POSTNIKOV PIECES AND $B Z / p$-HOMOTOPY THEORY

NATÀLIA CASTELLANA, JUAN A. CRESPO, AND JÉRÔME SCHERER

Abstract

We present a constructive method to compute the cellularization with respect to $B^{m} \mathbb{Z} / p$ for any integer $m \geq 1$ of a large class of H-spaces, namely all those which have a finite number of non-trivial $B^{m} \mathbb{Z} / p$-homotopy groups (the pointed mapping space $\operatorname{map}_{*}\left(B^{m} \mathbb{Z} / p, X\right)$ is a Postnikov piece). We prove in particular that the $B^{m} \mathbb{Z} / p$-cellularization of an H-space having a finite number of $B^{m} \mathbb{Z} / p$-homotopy groups is a p-torsion Postnikov piece. Along the way, we characterize the $B \mathbb{Z} / p^{r}$-cellular classifying spaces of nilpotent groups.

Introduction

The notion of A-homotopy theory was introduced by Dror Farjoun 9 for an arbitrary connected space A. Here A and its suspensions play the role of the spheres in classical homotopy theory, and so the A-homotopy groups of a space X are defined to be the homotopy classes of pointed maps $\left[\Sigma^{i} A, X\right]$. The analogue to weakly contractible spaces are those spaces for which all A-homotopy groups are trivial. This means that the pointed mapping space $\operatorname{map}_{*}(A, X)$ is contractible, i.e. X is an A-null space. On the other hand, the classical notion of $C W$-complex is replaced by the one of A-cellular space. Such spaces can be constructed from A by means of pointed homotopy colimits.

Thanks to work of Bousfield [2] and Dror Farjoun [9] there is a functorial way to study X through the eyes of A. The nullification $P_{A} X$ is the biggest quotient of X which is A-null, and $C W_{A} X$ is the best A-cellular approximation of the space X. Roughly speaking, $C W_{A} X$ contains all the transcendent information of the mapping space $\operatorname{map}_{*}(A, X)$, since the latter is equivalent to $\operatorname{map}_{*}\left(A, C W_{A} X\right)$. Hence, explicit computation of the cellularization would give access to information about $\operatorname{map}_{*}(A, X)$. The importance of mapping spaces (in the case $A=B \mathbb{Z} / p$) is well established thank to Miller's solution to the Sullivan conjecture 17] and later work.

While many computations of $P_{A} X$ are present in the literature, very few computations of $C W_{A} X$ are available. For instance, Chachólski describes a strategy to compute the cellularization $C W_{A} X$ in [7]. His method has been successfully

[^0]applied in some cases (cellularization with respect to Moore spaces [21, $B \mathbb{Z} / p$ cellularization of classifying spaces of finite groups [10]), but it is in general difficult to apply.

An alternative way to compute $C W_{A} X$ is the following. The nullification map $l: X \rightarrow P_{A} X$ provides an equivalence $C W_{A} X \simeq C W_{A} \bar{P}_{A} X$, where, as usual, $\bar{P}_{A} X$ denotes the homotopy fiber of l. This equivalence gives a strategy when $\bar{P}_{A} X$ is known. Assume for example that X is A-null. Then $\bar{P}_{A} X$ is contractible, and thus, so is $C W_{A} X$. From the A-homotopy point of view, the next case in which the A-cellularization should be accessible is when X has only a finite number of A-homotopy groups, that is, some iterated loop space $\Omega^{n} X$ is A-null. Natural examples of spaces satisfying this condition are the n-connected covers of A-null spaces.

Let us specialize to H-spaces and $A=B^{m} \mathbb{Z} / p$. Bousfield has determined in [2] the fiber of the nullification map $X \rightarrow P_{B^{m} \mathbb{Z} / p} X$ when $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null. He shows that, for such an H-space, $\bar{P}_{B^{m} \mathbb{Z} / p} X$ is a p-torsion Postnikov piece F, whose homotopy groups are concentrated in dimensions from m to $m+n-1$. As F is also an H-space (because l is an H-map), we call it an H-Postnikov piece. The cellularization of X (which is again an H-space because $C W_{A}$ preserves H-structures) therefore coincides with that of a Postnikov piece. In Section 3, we explain how to compute the cellularization of Postnikov pieces, and this enables us to obtain our main result.

Theorem5.3. Let X be a connected H-space such that $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null. Then

$$
C W_{B^{m} \mathbb{Z} / p} X \simeq F \times K(W, m)
$$

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions from $m+1$ to $m+n-1$ and W is an elementary abelian p-group.

Thus, when X is an H-space with only a finite number of $B^{m} \mathbb{Z} / p$-homotopy groups, the cellularization $C W_{B^{m}}^{\mathbb{Z} / p}$ is a p-torsion H-Postnikov piece. This is not true in general if we do not assume X to be an H-space. For instance, the $B \mathbb{Z} / p$-cellularization of $B \Sigma_{3}$ is a space with infinitely many non-trivial homotopy groups [11]. Also, it is not true for an arbitrary space A that the A-cellularization of an H-space having a finite number of A-homotopy groups is always a Postnikov piece. This fails, for example, when A is the product of the $K(\mathbb{Z} / p, p)$'s, where p runs over the set of all primes, but it could be true for any n-supported p-torsion space A (in the terminology of [2]).

In our previous work [6] we analyzed a large class of H-spaces which fits into the present framework. Namely, if the mod p cohomology of an H-space X is finitely generated as an algebra over the Steenrod algebra, then there must exist an integer n such that $\Omega^{n} X$ is $B \mathbb{Z} / p$-null. Hence, we obtain the following.

Proposition 4.2, Let X be a connected H-space such that $H^{*}\left(X ; \mathbb{F}_{p}\right)$ is finitely generated as an algebra over the Steenrod algebra. Then

$$
C W_{B \mathbb{Z} / p} X \simeq F \times K(W, 1)
$$

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary abelian p-group. Moreover, there exists an integer k such that $C W_{B^{m} \mathbb{Z} / p} X \simeq$ * for any $m \geq k$.

Our results allow explicit computations which we exemplify by computing in Proposition 4.3 the $B \mathbb{Z} / p$-cellularization of the n-connected cover of any finite H-space, as well as the $B^{m} \mathbb{Z} / p$-cellularizations of the classifying spaces for real and complex vector bundles $B U, B O$, and their connected covers $B S U, B S O, B S p i n$, and B String; see Proposition 5.6.

1. A double filtration of the category of spaces

As mentioned in the Introduction, the condition that $\Omega^{n} X$ be $B^{m} \mathbb{Z} / p$-null will enable us to compute the $B^{m} \mathbb{Z} / p$-cellularization of H-spaces. This section is devoted to giving a picture of how such spaces are related for different choices of m and n.

First of all, we present a lemma which collects various facts that are needed in the rest of the paper.

Lemma 1.1. Let X be a connected space and $m>0$. Then,
(1) If X is $B^{m} \mathbb{Z} / p$-null, then $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null for all $n \geq 1$.
(2) If X is $B^{m} \mathbb{Z} / p$-null, then it is $B^{m+s} \mathbb{Z} / p$-null for all $s \geq 0$.
(3) If ΩX is $B^{m} \mathbb{Z} / p$-null, then X is $B^{m+s} \mathbb{Z} / p$-null for all $s \geq 1$.

Proof. For (1), simply apply $\operatorname{map}_{*}(B \mathbb{Z} / p,-)$ to the path fibration $\Omega X \rightarrow * \rightarrow X$.
Statement (2) is given by Dwyer's version of Zabrodsky's lemma [8, Prop. 3.4] applied to the universal fibration $B^{m} \mathbb{Z} / p \rightarrow * \rightarrow B^{m+1} \mathbb{Z} / p$.

Finally, (3) is proven like (2), using Zabrodsky's lemma in its connected version [8, Prop. 3.5] (see also Lemma 2.3). Recall that if ΩX is $B^{m} \mathbb{Z} / p$-null, then the component $\operatorname{map}\left(B^{m} \mathbb{Z} / p, X\right)_{c}$ of the constant map is weakly equivalent to X.

Of course, the converses of the previous results are not true. For the first statement, take the classifying space of a discrete group at $m=1$. For the second and third, consider $X=B U$. It is a $B^{2} \mathbb{Z} / p$-null space (see Example 1.4), but neither $B U$ nor $\Omega B U$ are $B \mathbb{Z} / p$-null. Observe that in fact $\Omega^{n} B U$ is never $B \mathbb{Z} / p$-null. The next result shows that this is the general situation. That is, if a connected space X is $B^{m+1} \mathbb{Z} / p$-null, then either ΩX is $B^{m} \mathbb{Z} / p$-null or none of the iterated loop spaces $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null for $n \geq 1$.

Theorem 1.2. Let X be a $B^{m+1} \mathbb{Z} / p$-null space such that $\Omega^{k} X$ is $B^{m} \mathbb{Z} / p$-null for some $k>0$. Then ΩX is $B^{m} \mathbb{Z} / p$-null.

Proof. It is enough to prove the result for $k=2$. Consider the fibration

$$
K(Q, m+1) \rightarrow P_{\Sigma^{2} B^{m} \mathbb{Z} / p} X \simeq X \rightarrow P_{\Sigma B^{m} \mathbb{Z} / p} X
$$

where the fiber is a p-torsion Eilenberg-Mac Lane space by Bousfield's description of the fiber of the $\Sigma B^{m} \mathbb{Z} / p$-nullification [2, Theorem 7.2]. The base space is $B^{m+1} \mathbb{Z} / p$ null by Lemma $1.1(3)$ and so is the total space, by assumption. Thus, the pointed mapping space $\operatorname{map}_{*}\left(B^{m+1} \mathbb{Z} / p, K(Q, m+1)\right)$ must be contractible as well, i.e. $Q=0$.

The previous analysis leads to a double filtration of the category of spaces. Let $n \geq 0$ and $m \geq 1$. We introduce the notation

$$
\mathcal{S}_{m}^{n}=\left\{X \mid \Omega^{n} X \text { is } B^{m} \mathbb{Z} / p \text {-null }\right\}
$$

then Lemma 1.1 yields a diagram of inclusions:

Example 1.3. We give examples of spaces in every stage of the filtration.
(1) \mathcal{S}_{1}^{0} are the spaces that are $B \mathbb{Z} / p$-null. This contains in particular any finite space (by Miller's theorem [17, Thm. A]), and, for a nilpotent space X (of finite type with finite fundamental group), to be $B \mathbb{Z} / p$-null is equivalent to its cohomology $H^{*}\left(X ; \mathbb{F}_{p}\right)$ being locally finite by [22, Corollary 8.6.2].
(2) If $X\langle n\rangle$ denotes the n-connected cover of a space X, then the homotopy fiber of $\Omega^{n-1} X\langle n\rangle \rightarrow \Omega^{n-1} X$ is a discrete space. Hence, if $X \in \mathcal{S}_{m}^{0}$, then $X\langle n\rangle \in \mathcal{S}_{m}^{n-1}$.
(3) Observe that $\mathcal{S}_{m}^{n} \subset \mathcal{S}_{m+k}^{n-k}$ for all $0 \leq k \leq n$.
(4) The previous examples provide spaces in every stage of the double filtration. Consider a finite space. It is automatically $B \mathbb{Z} / p$-null and its n-connected cover $X\langle n\rangle$ lies in \mathcal{S}_{1}^{n-1}, hence also in $\mathcal{S}_{k+1}^{n-k-1}$ for all $0 \leq k \leq n$.

The next example provides a number of spaces living in \mathcal{S}_{m}^{0} which do not come from the first row of the filtration. Of course their connected covers will be new examples of spaces living in \mathcal{S}_{m}^{n}.

Example 1.4. Let E_{*} be a homology theory. If $\tilde{E}^{i}(K(\mathbb{Z} / p, m))=0$ for all i, then the spaces E^{i} representing the corresponding homology theory are $B^{m} \mathbb{Z} / p$-null. If $\tilde{E}^{j}(K(\mathbb{Z} / p, m-1)) \neq 0$ for some j, then E^{j} is not $B^{m-1} \mathbb{Z} / p$-null. In particular, if E_{*} is periodic, it follows that the spaces E^{i} are $B^{m} \mathbb{Z} / p$-null for all i, but none of their iterated loops are $B^{m-1} \mathbb{Z} / p$-null.

A first example of such behavior is obtained from complex K-theory: $B U$ is $B^{2} \mathbb{Z} / p$-null, but $B U$ and U are not $B \mathbb{Z} / p$-null (see [18]). Note that real and quaternionic K-theory enjoy the same properties.

For every m, examples of homology theories following this pattern are given by p-torsion homology theories of type III- m as described in [1. The m th Morava K-theory $K(m)_{*}$ for p odd is an example of such behavior with respect to EilenbergMac Lane spaces. The spaces representing $K(m)_{*}$ are $B^{m+1} \mathbb{Z} / p$-null, but none of their iterated loops are $B^{m} \mathbb{Z} / p$-null.

Our aim is to provide tools to compute the $B^{m} \mathbb{Z} / p$-cellularization of any H-space lying in the m th row of the above diagram. The key point is the following result of Bousfield [2], which determines the fiber of the nullification map.
Proposition 1.5. Let $n \geq 0$ and let X be a connected H-space such that $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null. Then there is an H-fibration

$$
F \rightarrow X \rightarrow P_{B^{m} \mathbb{Z} / p} X
$$

where F is a p-torsion H-Postnikov piece whose homotopy groups are concentrated in dimensions from m to $m+n-1$.

Therefore, since $F \rightarrow X$ is a $B^{m} \mathbb{Z} / p$-cellular equivalence, we only need to compute the cellularization of a Postnikov piece (which will end up being a Postnikov piece again; see Theorem 3.6). Actually, even more is true.

Proposition 1.6. Let X be a connected space such that $C W_{B^{m} \mathbb{Z} / p} X$ is a Postnikov piece. Then there exists an integer n such that $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null.

Proof. Let us loop once the Chachólski fibration $C W_{B^{m} \mathbb{Z} / p} X \rightarrow X \rightarrow P_{\Sigma B^{m} \mathbb{Z} / p} C$ (see [7. Theorem 20.5]). Since $\Omega P_{\Sigma B^{m} \mathbb{Z} / p} C$ is equivalent to $P_{B^{m} \mathbb{Z} / p} \Omega C$ by [9, Theorem 3.A.1], we get a fibration over a $B^{m} \mathbb{Z} / p$-null base space

$$
\Omega C W_{B^{m} \mathbb{Z} / p} X \rightarrow \Omega X \rightarrow P_{B^{m} \mathbb{Z} / p} \Omega C
$$

Now there exists an integer n such that $\Omega^{n} C W_{B^{m} \mathbb{Z} / p} X$ is discrete, thus $B^{m} \mathbb{Z} / p$-null. Therefore, so is $\Omega^{n} X$.

2. Cellularization of fibrations over $B G$

In general, it is very difficult to compute the cellularization of the total space of a fibration. In this section, we explain how to deal with this problem when the base space is the classifying space of a discrete group. The first step applies to any group. In the second step (see Proposition 2.4 below) we specialize to nilpotent groups.

Proposition 2.1. Let $r \geq 1$ and let $F \rightarrow E \xrightarrow{\pi} B G$ be a fibration, where G is a discrete group. Let S be the (normal) subgroup generated by all elements $g \in G$ of order p^{i} for some $i \leq r$ such that the inclusion $B\langle g\rangle \rightarrow B G$ lifts to E. Then the pullback of the fibration along $B S \rightarrow B G$

induces a $B \mathbb{Z} / p^{r}$-cellular equivalence $f: E^{\prime} \rightarrow E$ on the total space level.
Proof. We have to show that f induces a homotopy equivalence on pointed mapping spaces $\operatorname{map}_{*}\left(B \mathbb{Z} / p^{r},-\right)$. The top fibration in the diagram yields a fibration

$$
\operatorname{map}_{*}\left(B \mathbb{Z} / p^{r}, E^{\prime}\right) \xrightarrow{f_{*}} \operatorname{map}_{*}\left(B \mathbb{Z} / p^{r}, E\right) \xrightarrow{p_{*}} \operatorname{map}_{*}\left(B \mathbb{Z} / p^{r}, B(G / S)\right) .
$$

Since the base is homotopically discrete, we only need to check that all components of the total space are sent by p_{*} to the component of the constant. Thus consider a map $h: B \mathbb{Z} / p^{r} \rightarrow E$. The composite $p \circ h$ is homotopy equivalent to a map
induced by a group homomorphism $\alpha: \mathbb{Z} / p^{r} \rightarrow G$ whose image $\alpha(1)=g$ is in S by construction. Therefore $p \circ h=p^{\prime} \circ \pi \circ h$ is null-homotopic.

Remark 2.2. If the fibration in the above proposition is an H-fibration (in particular if G is abelian), the set of elements g for which there is a lift to the total space forms a subgroup of G. The central extension $Z\left(D_{8}\right) \hookrightarrow D_{8} \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2$ of the dihedral group D_{8} provides an example where the subgroup S is $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, but the element in S represented by an element of order 4 in D_{8} does not admit a lift.

The next lemma is a variation of Dwyer's version of Zabrodsky's Lemma in [8].
Lemma 2.3. Let $F \rightarrow E \xrightarrow{f} B$ be a fibration over a connected base, and let A be a connected space such that ΩA is F-null. Then any map $g: E \rightarrow A$ which is homotopic to the constant map when restricted to the fiber F factors through a map $h: B \rightarrow A$ up to unpointed homotopy and, moreover, g is pointed null-homotopic if and only if h is so.

Proof. Since ΩA is F-null, we see that the component $\operatorname{map}_{*}(F, A)_{c}$ of the constant map is contractible, and therefore, the evaluation at the base point map $(F, A)_{c} \rightarrow A$ is an equivalence. By [8, Proposition 3.5], f induces a homotopy equivalence

$$
\operatorname{map}(B, A) \simeq \operatorname{map}(E, A)_{[F]}
$$

where $\operatorname{map}(E, A)_{[F]}$ denotes the space of maps $E \rightarrow A$ which are homotopic to the constant map when restricted to F.

Looking at the component of the constant map, we see that $\operatorname{map}(B, A)_{c} \simeq$ $\operatorname{map}(E, A)_{c}$. Since any map homotopic to the constant map is also homotopic by a pointed homotopy, the result follows.

Proposition 2.4. Let $r \geq 1$ and let $F \xrightarrow{i} E \xrightarrow{\pi} B G$ be a fibration, where G is a nilpotent group generated by elements of order p^{i} with $i \leq r$. Assume that for each of these generators $x \in G$, the inclusion $B\langle x\rangle \rightarrow B G$ lifts to E. If F is $B \mathbb{Z} / p^{r}$-cellular, then so is E.
Proof. In [7], Chachólski describes the cellularization $C W_{B \mathbb{Z} / p^{r}} E$ as the homotopy fiber of the composite

$$
f: E \rightarrow C \rightarrow P_{\Sigma B \mathbb{Z} / p^{r}} C
$$

where C is the homotopy cofiber of the evaluation map $\bigvee_{\left[B \mathbb{Z} / p^{r}, E\right]} B \mathbb{Z} / p^{r} \rightarrow E$. This tells us that E is cellular if the map f is null-homotopic. Observe that if f is null-homotopic, then the fiber inclusion $C W_{B \mathbb{Z} / p^{r}} E \rightarrow E$ has a section and, therefore, E is cellular, since it is a retract of a cellular space ([9, 2.D.1.5]).

As the existence of an unpointed homotopy to the constant map implies the existence of a pointed one, we now work in the category of unpointed spaces. We remark that for any map $g: Z \rightarrow E$ from a $B \mathbb{Z} / p^{r}$-cellular space Z, the composite $f \circ g$ is null-homotopic, since g factors through the cellularization of E. In particular, the composite $f \circ i$ is null-homotopic. By Lemma [2.3, f factors through a map $\bar{f}: B G \rightarrow P_{\Sigma B \mathbb{Z} / p^{r}} C$ such that $\bar{f} \circ \pi \simeq f$ and, moreover, f is null-homotopic if and only if \bar{f} is so.

We first assume that G is a finite group and show by induction on the order of G that \bar{f} is null-homotopic. If $|G|=p$, the existence of a section $s: B G \rightarrow E$ implies that $f \circ s=\bar{f}$ is null-homotopic since $B G=B \mathbb{Z} / p$ is cellular.

Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a minimal set of generators which admit a lift. Let $H \unlhd G$ be the normal subgroup generated by x_{1}, \ldots, x_{k-1} and their conjugates by powers of x_{k}. There is a short exact sequence

$$
H \rightarrow G \rightarrow \mathbb{Z} / p^{a}
$$

where the quotient group is generated by the image of the generator x_{k}. Consider the fibration $F \rightarrow E^{\prime} \rightarrow B H$ obtained by pulling back along $B H \rightarrow B G$, and denote by $h: E^{\prime} \rightarrow E$ the induced map between the total spaces. Since H satisfies the assumptions of the proposition, the induction hypothesis tells us that E^{\prime} is cellular and therefore, $f \circ h$ is null-homotopic. This implies that the restriction of \bar{f} to $B H$ is null-homotopic. Consider the following diagram:

By Lemma 2.3, it is enough to show that f^{\prime} is null-homotopic. Again, applying Lemma 2.3 to the fibration on the left shows that f^{\prime} is null-homotopic since \bar{f} restricted to $\left\langle x_{k}\right\rangle$ is so. Therefore, \bar{f} is null-homotopic.

Assume now that G is not finite. Any subgroup of G generated by a finite number of elements of order a power of p has a finite abelianization, and must therefore be itself finite by [20, Theorem 2.26]. Thus, G is locally finite, i.e. G is a filtered colimit of finite nilpotent groups generated by elements of order p^{i} for $i \leq r$. Likewise, $B G$ is a filtered homotopy colimit of classifying spaces of finite groups (generated by finite subsets of the set of generators) which satisfy the hypotheses of the proposition. The total space E can be obtained as a pointed filtered colimit of the total spaces obtained by pulling back the fibration. By the case when G is finite, these total spaces are all cellular and therefore, so is E.

Sometimes the existence of the "local" sections defined for every generator permits the construction of a global section of the fibration. By a result of Chachólski [7. Theorem 4.7], the total space of such a split fibration is cellular since F and $B G$ are so. This is the case for an H-fibration, and E is then weakly equivalent to the product $F \times B G$.

A straightforward consequence of the above proposition (in the case when the fibration is the identity on $B G$) is the following characterization of the $B \mathbb{Z} / p^{r}$ cellular classifying spaces. For $r=1$, we obtain R. Flores' result [10, Theorem 4.14].

Corollary 2.5. Let $r \geq 1$ and let G be a nilpotent group generated by elements of order p^{i} with $i \leq r$. Then $B G$ is $B \mathbb{Z} / p^{r}$-cellular.

Example 2.6. The quaternion group Q_{8} of order 8 is generated by elements of order 4. Therefore, $B Q_{8}$ is $B \mathbb{Z} / 4$-cellular. We do not know an explicit way to construct $B Q_{8}$ as a pointed homotopy colimit of a diagram whose values are copies of $B \mathbb{Z} / 4$.

We can now state the main result of this section. It provides a constructive description of the cellularization of the total space of certain fibrations over classifying spaces of nilpotent groups.
Theorem 2.7. Let G be a nilpotent group and let $F \rightarrow E \rightarrow B G$ be a fibration with $B \mathbb{Z} / p^{r}$-cellular fiber F. Then the cellularization of E is the total space of a fibration $F \rightarrow C W_{B \mathbb{Z} / p^{r}} E \rightarrow B S$, where $S \triangleleft G$ is the (normal) subgroup generated by the p-torsion elements g of order p^{i} with $i \leq r$, such that the inclusion $B\langle g\rangle \rightarrow B G$ lifts to E.

Proof. By Proposition 2.1, pulling back along $B S \rightarrow B G$ yields a cellular equivalence f in the following square:

By Proposition [2.4, the total space E_{S} is cellular and therefore $E_{S} \simeq C W_{B \mathbb{Z} / p^{r}} E$.

Corollary 2.8. Let G be a nilpotent group and let $S \triangleleft G$ be the (normal) subgroup generated by the p-torsion elements g of order p^{i} with $i \leq r$. Then $C W_{B \mathbb{Z} / p^{r}} B G \simeq$ $B S$. Moreover, when G is finitely generated, S is a finite p-group.

Proof. We only need to show that S is a finite p-group. Note that the abelianization of S is p-torsion. Thus, S is also a torsion group (see [23, Cor. 3.13]). Moreover, since G is finitely generated, S is finite, by [23, 3.10].

In fact, Theorem 2.7 also holds when the base space is an Eilenberg-Mac Lane space $K(G, n)$.

Proposition 2.9. Let n be an integer ≥ 2 and let G be a finitely generated abelian group of exponent dividing p^{r}. Consider a fibration $F \xrightarrow{i} E \xrightarrow{\pi} K(G, n)$ such that, for each generator $x \in G$, the inclusion $K(\langle x\rangle, n) \rightarrow K(G, n)$ lifts to E. If F is $B \mathbb{Z} / p^{r}$-cellular, then so is E.

3. Cellularization of nilpotent Postnikov pieces

In this section, we compute the cellularization with respect to $B \mathbb{Z} / p^{r}$ of nilpotent Postnikov pieces. The main difficulty lies in the fundamental group, so it will be no surprise that these results hold as well for cellularization with respect to $B^{m} \mathbb{Z} / p^{r}$ with $m \geq 2$. We will often use the following closure property [9, Theorem 2.D.11].

Proposition 3.1. Let $F \rightarrow E \rightarrow B$ be a fibration where F and E are A-cellular. Then so is B.

Example 3.2 ([9, Corollary 3.C.10]). The Eilenberg-Mac Lane space $K\left(\mathbb{Z} / p^{k}, n\right)$ is $B \mathbb{Z} / p^{r}$-cellular for any integer k and any $n \geq 2$.

The construction of the cellularization is performed by looking first at the universal cover of the Postnikov piece. We start with the basic building blocks, the Eilenberg-Mac Lane spaces. For the structure results on infinite abelian groups, we refer the reader to Fuchs' book [12].

Lemma 3.3. An Eilenberg-Mac Lane space $K(A, m)$, with $m \geq 2$, is $B \mathbb{Z} / p^{r}$ cellular if and only if A is a p-torsion abelian group.

Proof. It is clear that A must be p-torsion. Thus, assume that A is a p-torsion group. If A is bounded, it is isomorphic to a direct sum of cyclic groups. Since cellularization commutes with finite products, $K(A, m)$ is $B \mathbb{Z} / p^{r}$-cellular when A is a finite direct sum of cyclic groups. By taking a (possibly transfinite) telescope of $B \mathbb{Z} / p^{r}$-cellular spaces, we obtain that $K(A, m)$ is $B \mathbb{Z} / p^{r}$-cellular for any bounded group.

In general, A splits as a direct sum of a divisible group D and a reduced group T. A p-torsion divisible group is a direct sum of copies of \mathbb{Z} / p^{∞}, which is a union of bounded groups. Thus, $K(D, m)$ is cellular. Now T has a basic subgroup $P<T$, which is a direct sum of cyclic groups, and the quotient T / P is divisible. So $K(T, m)$ is the total space of a fibration

$$
K(P, m) \rightarrow K(T, m) \rightarrow K(D, m)
$$

When $m \geq 3$, we are done because of the closure property Proposition 3.1. If $m=2$, we have to refine the analysis of the fibration because $K(D, m-1)$ is not cellular. However, since D is a union of bounded groups $D\left[p^{k}\right]$, the space $K(T, 2)$ is the telescope of total spaces X_{k} of fibrations with cellular fiber $K(P, 2)$ and base $K\left(D\left[p^{k}\right], 2\right)$. We claim that these total spaces are cellular (and thus, so is $K(T, 2)$) and proceed by induction on the bound. Consider the subgroup $D\left[p^{k}\right]<D\left[p^{k+1}\right]$ whose quotient is a direct sum of cyclic groups \mathbb{Z} / p. Therefore, X_{k+1} is the base space in a fibration

$$
K(\oplus \mathbb{Z} / p, 1) \rightarrow X_{k} \rightarrow X_{k+1}
$$

where the fiber and total space are cellular. We are done.
We are now ready to prove that any simply connected p-torsion Postnikov piece is a $B \mathbb{Z} / p^{r}$-cellular space.

Proposition 3.4. A simply connected Postnikov piece is $B \mathbb{Z} / p^{r}$-cellular if and only if it is p-torsion.

Proof. Let X be a simply connected p-torsion Postnikov piece. For some integer m, the m-connected cover $X\langle m\rangle$ is an Eilenberg-Mac Lane space, which is cellular by Lemma 3.3. Consider the principal fibration

$$
K\left(\pi_{m} X, m-1\right) \rightarrow X\langle m\rangle \rightarrow X\langle m-1\rangle
$$

If $m \geq 3$, both $X\langle m\rangle$ and $K\left(\pi_{m} X, m-1\right)$ are cellular. It follows that $X\langle m-1\rangle$ is cellular by the closure property Proposition 3.1. An iteration of the same argument shows that $X\langle 2\rangle$ is cellular.

Thus, let us look at the fibration $X\langle 2\rangle \rightarrow X \rightarrow K\left(\pi_{2} X, 2\right)$. The discussion in the proof of Lemma 3.3 also applies to the p-torsion group $\pi_{2} X$. If this is a bounded group, say of exponent p^{k}, an induction on the bound shows that X is actually the base space of a fibration where the total space is cellular, because its second homotopy group is of exponent p^{k-1}, and the fiber is cellular because it is of the form $K(V, 1)$, with V a p-torsion abelian group of exponent $\leq p^{r}$. Then the closure property Proposition 3.1 ensures that X is cellular.

If $\pi_{2} X$ is divisible, X is a telescope of cellular spaces, hence cellular. If it is reduced, taking a basic subgroup $B<\pi_{2} X$ yields a diagram of fibrations

which exhibits X as the total space of a fibration over $K(D, 2)$ with D divisible and a $B \mathbb{Z} / p^{r}$-cellular fiber. Therefore, by writing D as a union of bounded groups as in the proof of Lemma 3.3, one obtains X as a telescope of cellular spaces. Thus, X is $B \mathbb{Z} / p^{r}$-cellular as well.

Remark 3.5. The proof of the proposition holds in the more general setting, where X is a p-torsion space such that $X\langle m\rangle$ is $B \mathbb{Z} / p^{r}$-cellular for some $m \geq 2$. The proposition corresponds to the case when some m-connected cover $X\langle m\rangle$ is contractible.

Recall from [13, Corollary 2.12] that a connected space is nilpotent if and only if its Postnikov system admits a principal refinement

$$
\cdots \rightarrow X_{s} \rightarrow X_{s-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}
$$

This means that each map $X_{s+1} \rightarrow X_{s}$ in the tower is a principal fibration with fiber $K\left(A_{s}, i_{s}-1\right)$ for some increasing sequence of integers $i_{s} \geq 2$. We are only interested in finite Postnikov pieces, i.e. nilpotent spaces that can be constructed in a finite number of steps by taking homotopy fibers of k-invariants $X_{s} \rightarrow K\left(A_{s}, i_{s}\right)$.

The key step in the study of the cellularization of a nilpotent finite Postnikov piece is the analysis of principal fibrations (given in our case by the k-invariants).

Theorem 3.6. Let X be a p-torsion nilpotent Postnikov piece. Then there exists a fibration

$$
X\langle 1\rangle \rightarrow C W_{B \mathbb{Z} / p^{r}} X \rightarrow B S
$$

where S is the (normal) subgroup of $\pi_{1} X$ generated by the elements g of order p^{i} with $i \leq r$, such that the inclusion $B\langle g\rangle \rightarrow B \pi_{1} X$ admits a lift to X.

Proof. By Proposition 3.4, the universal cover $X\langle 1\rangle$ is cellular, and there is a fibration $X\langle 1\rangle \rightarrow X \rightarrow B G$, where $G=\pi_{1} X$ is nilpotent. The result then follows from Theorem 2.7.

4. Cellularization of H-spaces

In this section, we will use the computations of the cellularization of p-torsion nilpotent Postnikov systems to determine $C W_{B \mathbb{Z} / p} X$ when X is an H-space. We prove:
Theorem 4.1. Let X be a connected H-space such that $\Omega^{n} X$ is $B \mathbb{Z} / p$-null. Then

$$
C W_{B \mathbb{Z} / p} X \simeq Y \times K(W, 1)
$$

where Y is a simply connected p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions $\leq n$ and W is an elementary abelian p-group.

Proof. The fibration in Bousfield's result Proposition 1.5 yields a cellular equivalence between a connected p-torsion H-Postnikov piece F and X. Theorem 3.6 thus applies. Moreover, since F is an H-space as well, the subgroup S is abelian and generated by elements of order p. Therefore, the H-fibration in Theorem 3.6 $F\langle 1\rangle \rightarrow C W_{B \mathbb{Z} / p} F \rightarrow K(W, 1)$ admits a section (summing up the local sections), and the cellularization splits as a product.

This result applies for H-spaces satisfying certain finiteness conditions.
Proposition 4.2. Let X be a connected H-space such that $H^{*}\left(X ; \mathbb{F}_{p}\right)$ is finitely generated as an algebra over the Steenrod algebra. Then

$$
C W_{B \mathbb{Z} / p} X \simeq F \times K(W, 1)
$$

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary abelian p-group. Moreover, there exists an integer k such that $C W_{B^{m} \mathbb{Z} / p} X \simeq *$ for any $m \geq k$.
Proof. In [6, we prove that if $H^{*}\left(X ; \mathbb{F}_{p}\right)$ is finitely generated as an algebra over the Steenrod algebra, then $\Omega^{n} X$ is $B \mathbb{Z} / p$-null for some $n \geq 0$. Hence, Theorem 4.1 applies, and we obtain the desired result. In addition, Lemma 1.1 shows that X is $B^{n+s+1} \mathbb{Z} / p$-null for any $s \geq 0$, which implies the second part of the result.

The technique we propose in this paper is not only a nice theoretical tool which provides a general statement about what the $B \mathbb{Z} / p$-cellularization of H-spaces looks like. Our next result shows that one can actually identify this new space precisely when dealing with connected covers of finite H-spaces. Recall that by Miller's theorem [17, Thm. A], any finite H-space X is $B \mathbb{Z} / p$-null and hence, $C W_{B \mathbb{Z} / p} X \simeq *$. The universal cover of X is still finite, and thus $C W_{B \mathbb{Z} / p}(X\langle 1\rangle)$ is contractible as well. We can therefore assume that X is 1 -connected. The computation of the cellularization of the 3 -connected cover is already implicit in [4].
Proposition 4.3. Let X be a simply connected finite H-space and let k denote the rank of the free abelian group $\pi_{3} X$. Then $C W_{B \mathbb{Z} / p}(X\langle 3\rangle) \simeq K\left(\bigoplus_{k} \mathbb{Z} / p, 1\right)$. For $n \geq 4$, up to p-completion, the universal cover of $C W_{B \mathbb{Z} / p}(X\langle n\rangle)$ is weakly equivalent to the 2-connected cover of $\Omega(X[n])$.
Proof. By Browder's famous result [5, Theorem 6.11], X is even 2-connected and its third homotopy group $\pi_{3} X$ is free abelian (of rank k) by Hubbuck and Kane's theorem [14]. This means we have a fibration

$$
K\left(\bigoplus_{k} \mathbb{Z}_{p^{\infty}}, 1\right) \rightarrow X\langle 3\rangle \rightarrow P_{B \mathbb{Z} / p} X\langle 3\rangle
$$

which shows that $C W_{B \mathbb{Z} / p} X\langle 3\rangle \simeq K\left(\bigoplus_{k} \mathbb{Z} / p, 1\right)$.
We now deal with the higher connected covers. Consider the following commutative diagram of fibrations:

where F is a p-torsion Postnikov piece by [2, Thm 7.2] and the fiber inclusions are all $B \mathbb{Z} / p$-cellular equivalences, because the base spaces are $B \mathbb{Z} / p$-null. Therefore,

$$
C W_{B \mathbb{Z} / p}(X\langle n\rangle) \simeq C W_{B \mathbb{Z} / p} F \simeq F\langle 1\rangle \times K(W, 1)
$$

We wish to identify $F\langle 1\rangle$. Since the fibrations in the diagram are nilpotent, by 3 , II.4.8] they remain fibrations after p-completion. By Neisendorfer's theorem [19], the $\operatorname{map} P_{B \mathbb{Z} / p}(X\langle n\rangle) \rightarrow X$ is an equivalence up to p-completion, which means that $P_{B \mathbb{Z} / p}(\Omega(X[n]))_{p}^{\wedge} \simeq *$. Thus $F_{p}^{\wedge} \simeq(\Omega(X[n]))_{p}^{\wedge}$. Note that $\Omega(X[n])$ is simply connected and its second homotopy group is free by the above-mentioned theorem of Hubbuck and Kane (which corresponds up to p-completion to the direct sum of k copies of the Prüfer group \mathbb{Z} / p^{∞} in $\left.\pi_{1} F\right)$. Hence, $F\langle 1\rangle$ coincides with $(\Omega(X[n]))\langle 2\rangle$ up to p-completion.

To illustrate this result, we compute the $B \mathbb{Z} / 2$-cellularization of the successive connected covers of S^{3}. The only delicate point is the identification of the fundamental group.

Example 4.4. Recall that S^{3} is $B \mathbb{Z} / 2$-null since it is a finite space. Thus, the cellularization $C W_{B \mathbb{Z} / 2} S^{3}$ is contractible. Next, the fibration

$$
K\left(\mathbb{Z}_{2 \infty}, 1\right) \rightarrow S^{3}\langle 3\rangle \rightarrow P_{B \mathbb{Z} / 2}\left(S^{3}\langle 3\rangle\right)
$$

shows that $C W_{B \mathbb{Z} / 2}\left(S^{3}\langle 3\rangle\right) \simeq K(\mathbb{Z} / 2,1)$. Finally, since $S^{3}[4]$ does not split as a product (the k-invariant is not trivial), we see that $C W_{B \mathbb{Z} / 2}\left(S^{3}\langle 4\rangle\right) \simeq K(\mathbb{Z} / 2,3)$. Likewise, for any integer $n \geq 4$, we have that $C W_{B \mathbb{Z} / 2}\left(S^{3}\langle n\rangle\right)$ is weakly equivalent to the 2 -completion of the 2 -connected cover of $\Omega\left(S^{3}[n]\right)$. The same phenomenon occurs at odd primes.

5. Cellularization with respect to $B^{m} \mathbb{Z} / p$

All the techniques developed for fibrations over $B G$ apply to fibrations over $K(G, n)$ when $n>1$, and we get the following results.

Lemma 5.1. Let $m \geq 2$ and let X be a connected space. Then $C W_{B^{m} \mathbb{Z} / p^{r}} X$ is weakly equivalent to $C W_{B^{m} \mathbb{Z} / p^{r}}(X\langle n-1\rangle)$.

Proof. Consider the fibrations $X\langle i\rangle \rightarrow X\langle i-1\rangle \rightarrow K\left(\pi_{i} X, i\right)$. For $i<m$, the base space is $B^{m} \mathbb{Z} / p^{r}$-null and so $C W_{B^{m} \mathbb{Z} / p^{r}}(X\langle i\rangle) \simeq C W_{B^{m} \mathbb{Z} / p^{r}}(X\langle i-1\rangle)$.

Proposition 5.2. Let $m \geq 2$ and let X be a p-torsion nilpotent Postnikov piece. Then there exists a fibration

$$
X\langle m\rangle \rightarrow C W_{B^{m} \mathbb{Z} / p^{r}} X \rightarrow K(W, m)
$$

where W is a p-torsion subgroup of $\pi_{m} X$ of exponent dividing p^{r}.
Theorem 5.3. Let X be a connected H-space such that $\Omega^{n} X$ is $B^{m} \mathbb{Z} / p$-null. Then

$$
C W_{B^{m} \mathbb{Z} / p} X \simeq F \times K(W, m)
$$

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in dimensions from $m+1$ to $m+n-1$, and W is an elementary abelian p-group.

Example 5.4. Let X denote "Milgram's space" (see [16]), the homotopy fiber of $S q^{2}: K(\mathbb{Z} / 2,2) \rightarrow K(\mathbb{Z} / 2,4)$. This is an infinite loop space. By Proposition 3.4, we know it is already $B \mathbb{Z} / 2$-cellular. Since the k-invariant is not trivial, we see that

$$
C W_{B^{2} \mathbb{Z} / 2} X \simeq C W_{B^{3} \mathbb{Z} / 2} X \simeq K(\mathbb{Z} / 2,3)
$$

Finally, we compute the cellularization of the (infinite loop) space $B U$ and its 2-connected cover $B S U$ with respect to Eilenberg-Mac Lane spaces $B^{m} \mathbb{Z} / p$. By Bott periodicity, this actually tells us the answer for all connected covers of $B U$.

Example 5.5. First of all, recall from Example 1.4 that $B U$ is $B^{2} \mathbb{Z} / p$-null since $\widetilde{K}^{*}\left(B^{2} \mathbb{Z} / p\right)=0$ and its iterated loops are never $B \mathbb{Z} / p$-null. Therefore, the cellularization $C W_{B^{m} \mathbb{Z} / p} B U$ is contractible if $m \geq 2$. Since $B U \simeq B S U \times B S^{1}$, the same holds for $B S U$.

We now compute the $B^{m} \mathbb{Z} / p$-cellularization of $B O$ and its connected covers BSO, BSpin, and BString.

Proposition 5.6. Let $m \geq 2$. Then
(1) $C W_{B^{m} \mathbb{Z} / p} B O \simeq C W_{B^{m} \mathbb{Z} / p} B S O \simeq C W_{B^{m} \mathbb{Z} / p} B S$ in \simeq *,
(2) $C W_{B^{m} \mathbb{Z} / p} B S t r i n g \simeq *$ if $m>2$,
(3) $C W_{B^{2} \mathbb{Z} / p}$ BString $\simeq K(\mathbb{Z} / p, 2)$ and $\operatorname{map}_{*}\left(B^{2} \mathbb{Z} / p, B S t r i n g\right) \simeq \mathbb{Z} / p$.

Proof. In [15], W. Meier proves that real and complex K-theory have the same acyclic spaces, hence $B O$ is also $B^{2} \mathbb{Z} / p$-null. Therefore, $C W_{B^{m} \mathbb{Z} / p} B O$ is contractible for any $m \geq 2$. The 2-connected cover of $B O$ is $B S O$, and there is a splitting $B O \simeq B S O \times B \mathbb{Z} / 2$, so that $C W_{B^{m} \mathbb{Z} / p} B S O \simeq *$.

The 4-connected cover of $B O$ is $B S p i n$. From the fibration

$$
B S p i n \rightarrow B S O \xrightarrow{w_{2}} K(\mathbb{Z} / 2,2),
$$

we infer that the homotopy fiber of $B S \operatorname{Sin} \rightarrow B S O$ is $B \mathbb{Z} / 2$. Since $B S O$ and $B \mathbb{Z} / 2$ are $B^{2} \mathbb{Z} / p$-null, so is $B S p i n$. Therefore, $C W_{B^{m} \mathbb{Z} / p} B S$ pin is contractible.

Finally, the 8 -connected cover of $B O$ is $B S t r i n g$. It is the homotopy fiber of $B \operatorname{Spin} \xrightarrow{p_{1} / 4} K(\mathbb{Z}, 4)$, where p_{1} denotes the first Pontrjagin class. Consider the fibration

$$
K(\mathbb{Z}, 3) \rightarrow \text { BString } \rightarrow \text { BSpin }
$$

where the base space is $B^{m} \mathbb{Z} / p$-null for $m \geq 2$. Together with the exact sequence $\mathbb{Z} \rightarrow \mathbb{Z}\left[\frac{1}{p}\right] \rightarrow \mathbb{Z} / p^{\infty}$, this implies that

$$
C W_{B^{m} \mathbb{Z} / p} B S t r i n g \simeq C W_{B^{m} \mathbb{Z} / p} K(\mathbb{Z}, 3) \simeq C W_{B^{m} \mathbb{Z} / p} K\left(\mathbb{Z} / p^{\infty}, 2\right)
$$

This is a contractible space unless $m=2$, when we obtain $K(\mathbb{Z} / p, 2)$. The explicit description of the pointed mapping $\operatorname{space}_{\operatorname{map}_{*}}\left(B^{2} \mathbb{Z} / p, B S t r i n g\right)$ follows.

Observe that the iterated loops of the m-connected covers of $B O$ and $B U$ are never $B \mathbb{Z} / p$-null. Hence, their cellularizations with respect to $B \mathbb{Z} / p$ must have infinitely many non-vanishing homotopy groups by Proposition 1.6.

Acknowledgements

We would like to thank Daniel Davis for carefully revising our English.

References

[1] A. K. Bousfield, Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (1976/77), no. 2, 207-220. MR0478159 (57:17648)
[2] __, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831-873. MR1257059 (95c:55010)
[3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, SpringerVerlag, Berlin, 1972, Lecture Notes in Mathematics, Vol. 304. MR0365573 (51:1825)
[4] C. Broto and J. A. Crespo, H-spaces with Noetherian mod two cohomology algebra, Topology 38 (1999), no. 2, 353-386. MR1660329 (99i:55013)
[5] W. Browder, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 24-51. MR0124891 (23:A2201)
[6] N. Castellana, J. A. Crespo, and J. Scherer, Deconstructing Hopf spaces, Invent. Math. DOI 10.1007/s00222-006-0518-8 (online).
[7] W. Chachólski, On the functors $C W_{A}$ and P_{A}, Duke Math. J. 84 (1996), no. 3, 599-631. MR. 1408539 (97i:55023)
[8] W. G. Dwyer, The centralizer decomposition of $B G$, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 167-184. MR1397728 (97i:55028)
[9] E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Springer-Verlag, Berlin, 1996. MR1392221 (98f:55010)
[10] R. Flores, Nullification and cellularization of classifying spaces of finite groups, to appear in Trans. Amer. Math. Soc.
[11] R. Flores and J. Scherer, Cellularization of classifying spaces and fusion properties of finite groups, preprint available at http://front.math.ucdavis.edu/math.AT/0501442, 2005.
[12] L. Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York, 1970. MR0255673 (41:333)
[13] P. Hilton, G. Mislin, and J. Roitberg, Localization of nilpotent groups and spaces, NorthHolland Publishing Co., Amsterdam, 1975, North-Holland Mathematics Studies, No. 15, Notas de Matemática, No. 55. [Notes on Mathematics, No. 55]. MR0478146 (57:17635)
[14] J. R. Hubbuck and R. Kane, On π_{3} of a finite H-space, Trans. Amer. Math. Soc. 213 (1975), 99-105. MR0397724 (53:1582)
[15] W. Meier, Complex and real K-theory and localization, J. Pure Appl. Algebra 14 (1979), no. 1, 59-71. MR0515487 (80b:55003)
[16] R. J. Milgram, The structure over the Steenrod algebra of some 2-stage Postnikov systems, Quart. J. Math. Oxford Ser. (2) 20 (1969), 161-169. MR0248811 (40:2061)
[17] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39-87. MR0750716 (85i:55012)
[18] G. Mislin, Localization with respect to K-theory, J. Pure Appl. Algebra 10 (1977/78), no. 2, 201-213. MR0467732 (57:7585)
[19] J.A. Neisendorfer, Localization and connected covers of finite complexes, The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 385-390. MR1321002 (96a:55019)
[20] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 1, SpringerVerlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62. MR0332989 (48:11314)
[21] J. L. Rodríguez and J. Scherer, Cellular approximations using Moore spaces, Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 357-374. MR 1851263 (2003a:55024)
[22] L. Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994. MR1282727 (95d:55017)
[23] R. B. Warfield, Jr., Nilpotent groups, Springer-Verlag, Berlin, 1976, Lecture Notes in Mathematics, Vol. 513. MR0409661(53:13413)

Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail address: natalia@mat.uab.es
Departament de Economia i de Història Econòmica, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

E-mail address: JuanAlfonso.Crespo@uab.es
Current address: Departamento de Economía, Universidad Carlos III de Madrid, E-28903 Getafe, Spain

E-mail address: jacrespo@eco.uc3m.es
Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 BelLaterra, Spain

E-mail address: jscherer@mat.uab.es

[^0]: Received by the editors November 26, 2004.
 2000 Mathematics Subject Classification. Primary 55R35; Secondary 55P60, 55P20, 20F18.
 Key words and phrases. Cellularization, H-spaces, Postnikov pieces, nilpotent groups.
 All three authors were partially supported by MEC grant MTM2004-06686.
 The third author was supported by the program Ramón y Cajal, MEC, Spain.

