by Emulab allows us to reproduce experiments to isolate
problems and unexpected behavior.

PlanetLab Experiments

A second, partially concurrent, phase of our evaluation will target our thin network layer implementation to user-level
processes on PlanetLab. PlanetLab offers real, unexpected behaviors [96, 82] such as failures, resource limits, arbitrary
processing delay, memory corruption, contention with real users, and misbehavior, making it a challenge platform for
performance-sensitive distributed services.
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PlanetLab will help us experiment with knobs and dials across virtual network links between nodes, inter-domain
policy restrictions such as not using Abilene (Internet2) for commercial endpoints, accountability tokens that trace any
perceived-to-be-abusive traffic back to an ingress point and user, inter-realm routing in which different PlanetLab sites
(or groups of universities attached to the same aggregate network like CalREN or the Pacific Northwest GigaPop) act as
realms.

A particularly powerful component of the thin network layer will be the domain-specific endpoint resolution layer
that maps a destination specification to an entry link or links. We call this the destination specification resolution
(DSR) service. Various destination specifications could be implemented, each with different addressing abstractions. For
example, we plan to implement a Speccast[80] DSR based on abstract-able predicates, a geospatial DSR service based
on location[55] (e.g., GPS coordinates), a hierarchical name-based DSR service (e.g., similar to DNS), and an IP-based
DSR service. The IP-based service will allow us to easily port network applications written to the sockets interface with
IPv4 addressing, likely without even recompiling the application. An IP-based DSR need not guarantee that nearby IP
addresses are nearby in topology: a flat routing protocol is possible. The facilitates more flexible IP address to host
assignments and can also support mobility efficiently.

Experimentation with PlanetLab will doubtless yield valuable experience in itself, but it is a means to our true
benchmark of success, living within the network.

Living with the Network

Living in the network is a challenge. The architecture, to support our demanding use patterns must support our
applications, interface sanely with the outside world, support mobility, and be extensible in the applications and services
that can be discovered. To “live in our network” is a strong statement that it supports the needs of today, with the security,
manageability, and flexibility we have designed in for future evolution.

One approach to integrating the old and new networks will create a new realm representing the current Internet that
has multiple links into our thin network layer network (i.e., PlanetLab nodes). Unlike IPNL [43], the legacy Internet
bears no special role aside from providing service to legacy content and users.

While connecting from a customized network to the outside requires very little application work—simple address
translation at edges suffices—application-level gateways, such as mail servers and Web proxies, will be needed to provide
access from the legacy Internet to services provided by machines in the thin network layer network.

By connecting our thin network layer network to conventional Internet services, we will be able to “live in our
network”—to carry out everyday activities such as sending and receiving email, surfing the Web, and serving up Web
pages. The IP-based DSR service will, given an IP address, return a nearby PlanetLab node, either to the source (least
likely to choose a bad path) or to the destination (providing the greatest flexibility); that node’s link into the IP realm will
be the entry link in the forwarding directive. Similarly, traffic headed into the thin network layer from the IP network can
be directed, via DNS tricks or application-level gateways, to enter the thin network layer at chosen entry points, although
we do not expect to innovate in ways to trick the legacy IP network into performing well. By forcing real-world traffic
the IP realm to enter and then traverse a sizable portion of the thin network layer network before it reaches its intended
destination, we create an environment in which policies can be deployed to prevent, redirect, or give preference to certain
packets—using real-world traffic. Servers located within the thin network layer can use network layer information to
embed detailed accountability information in mail messages to trace and black-hole spam, can use network layer knobs
and dials to block connections from misbehaving subnetworks, can use detour routes to avoid performance bottlenecks,
etc.

5.2 Success Metrics

Our thin network layer architecture posits several novel mechanisms that run contrary to conventional wisdom. Conse-
quently, a key metric will be whether they in fact allow tussles to be played out in policy space. First, we hope to show
that both user and provider policies can be accomodated by composing and resolving forwarding directives created by
opaque routing services and filled in by intermediate realms. Routing and forwarding without explicit node addressing
is a powerful, but still unverified, primitive, central to our assertion that addressing does not belong in a network layer.
Consequently, we need to show that it can be done and then measure the overhead/costs that result. Second, we hope
to demonstrate the ability to dial-in choices along tussle-spaces, including defining configurable levels of accountabil-
ity, privacy, routing control, quality of service levels, filtering, etc. Although we feel the proposed mechanisms offer
the functionality needed to play out these tussles in policy space, achieving “configurable” control may require new or
different sets of mechanisms, not simply a different parameter setting. Our benchmark is to demonstrate support for
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representative classes of applications including financial (high accountability), medical (high privacy), mobility (low
routing overhead), and filtering (customized network policy). Third, we hope to show how to exploit knobs and dials
in policy-compliant ways to make forwarding behavior suitable for demanding interactive applications under dynamic
conditions. The question is not whether the network can offer a particular level of service, but rather whether it can pro-
vide applications with sufficient information to enable the application-level decisions and adaptations to achieve desired
performance. Finally, the ultimate metric will be our own contentment. Our implementation-based “eat our own dog
food” evaluation philosophy will act as a primary, and final, metric of success.

6 Reated Work

This section deals with prior research generally related to network layer architecture; work related to specific topics
(such as identity) has been presented in earlier sections.

Nimrod [28] was an early re-envisioning of Internetwork architecture. It has several aspects in common with our
general approach, including optional out-of-band destination resolution (via separate query-response protocol) before
forwarding a packet. However, it did not specify any mechanism for dealing with inter-domain policy constraints.

Numerous attempts at network layer enhancement, extension or replacement incorporate loose source routing. Among
these were various proposals for IPng, including Pip [41], SIP [36], and SIPP [42]. IPNL [43], an extension of IPv4
to deal cleanly with Network Address Translation (NAT), uses fully-qualified domain names to designate intermediate
hops. Triad [29], an extension aimed at content-based routing, builds on the separate Wide-area Relay Addressing Proto-
col (WRAP), which adds a layer on top of IP that provides source routing via a “potentially opaque” token, which could
be implemented as a sequence of IP addresses. WRAP relies on IP as an underlying forwarding mechanism.

The NewArch project [31] has produced several excellent architectural analyses and proposals. Our approach re-
sembles NIRA, the New Internet Routing Architecture [108], in both goals and components. Its notion of provider
compensation is similar to our motivation (Why) block, and it permits the use of caching. However, like most other
proposals, it relies on hierarchical provider-rooted addressing. Our proposal is similar to FARA [32] in that we also
propose a general framework, within which many different schemes for identifying destinations can be instantiated, and
we separate forwarding from routing.

Our own work on Speccast proposes a network layer supporting a more powerful mechanism for specifying desti-
nations. Our initial work [80], does not separate forwarding from addressing and routing. However, our more recent
work (as yet unpublished) is based on a path-determination mechanism that does not require hierarchical addresses. (We
intend to implement a Speccast-like destination specification capability for our postmodern internetwork architecture.)

A good deal of work has been done on different models of routing in the context of sensor and ad-hoc networks [51].
Many of these systems [54] target specific problems and service models. Many have in common with our approach
that the cost of the (expensive) initial communication is amortized over subsequent packets by the establishment of
forwarding state.

A variety of overlay-based network-layer services have been proposed in recent years. Nearly all of them assume
an underlying IP-like service, i.e., direct connectivity among all nodes in the underlying layer, and therefore inherit the
problems of the current architecture. Indirection has been identified as a powerful primitive for developing services
based on a shared infrastructure. The seminal Internet Indirection Infrastructure (i3) [100] can be used to implement
several conventional services using only unicast underneath. It achieves its power by routing over a distributed hash
table network (such as Chord [101]) to a rendezvous point.
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