
Postnatal Remodeling of Gonadotropin-Releasing
Hormone I Neurons: Toward Understanding the
Mechanism of the Onset of Puberty

The concept that an increase in pulsatile release of GnRH-I
triggers the onset of puberty has been firmly established.
Knobil and collaborators (1) have shown that pulsatile in-
fusion of GnRH-I results in precocious menarche followed by
first ovulation in sexually immature female rhesus monkeys.
GnRH-I analogs have been successfully used for treatments
of precocious and delayed puberty in humans (2). We have
shown that pulsatile GnRH-I release increases at the onset of
puberty in female rhesus monkeys (3). However, the mech-
anism triggering the pubertal increase in GnRH-I release is
still unclear (4).

In primates, GnRH-I neurons appear to be fairly mature
before the onset of puberty. The distribution pattern is es-
tablished well before birth (5), and there are no differences
in the number (6) or the shape of GnRH-I neurons (7) or in
GnRH-I mRNA levels (8) in the hypothalamus of juvenile
and adult monkeys. Functionally, GnRH-I neurons in juve-
nile monkeys are also mature, because the GnRH-I neuronal
system can respond to electrical or neurochemical stimula-
tion, such as NMDA and kisspeptin (9–11).

In contrast, mRNA expression and morphology of GnRH-I
neurons in small laboratory rodents appear to be less mature
until an age close to puberty. In rats and mice, GnRH-I
mRNA levels increase gradually with postnatal age, such
that significant increases occur at postnatal d 15–30 (P15–30)
depending on sex and experimental conditions (12). More-
over, in rats, the number of GnRH-I neurons with an irreg-
ular contour increases, whereas the number of GnRH-I neu-
rons with a smooth contour decreases at the age of puberty
(13). The article in this issue by Alan Herbison’s group (14)
clearly shows that postnatal GnRH-I neurons undergo major
structural remodeling and provides new insight into the
mechanism of puberty.

As previously used by Campbell et al. (15), Cottrell and
colleagues (14) filled GnRH-green fluorescent protein (GFP)-
labeled neurons with biocytin in vitro in juvenile (P10–15)
and adult (older than P60) transgenic male mice created by
the same laboratory and analyzed cell size, dendritic branch-
ing, and the number of somal and dendritic spines using
confocal microscopy. Although the soma size (assessed by
measurement of circumference) did not differ, GnRH-I neu-
rons in adult mice have a smaller number of dendritic
branching points and a larger spine density of the soma and
proximal dendrite (0–50 �m from the soma), but not distal
dendrite (�50 �m), than those in juvenile mice. Three-di-

mensional reconstruction images comparing GnRH-I neu-
rons between juvenile and adult are truly striking. Immature
GnRH-I neuronal cell soma with a relatively smooth surface
extends several dendritic trees with some dendritic spines
and filopodia, whereas mature GnRH-I neuronal cell soma
with massive spines extends a single dendrite, which is also
covered by massive dendritic spines and filopodia. However,
these striking results across puberty with the biocytin cell-
filling experiment may not reflect in vivo events. Accord-
ingly, the authors analyzed GnRH-GFP neurons without dye
filling in other transgenic male mice, in which GnRH-I neu-
rons were more intensely GFP labeled (16). The number of
GnRH-I neurons in the medial septum and rostral preoptic
area forming the inverted Y distribution (17) did not differ
among mice at P3, P10, P35, and adults, but GnRH-I neurons
in immature mice at P10 had fewer unipolar dendritic pro-
cesses and more complex processes than those in mature
mice at P35 and adult mice, confirming the results of the
cell-filling experiment. Finally, because the dendritic spines
form predominantly excitatory glutamatergic synapses, the
authors further examined whether the number of inhibitory
GABAergic inputs to GnRH-I neurons changes across pu-
berty by immunostaining of vesicular GABA transporters.
The results indicate that there is no developmental change in
GABAergic input to GnRH-I neurons.

Although an increase in GnRH-I release triggers puberty,
there is a significant species difference in the neuroendocrine
mechanism of the onset of puberty in primates and labora-
tory rodents (4). In primates, active GnRH-I neurosecretory
neurons during the neonatal period are subsequently sup-
pressed by steroid-independent central inhibition until
shortly before puberty (18). We have shown that GnRH-I
neurons in juvenile monkeys are inhibited by GABAergic
neurons, and reduction in GABA tone results in precocious
puberty (19, 20). Moreover, the pubertal reduction in GABA
inhibition allows an increase in glutamatergic signal that
stimulates GnRH-I release (4, 10). In contrast, in rodents,
tonic central inhibition, equivalent to that in primates, does
not appear to exist, and establishment of excitatory neuronal
systems for GnRH-I release, such as glutamatergic (21) stim-
ulation, results in puberty. The study by Cottrell et al. (14)
provides evidence that postnatal excitatory synaptic remod-
eling of GnRH-I neurons occurs across puberty, and their
finding is consistent with the notion that postnatal excitatory
innervation of GnRH-I neurons triggers the onset of puberty
in mice. The questions of which excitatory synaptic input (e.g.
glutamatergic, kisspeptinergic, or other neurochemical sig-
nals yet to be discovered) plays a role in the pubertal increase
in GnRH-I release and whether the synaptic remodeling ob-
served during pubertal maturation is solely a result of ste-
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roid-independent developmental phenomena or in part a
result of the pubertal increase in steroid hormones remain to
be investigated. Both estrogens and androgens in adults are
involved in synaptic plasticity, modifying spine density, and
synaptic formation (22, 23).

In primates, the mechanism of puberty is far from being
understood. Although primate GnRH-I neurons may un-
dergo subtle morphological changes during development
(24), there is little reported on postnatal ontogeny. Do pri-
mate GnRH-I neurons undergo postnatal synaptic excitatory
remodeling similar to those observed in mice? Do GABAer-
gic inhibitory synapses on primate GnRH-I neurons undergo
a steroid-independent developmental change? If they do,
how does inhibitory synaptic remodeling precede excitatory
synaptic remodeling? Glial involvement in puberty has been
shown (25), but how do nonsynaptic mechanisms contribute
to the pubertal change in synaptic plasticity? Answers to
these questions should provide the mechanism of the pu-
bertal increase in GnRH-I release.

Postnatal synaptic remodeling through adolescence also
appears to occur in the neocortex that controls cognitive
functions in humans (26). Although systematic and precise
neuroanatomical studies are yet to be conducted, overpro-
duction of synapses of cortical neurons during the early
postnatal life are gradually pruned until a specific neural
pathway is established, and this process may continue
throughout the juvenile period until after puberty (27, 28).
Including recent exciting findings on the possible role of
kisspeptin in puberty (29, 30), we are now facing another new
avenue to discover how synaptic remodeling of GnRH-I neu-
rons occurs at the time of puberty in the primate
hypothalamus.
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