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POSTNIKOV PIECES AND BZ/p-HOMOTOPY THEORY

NATÀLIA CASTELLANA, JUAN A. CRESPO, AND JÉRÔME SCHERER

Abstract. We present a constructive method to compute the cellularization
with respect to Bm

Z/p for any integer m ≥ 1 of a large class of H-spaces,
namely all those which have a finite number of non-trivial Bm

Z/p-homotopy
groups (the pointed mapping space map∗(Bm

Z/p, X) is a Postnikov piece).
We prove in particular that the Bm

Z/p-cellularization of an H-space having a
finite number of Bm

Z/p-homotopy groups is a p-torsion Postnikov piece. Along
the way, we characterize the BZ/pr-cellular classifying spaces of nilpotent
groups.

Introduction

The notion of A-homotopy theory was introduced by Dror Farjoun [9] for an
arbitrary connected space A. Here A and its suspensions play the role of the
spheres in classical homotopy theory, and so the A-homotopy groups of a space X
are defined to be the homotopy classes of pointed maps [ΣiA, X]. The analogue to
weakly contractible spaces are those spaces for which all A-homotopy groups are
trivial. This means that the pointed mapping space map∗(A, X) is contractible,
i.e. X is an A-null space. On the other hand, the classical notion of CW -complex
is replaced by the one of A-cellular space. Such spaces can be constructed from A
by means of pointed homotopy colimits.

Thanks to work of Bousfield [2] and Dror Farjoun [9] there is a functorial way
to study X through the eyes of A. The nullification PAX is the biggest quotient
of X which is A-null, and CWAX is the best A-cellular approximation of the
space X. Roughly speaking, CWAX contains all the transcendent information of
the mapping space map∗(A, X), since the latter is equivalent to map∗(A, CWAX).
Hence, explicit computation of the cellularization would give access to information
about map∗(A, X). The importance of mapping spaces (in the case A = BZ/p) is
well established thank to Miller’s solution to the Sullivan conjecture [17] and later
work.

While many computations of PAX are present in the literature, very few com-
putations of CWAX are available. For instance, Chachólski describes a strategy
to compute the cellularization CWAX in [7]. His method has been successfully
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applied in some cases (cellularization with respect to Moore spaces [21], BZ/p-
cellularization of classifying spaces of finite groups [10]), but it is in general difficult
to apply.

An alternative way to compute CWAX is the following. The nullification map
l : X → PAX provides an equivalence CWAX � CWAPAX, where, as usual, PAX
denotes the homotopy fiber of l. This equivalence gives a strategy when PAX is
known. Assume for example that X is A-null. Then PAX is contractible, and
thus, so is CWAX. From the A-homotopy point of view, the next case in which
the A-cellularization should be accessible is when X has only a finite number of
A-homotopy groups, that is, some iterated loop space ΩnX is A-null. Natural
examples of spaces satisfying this condition are the n-connected covers of A-null
spaces.

Let us specialize to H-spaces and A = Bm
Z/p. Bousfield has determined in [2]

the fiber of the nullification map X → PBmZ/pX when ΩnX is Bm
Z/p-null. He

shows that, for such an H-space, PBmZ/pX is a p-torsion Postnikov piece F , whose
homotopy groups are concentrated in dimensions from m to m+n−1. As F is also
an H-space (because l is an H-map), we call it an H-Postnikov piece. The cellu-
larization of X (which is again an H-space because CWA preserves H-structures)
therefore coincides with that of a Postnikov piece. In Section 3, we explain how to
compute the cellularization of Postnikov pieces, and this enables us to obtain our
main result.

Theorem 5.3. Let X be a connected H-space such that ΩnX is Bm
Z/p-null. Then

CWBmZ/pX � F × K(W, m),

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in
dimensions from m + 1 to m + n − 1 and W is an elementary abelian p-group.

Thus, when X is an H-space with only a finite number of Bm
Z/p-homotopy

groups, the cellularization CWBmZ/pX is a p-torsion H-Postnikov piece. This is
not true in general if we do not assume X to be an H-space. For instance, the
BZ/p-cellularization of BΣ3 is a space with infinitely many non-trivial homotopy
groups [11]. Also, it is not true for an arbitrary space A that the A-cellularization
of an H-space having a finite number of A-homotopy groups is always a Postnikov
piece. This fails, for example, when A is the product of the K(Z/p, p)’s, where p
runs over the set of all primes, but it could be true for any n-supported p-torsion
space A (in the terminology of [2]).

In our previous work [6], we analyzed a large class of H-spaces which fits into the
present framework. Namely, if the mod p cohomology of an H-space X is finitely
generated as an algebra over the Steenrod algebra, then there must exist an integer
n such that ΩnX is BZ/p-null. Hence, we obtain the following.

Proposition 4.2. Let X be a connected H-space such that H∗(X; Fp) is finitely
generated as an algebra over the Steenrod algebra. Then

CWBZ/pX � F × K(W, 1),

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary
abelian p-group. Moreover, there exists an integer k such that CWBmZ/pX � ∗ for
any m ≥ k.
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Our results allow explicit computations which we exemplify by computing in Pro-
position 4.3 the BZ/p-cellularization of the n-connected cover of any finite H-space,
as well as the Bm

Z/p-cellularizations of the classifying spaces for real and complex
vector bundles BU , BO, and their connected covers BSU , BSO, BSpin, and
BString; see Proposition 5.6.

1. A double filtration of the category of spaces

As mentioned in the Introduction, the condition that ΩnX be Bm
Z/p-null will

enable us to compute the Bm
Z/p-cellularization of H-spaces. This section is de-

voted to giving a picture of how such spaces are related for different choices of m
and n.

First of all, we present a lemma which collects various facts that are needed in
the rest of the paper.

Lemma 1.1. Let X be a connected space and m > 0. Then,

(1) If X is Bm
Z/p-null, then ΩnX is Bm

Z/p-null for all n ≥ 1.
(2) If X is Bm

Z/p-null, then it is Bm+s
Z/p-null for all s ≥ 0.

(3) If ΩX is Bm
Z/p-null, then X is Bm+s

Z/p-null for all s ≥ 1.

Proof. For (1), simply apply map∗(BZ/p,−) to the path fibration ΩX → ∗ → X.
Statement (2) is given by Dwyer’s version of Zabrodsky’s lemma [8, Prop. 3.4]

applied to the universal fibration Bm
Z/p → ∗ → Bm+1

Z/p.
Finally, (3) is proven like (2), using Zabrodsky’s lemma in its connected ver-

sion [8, Prop. 3.5] (see also Lemma 2.3). Recall that if ΩX is Bm
Z/p-null, then the

component map(Bm
Z/p, X)c of the constant map is weakly equivalent to X. �

Of course, the converses of the previous results are not true. For the first state-
ment, take the classifying space of a discrete group at m = 1. For the second and
third, consider X = BU . It is a B2

Z/p-null space (see Example 1.4), but neither
BU nor ΩBU are BZ/p-null. Observe that in fact ΩnBU is never BZ/p-null. The
next result shows that this is the general situation. That is, if a connected space X
is Bm+1

Z/p-null, then either ΩX is Bm
Z/p-null or none of the iterated loop spaces

ΩnX is Bm
Z/p-null for n ≥ 1.

Theorem 1.2. Let X be a Bm+1
Z/p-null space such that ΩkX is Bm

Z/p-null for
some k > 0. Then ΩX is Bm

Z/p-null.

Proof. It is enough to prove the result for k = 2. Consider the fibration

K(Q, m + 1) → PΣ2BmZ/pX � X → PΣBmZ/pX,

where the fiber is a p-torsion Eilenberg-Mac Lane space by Bousfield’s description of
the fiber of the ΣBm

Z/p-nullification [2, Theorem 7.2]. The base space is Bm+1
Z/p-

null by Lemma 1.1(3) and so is the total space, by assumption. Thus, the pointed
mapping space map∗

(
Bm+1

Z/p, K(Q, m + 1)
)

must be contractible as well, i.e.
Q = 0. �

The previous analysis leads to a double filtration of the category of spaces. Let
n ≥ 0 and m ≥ 1. We introduce the notation

Sn
m = {X| ΩnX is Bm

Z/p-null}.
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then Lemma 1.1 yields a diagram of inclusions:
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1
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��
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��
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� �
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S0
m

� � �� S1
m

� � �� S1
m

� � �� · · · � � �� Sn
m · · ·

...
...

...
...

Example 1.3. We give examples of spaces in every stage of the filtration.

(1) S0
1 are the spaces that are BZ/p-null. This contains in particular any finite

space (by Miller’s theorem [17, Thm. A]), and, for a nilpotent space X (of
finite type with finite fundamental group), to be BZ/p-null is equivalent to
its cohomology H∗(X; Fp) being locally finite by [22, Corollary 8.6.2].

(2) If X〈n〉 denotes the n-connected cover of a space X, then the homotopy
fiber of Ωn−1X〈n〉 → Ωn−1X is a discrete space. Hence, if X ∈ S0

m, then
X〈n〉 ∈ Sn−1

m .
(3) Observe that Sn

m ⊂ Sn−k
m+k for all 0 ≤ k ≤ n.

(4) The previous examples provide spaces in every stage of the double filtration.
Consider a finite space. It is automatically BZ/p-null and its n-connected
cover X〈n〉 lies in Sn−1

1 , hence also in Sn−k−1
k+1 for all 0 ≤ k ≤ n.

The next example provides a number of spaces living in S0
m which do not come

from the first row of the filtration. Of course their connected covers will be new
examples of spaces living in Sn

m.

Example 1.4. Let E∗ be a homology theory. If Ẽi
(
K(Z/p, m)

)
= 0 for all i, then

the spaces Ei representing the corresponding homology theory are Bm
Z/p-null. If

Ẽj
(
K(Z/p, m− 1)

)

= 0 for some j, then Ej is not Bm−1

Z/p-null. In particular, if
E∗ is periodic, it follows that the spaces Ei are Bm

Z/p-null for all i, but none of
their iterated loops are Bm−1

Z/p-null.
A first example of such behavior is obtained from complex K-theory: BU is

B2
Z/p-null, but BU and U are not BZ/p-null (see [18]). Note that real and quater-

nionic K-theory enjoy the same properties.
For every m, examples of homology theories following this pattern are given

by p-torsion homology theories of type III-m as described in [1]. The mth Morava
K-theory K(m)∗ for p odd is an example of such behavior with respect to Eilenberg-
Mac Lane spaces. The spaces representing K(m)∗ are Bm+1

Z/p-null, but none of
their iterated loops are Bm

Z/p-null.
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Our aim is to provide tools to compute the Bm
Z/p-cellularization of any H-space

lying in the mth row of the above diagram. The key point is the following result of
Bousfield [2], which determines the fiber of the nullification map.

Proposition 1.5. Let n ≥ 0 and let X be a connected H-space such that ΩnX is
Bm

Z/p-null. Then there is an H-fibration

F → X → PBmZ/pX,

where F is a p-torsion H-Postnikov piece whose homotopy groups are concentrated
in dimensions from m to m + n − 1. �

Therefore, since F → X is a Bm
Z/p-cellular equivalence, we only need to com-

pute the cellularization of a Postnikov piece (which will end up being a Postnikov
piece again; see Theorem 3.6). Actually, even more is true.

Proposition 1.6. Let X be a connected space such that CWBmZ/pX is a Postnikov
piece. Then there exists an integer n such that ΩnX is Bm

Z/p-null.

Proof. Let us loop once the Chachólski fibration CWBmZ/pX → X → PΣBmZ/pC
(see [7, Theorem 20.5]). Since ΩPΣBmZ/pC is equivalent to PBmZ/pΩC by [9, The-
orem 3.A.1], we get a fibration over a Bm

Z/p-null base space

ΩCWBmZ/pX → ΩX → PBmZ/pΩC.

Now there exists an integer n such that ΩnCWBmZ/pX is discrete, thus Bm
Z/p-null.

Therefore, so is ΩnX. �

2. Cellularization of fibrations over BG

In general, it is very difficult to compute the cellularization of the total space
of a fibration. In this section, we explain how to deal with this problem when the
base space is the classifying space of a discrete group. The first step applies to any
group. In the second step (see Proposition 2.4 below) we specialize to nilpotent
groups.

Proposition 2.1. Let r ≥ 1 and let F → E
π−→ BG be a fibration, where G is a

discrete group. Let S be the (normal) subgroup generated by all elements g ∈ G of
order pi for some i ≤ r such that the inclusion B〈g〉 → BG lifts to E. Then the
pullback of the fibration along BS → BG

E′

��

f
�� E

π

��

p
�� B(G/S)

BS �� BG
p′

�� B(G/S)

induces a BZ/pr-cellular equivalence f : E′ → E on the total space level.

Proof. We have to show that f induces a homotopy equivalence on pointed mapping
spaces map∗(BZ/pr,−). The top fibration in the diagram yields a fibration

map∗(BZ/pr, E′)
f∗−→ map∗(BZ/pr, E)

p∗−→ map∗
(
BZ/pr, B(G/S)

)
.

Since the base is homotopically discrete, we only need to check that all components
of the total space are sent by p∗ to the component of the constant. Thus consider
a map h : BZ/pr → E. The composite p ◦ h is homotopy equivalent to a map
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induced by a group homomorphism α : Z/pr → G whose image α(1) = g is in S by
construction. Therefore p ◦ h = p′ ◦ π ◦ h is null-homotopic. �

Remark 2.2. If the fibration in the above proposition is an H-fibration (in particular
if G is abelian), the set of elements g for which there is a lift to the total space
forms a subgroup of G. The central extension Z(D8) ↪→ D8 → Z/2 × Z/2 of the
dihedral group D8 provides an example where the subgroup S is Z/2 × Z/2, but
the element in S represented by an element of order 4 in D8 does not admit a lift.

The next lemma is a variation of Dwyer’s version of Zabrodsky’s Lemma in [8].

Lemma 2.3. Let F → E
f−→ B be a fibration over a connected base, and let A

be a connected space such that ΩA is F -null. Then any map g : E → A which is
homotopic to the constant map when restricted to the fiber F factors through a map
h : B → A up to unpointed homotopy and, moreover, g is pointed null-homotopic
if and only if h is so.

Proof. Since ΩA is F -null, we see that the component map∗(F, A)c of the constant
map is contractible, and therefore, the evaluation at the base point map(F, A)c → A
is an equivalence. By [8, Proposition 3.5], f induces a homotopy equivalence

map(B, A) � map(E, A)[F ],

where map(E, A)[F ] denotes the space of maps E → A which are homotopic to the
constant map when restricted to F .

Looking at the component of the constant map, we see that map(B, A)c �
map(E, A)c. Since any map homotopic to the constant map is also homotopic by
a pointed homotopy, the result follows. �

Proposition 2.4. Let r ≥ 1 and let F
i−→ E

π−→ BG be a fibration, where G
is a nilpotent group generated by elements of order pi with i ≤ r. Assume that
for each of these generators x ∈ G, the inclusion B〈x〉 → BG lifts to E. If F is
BZ/pr-cellular, then so is E.

Proof. In [7], Chachólski describes the cellularization CWBZ/prE as the homotopy
fiber of the composite

f : E → C → PΣBZ/prC,

where C is the homotopy cofiber of the evaluation map
∨

[BZ/pr,E] BZ/pr → E.
This tells us that E is cellular if the map f is null-homotopic. Observe that if
f is null-homotopic, then the fiber inclusion CWBZ/prE → E has a section and,
therefore, E is cellular, since it is a retract of a cellular space ([9, 2.D.1.5]).

As the existence of an unpointed homotopy to the constant map implies the
existence of a pointed one, we now work in the category of unpointed spaces. We
remark that for any map g : Z → E from a BZ/pr-cellular space Z, the composite
f◦g is null-homotopic, since g factors through the cellularization of E. In particular,
the composite f ◦ i is null-homotopic. By Lemma 2.3, f factors through a map
f̄ : BG → PΣBZ/prC such that f̄ ◦ π � f and, moreover, f is null-homotopic if and
only if f̄ is so.

We first assume that G is a finite group and show by induction on the order of G
that f̄ is null-homotopic. If |G| = p, the existence of a section s : BG → E implies
that f ◦ s = f̄ is null-homotopic since BG = BZ/p is cellular.
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Let {x1, . . . , xk} be a minimal set of generators which admit a lift. Let H � G
be the normal subgroup generated by x1, . . . , xk−1 and their conjugates by powers
of xk. There is a short exact sequence

H → G → Z/pa,

where the quotient group is generated by the image of the generator xk. Consider
the fibration F → E′ → BH obtained by pulling back along BH → BG, and
denote by h : E′ → E the induced map between the total spaces. Since H satisfies
the assumptions of the proposition, the induction hypothesis tells us that E′ is
cellular and therefore, f ◦ h is null-homotopic. This implies that the restriction of
f̄ to BH is null-homotopic. Consider the following diagram:

B(〈xk〉 ∩ H)

��

�� BH

��

∗

������������

B(〈xk〉) ��

��

BG

��

f
�� PΣBZ/prC

BZ/pa BZ/pa

f ′

������������

By Lemma 2.3, it is enough to show that f ′ is null-homotopic. Again, applying
Lemma 2.3 to the fibration on the left shows that f ′ is null-homotopic since f̄
restricted to 〈xk〉 is so. Therefore, f̄ is null-homotopic.

Assume now that G is not finite. Any subgroup of G generated by a finite
number of elements of order a power of p has a finite abelianization, and must
therefore be itself finite by [20, Theorem 2.26]. Thus, G is locally finite, i.e. G is a
filtered colimit of finite nilpotent groups generated by elements of order pi for i ≤ r.
Likewise, BG is a filtered homotopy colimit of classifying spaces of finite groups
(generated by finite subsets of the set of generators) which satisfy the hypotheses
of the proposition. The total space E can be obtained as a pointed filtered colimit
of the total spaces obtained by pulling back the fibration. By the case when G is
finite, these total spaces are all cellular and therefore, so is E. �

Sometimes the existence of the “local” sections defined for every generator per-
mits the construction of a global section of the fibration. By a result of Chachólski
[7, Theorem 4.7], the total space of such a split fibration is cellular since F and BG
are so. This is the case for an H-fibration, and E is then weakly equivalent to the
product F × BG.

A straightforward consequence of the above proposition (in the case when the
fibration is the identity on BG) is the following characterization of the BZ/pr-
cellular classifying spaces. For r = 1, we obtain R. Flores’ result [10, Theorem 4.14].

Corollary 2.5. Let r ≥ 1 and let G be a nilpotent group generated by elements of
order pi with i ≤ r. Then BG is BZ/pr-cellular. �

Example 2.6. The quaternion group Q8 of order 8 is generated by elements of
order 4. Therefore, BQ8 is BZ/4-cellular. We do not know an explicit way to
construct BQ8 as a pointed homotopy colimit of a diagram whose values are copies
of BZ/4.
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We can now state the main result of this section. It provides a constructive de-
scription of the cellularization of the total space of certain fibrations over classifying
spaces of nilpotent groups.

Theorem 2.7. Let G be a nilpotent group and let F → E → BG be a fibration
with BZ/pr-cellular fiber F . Then the cellularization of E is the total space of a
fibration F → CWBZ/prE → BS, where S�G is the (normal) subgroup generated by
the p-torsion elements g of order pi with i ≤ r, such that the inclusion B〈g〉 → BG
lifts to E.

Proof. By Proposition 2.1, pulling back along BS → BG yields a cellular equiva-
lence f in the following square:

ES
f

��

��

E

��

BS �� BG.

By Proposition 2.4, the total space ES is cellular and therefore ES � CWBZ/prE.
�

Corollary 2.8. Let G be a nilpotent group and let S � G be the (normal) subgroup
generated by the p-torsion elements g of order pi with i ≤ r. Then CWBZ/prBG �
BS. Moreover, when G is finitely generated, S is a finite p-group.

Proof. We only need to show that S is a finite p-group. Note that the abelianization
of S is p-torsion. Thus, S is also a torsion group (see [23, Cor. 3.13]). Moreover,
since G is finitely generated, S is finite, by [23, 3.10]. �

In fact, Theorem 2.7 also holds when the base space is an Eilenberg-Mac Lane
space K(G, n).

Proposition 2.9. Let n be an integer ≥ 2 and let G be a finitely generated abelian
group of exponent dividing pr. Consider a fibration F

i−→ E
π−→ K(G, n) such

that, for each generator x ∈ G, the inclusion K(〈x〉, n) → K(G, n) lifts to E. If F
is BZ/pr-cellular, then so is E. �

3. Cellularization of nilpotent Postnikov pieces

In this section, we compute the cellularization with respect to BZ/pr of nilpotent
Postnikov pieces. The main difficulty lies in the fundamental group, so it will be no
surprise that these results hold as well for cellularization with respect to Bm

Z/pr

with m ≥ 2. We will often use the following closure property [9, Theorem 2.D.11].

Proposition 3.1. Let F → E → B be a fibration where F and E are A-cellular.
Then so is B. �

Example 3.2 ([9, Corollary 3.C.10]). The Eilenberg-Mac Lane space K(Z/pk, n)
is BZ/pr-cellular for any integer k and any n ≥ 2.

The construction of the cellularization is performed by looking first at the uni-
versal cover of the Postnikov piece. We start with the basic building blocks, the
Eilenberg-Mac Lane spaces. For the structure results on infinite abelian groups, we
refer the reader to Fuchs’ book [12].
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Lemma 3.3. An Eilenberg-Mac Lane space K(A, m), with m ≥ 2, is BZ/pr-
cellular if and only if A is a p-torsion abelian group.

Proof. It is clear that A must be p-torsion. Thus, assume that A is a p-torsion
group. If A is bounded, it is isomorphic to a direct sum of cyclic groups. Since
cellularization commutes with finite products, K(A, m) is BZ/pr-cellular when A
is a finite direct sum of cyclic groups. By taking a (possibly transfinite) telescope of
BZ/pr-cellular spaces, we obtain that K(A, m) is BZ/pr-cellular for any bounded
group.

In general, A splits as a direct sum of a divisible group D and a reduced group
T . A p-torsion divisible group is a direct sum of copies of Z/p∞, which is a union of
bounded groups. Thus, K(D, m) is cellular. Now T has a basic subgroup P < T ,
which is a direct sum of cyclic groups, and the quotient T/P is divisible. So K(T, m)
is the total space of a fibration

K(P, m) → K(T, m) → K(D, m).

When m ≥ 3, we are done because of the closure property Proposition 3.1. If
m = 2, we have to refine the analysis of the fibration because K(D, m − 1) is not
cellular. However, since D is a union of bounded groups D[pk], the space K(T, 2)
is the telescope of total spaces Xk of fibrations with cellular fiber K(P, 2) and base
K(D[pk], 2). We claim that these total spaces are cellular (and thus, so is K(T, 2))
and proceed by induction on the bound. Consider the subgroup D[pk] < D[pk+1]
whose quotient is a direct sum of cyclic groups Z/p. Therefore, Xk+1 is the base
space in a fibration

K(⊕Z/p, 1) → Xk → Xk+1,

where the fiber and total space are cellular. We are done. �

We are now ready to prove that any simply connected p-torsion Postnikov piece
is a BZ/pr-cellular space.

Proposition 3.4. A simply connected Postnikov piece is BZ/pr-cellular if and only
if it is p-torsion.

Proof. Let X be a simply connected p-torsion Postnikov piece. For some integer
m, the m-connected cover X〈m〉 is an Eilenberg-Mac Lane space, which is cellular
by Lemma 3.3. Consider the principal fibration

K(πmX, m − 1) → X〈m〉 → X〈m − 1〉.

If m ≥ 3, both X〈m〉 and K(πmX, m− 1) are cellular. It follows that X〈m− 1〉 is
cellular by the closure property Proposition 3.1. An iteration of the same argument
shows that X〈2〉 is cellular.

Thus, let us look at the fibration X〈2〉 → X → K(π2X, 2). The discussion in the
proof of Lemma 3.3 also applies to the p-torsion group π2X. If this is a bounded
group, say of exponent pk, an induction on the bound shows that X is actually
the base space of a fibration where the total space is cellular, because its second
homotopy group is of exponent pk−1, and the fiber is cellular because it is of the
form K(V, 1), with V a p-torsion abelian group of exponent ≤ pr. Then the closure
property Proposition 3.1 ensures that X is cellular.
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If π2X is divisible, X is a telescope of cellular spaces, hence cellular. If it is
reduced, taking a basic subgroup B < π2X yields a diagram of fibrations

X〈2〉 �� Y

��

�� K(B, 2)

��

X〈2〉 ��

��

X

��

�� K(π2X, 2)

��

∗ �� K(D, 2) K(D, 2),

which exhibits X as the total space of a fibration over K(D, 2) with D divisible and
a BZ/pr-cellular fiber. Therefore, by writing D as a union of bounded groups as
in the proof of Lemma 3.3, one obtains X as a telescope of cellular spaces. Thus,
X is BZ/pr-cellular as well. �
Remark 3.5. The proof of the proposition holds in the more general setting, where
X is a p-torsion space such that X〈m〉 is BZ/pr-cellular for some m ≥ 2. The
proposition corresponds to the case when some m-connected cover X〈m〉 is con-
tractible.

Recall from [13, Corollary 2.12] that a connected space is nilpotent if and only
if its Postnikov system admits a principal refinement

· · · → Xs → Xs−1 → · · · → X1 → X0.

This means that each map Xs+1 → Xs in the tower is a principal fibration with
fiber K(As, is − 1) for some increasing sequence of integers is ≥ 2. We are only
interested in finite Postnikov pieces, i.e. nilpotent spaces that can be constructed in
a finite number of steps by taking homotopy fibers of k-invariants Xs → K(As, is).

The key step in the study of the cellularization of a nilpotent finite Postnikov
piece is the analysis of principal fibrations (given in our case by the k-invariants).

Theorem 3.6. Let X be a p-torsion nilpotent Postnikov piece. Then there exists
a fibration

X〈1〉 → CWBZ/prX → BS,

where S is the (normal) subgroup of π1X generated by the elements g of order pi

with i ≤ r, such that the inclusion B〈g〉 → Bπ1X admits a lift to X.

Proof. By Proposition 3.4, the universal cover X〈1〉 is cellular, and there is a fibra-
tion X〈1〉 → X → BG, where G = π1X is nilpotent. The result then follows from
Theorem 2.7. �

4. Cellularization of H-spaces

In this section, we will use the computations of the cellularization of p-torsion
nilpotent Postnikov systems to determine CWBZ/pX when X is an H-space. We
prove:

Theorem 4.1. Let X be a connected H-space such that ΩnX is BZ/p-null. Then

CWBZ/pX � Y × K(W, 1),

where Y is a simply connected p-torsion H-Postnikov piece with homotopy groups
concentrated in dimensions ≤ n and W is an elementary abelian p-group.
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Proof. The fibration in Bousfield’s result Proposition 1.5 yields a cellular equiv-
alence between a connected p-torsion H-Postnikov piece F and X. Theorem 3.6
thus applies. Moreover, since F is an H-space as well, the subgroup S is abelian
and generated by elements of order p. Therefore, the H-fibration in Theorem 3.6
F 〈1〉 → CWBZ/pF → K(W, 1) admits a section (summing up the local sections),
and the cellularization splits as a product. �

This result applies for H-spaces satisfying certain finiteness conditions.

Proposition 4.2. Let X be a connected H-space such that H∗(X; Fp) is finitely
generated as an algebra over the Steenrod algebra. Then

CWBZ/pX � F × K(W, 1),

where F is a 1-connected p-torsion H-Postnikov piece and W is an elementary
abelian p-group. Moreover, there exists an integer k such that CWBmZ/pX � ∗ for
any m ≥ k.

Proof. In [6], we prove that if H∗(X; Fp) is finitely generated as an algebra over
the Steenrod algebra, then ΩnX is BZ/p-null for some n ≥ 0. Hence, Theorem 4.1
applies, and we obtain the desired result. In addition, Lemma 1.1 shows that X is
Bn+s+1

Z/p-null for any s ≥ 0, which implies the second part of the result. �
The technique we propose in this paper is not only a nice theoretical tool which

provides a general statement about what the BZ/p-cellularization of H-spaces looks
like. Our next result shows that one can actually identify this new space precisely
when dealing with connected covers of finite H-spaces. Recall that by Miller’s
theorem [17, Thm. A], any finite H-space X is BZ/p-null and hence, CWBZ/pX � ∗.
The universal cover of X is still finite, and thus CWBZ/p(X〈1〉) is contractible as
well. We can therefore assume that X is 1-connected. The computation of the
cellularization of the 3-connected cover is already implicit in [4].

Proposition 4.3. Let X be a simply connected finite H-space and let k denote
the rank of the free abelian group π3X. Then CWBZ/p(X〈3〉) � K(

⊕
k Z/p, 1).

For n ≥ 4, up to p-completion, the universal cover of CWBZ/p(X〈n〉) is weakly
equivalent to the 2-connected cover of Ω(X[n]).

Proof. By Browder’s famous result [5, Theorem 6.11], X is even 2-connected and
its third homotopy group π3X is free abelian (of rank k) by Hubbuck and Kane’s
theorem [14]. This means we have a fibration

K(
⊕

k

Zp∞ , 1) → X〈3〉 → PBZ/pX〈3〉,

which shows that CWBZ/pX〈3〉 � K(
⊕

k Z/p, 1).
We now deal with the higher connected covers. Consider the following commu-

tative diagram of fibrations:

F

��

F ��

��

∗

��

ΩX[n] ��

��

X〈n〉

��

�� X

PBZ/p(ΩX[n]) �� PBZ/p(x〈n〉) �� X
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where F is a p-torsion Postnikov piece by [2, Thm 7.2] and the fiber inclusions are
all BZ/p-cellular equivalences, because the base spaces are BZ/p-null. Therefore,

CWBZ/p(X〈n〉) � CWBZ/pF � F 〈1〉 × K(W, 1).

We wish to identify F 〈1〉. Since the fibrations in the diagram are nilpotent, by [3,
II.4.8] they remain fibrations after p-completion. By Neisendorfer’s theorem [19],
the map PBZ/p(X〈n〉) → X is an equivalence up to p-completion, which means
that PBZ/p

(
Ω(X[n])

)∧
p
� ∗. Thus F∧

p �
(
Ω(X[n])

)∧
p
. Note that Ω(X[n]) is simply

connected and its second homotopy group is free by the above-mentioned theorem
of Hubbuck and Kane (which corresponds up to p-completion to the direct sum of k
copies of the Prüfer group Z/p∞ in π1F ). Hence, F 〈1〉 coincides with

(
Ω(X[n])

)
〈2〉

up to p-completion. �

To illustrate this result, we compute the BZ/2-cellularization of the successive
connected covers of S3. The only delicate point is the identification of the funda-
mental group.

Example 4.4. Recall that S3 is BZ/2-null since it is a finite space. Thus, the
cellularization CWBZ/2S

3 is contractible. Next, the fibration

K(Z2∞ , 1) → S3〈3〉 → PBZ/2(S3〈3〉)

shows that CWBZ/2(S3〈3〉) � K(Z/2, 1). Finally, since S3[4] does not split as a
product (the k-invariant is not trivial), we see that CWBZ/2(S3〈4〉) � K(Z/2, 3).
Likewise, for any integer n ≥ 4, we have that CWBZ/2(S3〈n〉) is weakly equivalent
to the 2-completion of the 2-connected cover of Ω(S3[n]). The same phenomenon
occurs at odd primes.

5. Cellularization with respect to Bm
Z/p

All the techniques developed for fibrations over BG apply to fibrations over
K(G, n) when n > 1, and we get the following results.

Lemma 5.1. Let m ≥ 2 and let X be a connected space. Then CWBmZ/prX is
weakly equivalent to CWBmZ/pr (X〈n − 1〉).

Proof. Consider the fibrations X〈i〉 → X〈i − 1〉 → K(πiX, i). For i < m, the base
space is Bm

Z/pr-null and so CWBmZ/pr (X〈i〉) � CWBmZ/pr (X〈i − 1〉). �

Proposition 5.2. Let m ≥ 2 and let X be a p-torsion nilpotent Postnikov piece.
Then there exists a fibration

X〈m〉 → CWBmZ/prX → K(W, m),

where W is a p-torsion subgroup of πmX of exponent dividing pr. �

Theorem 5.3. Let X be a connected H-space such that ΩnX is Bm
Z/p-null. Then

CWBmZ/pX � F × K(W, m),

where F is a p-torsion H-Postnikov piece with homotopy groups concentrated in
dimensions from m+1 to m+n−1, and W is an elementary abelian p-group. �
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Example 5.4. Let X denote “Milgram’s space” (see [16]), the homotopy fiber of
Sq2 : K(Z/2, 2) → K(Z/2, 4). This is an infinite loop space. By Proposition 3.4,
we know it is already BZ/2-cellular. Since the k-invariant is not trivial, we see that

CWB2Z/2X � CWB3Z/2X � K(Z/2, 3).

Finally, we compute the cellularization of the (infinite loop) space BU and its
2-connected cover BSU with respect to Eilenberg-Mac Lane spaces Bm

Z/p. By
Bott periodicity, this actually tells us the answer for all connected covers of BU .

Example 5.5. First of all, recall from Example 1.4 that BU is B2
Z/p-null since

K̃∗(B2
Z/p) = 0 and its iterated loops are never BZ/p-null. Therefore, the cellular-

ization CWBmZ/pBU is contractible if m ≥ 2. Since BU � BSU × BS1, the same
holds for BSU .

We now compute the Bm
Z/p-cellularization of BO and its connected covers

BSO, BSpin, and BString.

Proposition 5.6. Let m ≥ 2. Then

(1) CWBmZ/pBO � CWBmZ/pBSO � CWBmZ/pBSpin � ∗,
(2) CWBmZ/pBString � ∗ if m > 2,
(3) CWB2Z/pBString � K(Z/p, 2) and map∗(B2

Z/p, BString) � Z/p.

Proof. In [15], W. Meier proves that real and complex K-theory have the same
acyclic spaces, hence BO is also B2

Z/p-null. Therefore, CWBmZ/pBO is con-
tractible for any m ≥ 2. The 2-connected cover of BO is BSO, and there is a
splitting BO � BSO × BZ/2, so that CWBmZ/pBSO � ∗.

The 4-connected cover of BO is BSpin. From the fibration

BSpin → BSO
w2−→ K(Z/2, 2),

we infer that the homotopy fiber of BSpin → BSO is BZ/2. Since BSO and BZ/2
are B2

Z/p-null, so is BSpin. Therefore, CWBmZ/pBSpin is contractible.
Finally, the 8-connected cover of BO is BString. It is the homotopy fiber of

BSpin
p1/4−→ K(Z, 4), where p1 denotes the first Pontrjagin class. Consider the

fibration

K(Z, 3) → BString → BSpin,

where the base space is Bm
Z/p-null for m ≥ 2. Together with the exact sequence

Z → Z[ 1p ] → Z/p∞, this implies that

CWBmZ/pBString � CWBmZ/pK(Z, 3) � CWBmZ/pK(Z/p∞, 2).

This is a contractible space unless m = 2, when we obtain K(Z/p, 2). The explicit
description of the pointed mapping space map∗(B2

Z/p, BString) follows. �

Observe that the iterated loops of the m-connected covers of BO and BU are
never BZ/p-null. Hence, their cellularizations with respect to BZ/p must have
infinitely many non-vanishing homotopy groups by Proposition 1.6.
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