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Postprocessing of Low Bit-Rate Block DCT Coded
Images Based on a Fields of Experts Prior
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Abstract—Transform coding using the discrete cosine transform
(DCT) has been widely used in image and video coding standards,
but at low bit rates, the coded images suffer from severe visual
distortions which prevent further bit reduction. Postprocessing
can reduce these distortions and alleviate the conflict between bit
rate reduction and quality preservation. Viewing postprocessing
as an inverse problem, we propose to solve it by the maximum a
posteriori criterion. The distortion caused by coding is modeled
as additive, spatially correlated Gaussian noise, while the original
image is modeled as a high order Markov random field based
on the fields of experts framework. Experimental results show
that the proposed method, in most cases, achieves higher PSNR
gain than other methods and the processed images possess good
visual quality. In addition, we examine the noise model used and
its parameter setting. The noise model assumes that the DCT
coefficients and their quantization errors are independent. This
assumption is no longer valid when the coefficients are truncated.
We explain how this problem can be rectified using the current
parameter setting.

Index Terms—Discrete cosine transform (DCT), fields of experts
(FoE), Markov random field (MRF), postprocessing, quantization
noise.

I. INTRODUCTION

I
MAGE compression aims at reducing the number of bits

needed to represent a digital image while preserving image

quality. When the compression ratio is very high, the coded im-

ages suffer from severe loss in visual quality, as well as decrease

in fidelity. Hence, there is conflict between bit rate reduction

and quality preservation. Postprocessing is a promising solution

to this problem because it can improve image quality without

the need of changing the encoder structure. Different coding

methods require different postprocessing techniques to tackle

the different artifacts. Transform coding using the DCT has been

widely used in image and video coding standards, such as JPEG,

MPEG, and H.263. The coded images suffer from blocking ar-

tifacts and losses around edges. Postprocessing of low bit-rate

block DCT coded images has attracted a lot of research atten-

tion since early 1980s.

Viewing the blocking artifacts as artificial high frequency

components around block boundaries, Lim and Reeve [1]

performed low pass filtering on the boundary pixels to reduce

them. This method sometimes blurs true edges of the image and

so adaptive filtering techniques were proposed to tackle this
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problem. Ramamurthi and Gersho [2] classified the blocks in

the coded image and performed filtering parallel to the edges.

The loop filtering [3] in H.264/AVC, the recent video coding

standard, alternates several filters according to the local activity

of the coded image. These filtering methods are from the

enhancement angle and consider the artifacts as irregularities

to be smoothed for visual improvement [4].

Viewing the problem as reducing noise with certain structure,

some researchers adopted the wavelet thresholding technique.

Xiong et al. [5] used thresholding by the overcomplete wavelet

transform and they assumed the blocking artifacts mainly con-

centrated around the block boundaries. Liew and Yan [6] ana-

lyzed the block discontinuities caused by coding to derive more

accurate thresholds at different wavelet scales. They also clas-

sified the blocks and performed edge detection to preserve tex-

tures and edges.

On the other hand, many researchers viewed the compression

operation as a distortion process and proposed restoration tech-

niques to recover the original image. For example, the projection

onto convex sets (POCS) based methods [7]–[11] represent the

prior information about the original image as convex sets and,

by iterating projections onto these sets, they converge in the in-

tersection of all the sets. Therefore, the final result is consistent

with all the prior information we have about the original image.

One commonly used convex set is the quantization constraint

set (QCS) whose elements after quantization become the coded

image. Park and Kim [12] narrowed down the QCS to form the

narrow quantization constraint set (NQCS) which can result in

recovered images of higher PSNR. Other constraint sets usually

impose spatial domain smoothness on the recovered image. A

novel smoothness constraint set has been proposed in the DCT

domain using the Wiener filtering concept [13]. Some other

smoothness constraint sets are designed for images of partic-

ular types, for example, graphic images [14] and images mainly

with homogeneous regions [15].

The POCS-based methods are effective for suppressing

blocking artifacts because it is easy to impose smoothness con-

straint around block boundaries. Losses around edges, however,

have no fixed positions, and it is relatively complicated for the

POCS-based methods to construct convex sets to reduce the

artifacts around edges [16]. Fan and Cham [17], [18] proposed

methods using an edge model to tackle losses around edges

caused by wavelet coding. The methods can suppress ringing

effects and also sharpen the blurred edges with low computation

requirement.

Generally speaking, postprocessing, or restoration, is a

typical inverse problem. The most general and simple theory
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Fig. 1. Histogram of the quantization noise for each position of the 8� 8 block
in the spatial domain, obtained from over 80 000 obervations using the quanti-
zation table Q2 in Table II.

for inverse problems is from the probabilistic point of view.

From this angle, all prior information is represented in the form

of a priori distributions. Thus, all the assumptions are made

explicit and easy to examine [19]. O’Rourke and Stevenson

[20] modeled the original image as a Huber Markov random

field (MRF) and adjusted the coded image according to the

model within the QCS. By doing so, they implicitly assumed

the coded image was corrupted by uniform noise in the DCT

domain, while Meier et al. [21] modeled the coding error as

white Gaussian noise (WGN) in the spatial domain, but neither

the uniform noise model nor the WGN model characterizes

the coding error well. Robertson and Stevenson [22] found

that a correlated Gaussian noise model in the spatial domain is

more accurate and the use of this model can produce recovered

images of higher PSNR. Gunturk et al. [23] independently used

the same noise model in the superresolution reconstruction of

compressed videos. For most of the methods described above,

certain parameters are either chosen by users or empirically

estimated from the data, Mateos et al. [24] proposed to estimate

iteratively both the original image and the required parameters

within the hierarchical Bayesian paradigm.

In this paper, postprocessing is treated as an inverse problem

and solved using the maximum a posteriori (MAP) estimation.

We use the noise model [22], [23] to describe the distortion

caused by coding. The original image is modeled as a high

order MRF based on the fields of experts (FoE) framework

[25]. The image prior model is more expressive than previously

hand-crafted models. As a result, we obtain an effective method

which, in most cases, achieves higher PSNR gain than other

methods and generates images of good visual quality.

In Section II, we first formulate postprocessing as an inverse

problem and explain how to solve it using the MAP criterion.

We then describe the noise model and the image model sepa-

rately. Experimental results are given in Section III, where we

also examine the noise model used. Finally, we draw conclu-

sions in Section IV.

II. PROBLEM FORMULATION AND THE PROPOSED METHOD

Transform coding using the DCT first divides an image into

nonoverlapping blocks, which are 8 8 in case of JPEG. Each

block is transformed into the DCT coefficients which are then

quantized according to a quantization table and coded losslessly.

Fig. 2. Determination of� for MAP estimation;� = 6 is chosen for it produces
near optimal result and slightly changing � for a particular image may bring a
slight PSNR gain. This curve is obtained using quantization table Q2, but the
trend applies to Q1 and Q3.

Quantization is performed on each block independently and the

levels and characteristics of the quantization errors may differ

from one block to another. As a result, the blocking artifacts

arise as abrupt changes across block boundaries and are espe-

cially obvious in smooth regions. In addition, edges become

blurred and may even contain ringing effects due to the trun-

cation of high frequency DCT coefficients.

The problem of postprocessing can be formulated as this:

given the coded image and the quantization table , we are

to estimate an image , using the prior information about both

the original image and the coding process. is expected to be

both closer to and of better visual quality than . Here, and

are assumed to be random vectors. This problem is ill-posed,

since quantization is a many-to-one mapping. Then it is essen-

tial to model accurately both the original image and the coding

process in conducting the estimation.

Given a coded image , we hope to obtain a restored image

that is most likely the original image , which corresponds to

the use of the maximum a posteriori (MAP) criterion to estimate

the original image

(1)

By Bayes’s rule, (1) can be rewritten as

(2)

In this expression, provides a mechanism to incor-

porate the coded image into the estimation procedure, as it sta-

tistically describes the process to obtain from . Similarly,

allows for the integration of prior information about the

original image. We shall discuss these two terms in Section II-A

and then introduce the optimization method in Section II-B.

A. Models and Assumptions

1) Quantization Noise Model: We assume there is no

channel error and only quantization introduces distortions.
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Fig. 3. Region around the shoulder of “Lena” coded by Q3, processed by the proposed method using FoE filters of different sizes. (a) 3� 3, (b) 5� 5, and
(c) 7� 7.

TABLE I
PSNR RESULTS (DECIBELS) FOR “LENA” CODED BY Q3, PROCESSED BY THE PROPOSED METHOD USING FOE FILTERS OF DIFFERENT SIZES

Then the compression operation can be modeled as a distortion

process that adds quantization noise to the original image

(3)

where the quantization noise is assumed to be a random

vector. Strictly speaking, once the quantization table is given,

the coded image is uniquely determined by the original image

and so may be regarded as a deterministic function of .

However, when only is present, explicit information about

is lost and common practice is to treat as a random quantity

[26]. Hence

(4)

Note that the in is given and so not a random quantity.

We need to understand the behavior of . Empirically, it

has uneven variances at different positions and the correlation is

high among different positions within a block. Fig. 1 shows the

histogram of the quantization noise at each position of the 8 8

block in the spatial domain. It appears to be centered distributed

and so can be approximated by Gaussian distribution at each

pixel position. As a result, we use a correlated Gaussian noise

model [22], [23] to describe the quantization noise.

The following assumptions are made in [22] and [23]. First,

the quantization noise and the original image are assumed

to be independent. Hence, the conditional p.d.f. of the coded

image given can be obtained from the p.d.f. of

(5)

Second, the quantization noises for different blocks are assumed

to be independent because quantization is performed on each

block independently. Then the p.d.f. of can be expressed by

the p.d.f. of the quantization noises for the individual blocks

(6)

where is a block index, and , and are, re-

spectively, the th block of the quantization noise, the coded

image, and the original image. Third, the quantization noise is

assumed to be independent in the DCT domain. The assump-

tion is because quantization is performed independently on the

DCT coefficients which are supposed to be uncorrelated [27].

When the DCT domain noise variances are known, the

noise distribution is determined. Fourth, the noise for a block, ar-

ranged lexicographically into a column vector of length

64, is assumed to be zero mean, jointly Gaussian distributed in

the spatial domain

(7)

where is a 64 64 invertible matrix but not a diagonal

matrix due to the correlation of the quantization noise in the

spatial domain. It can be determined from the DCT domain

noise variances , Setting of which will be discussed in

Section III.

From (5)–(7), the conditional p.d.f. of the coded image

given the original image is

(8)

where and has been arranged lexico-

graphically into a column vector of length 64.
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Fig. 4. Four original images of size 512 by 512: “Lena” and “Peppers” mainly contain smooth regions and major edges, while “Barbara” and “Baboon” are full
of textures. (a) “Lena,” (b) “Peppers,” (c) “Barbara,” and (d) “Baboon.”

TABLE II
QUANTIZATION TABLES; Q1, Q2, AND Q3 CORRESPOND TO 0.24, 0.189, AND 0.15 BPP COMPRESSION FOR “LENA,” RESPECTIVELY

TABLE III
PSNR RESULTS (DECIBEL) FOR IMAGES IN FIG. 4 USING QUANTIZATION TABLES Q1, Q2, AND Q3 IN TABLE II

2) Image Prior Model: An image can be considered as a

2 D function defined on a rectangular grid whose sites are pixels

of the image. Let be an arbitrary pixel in the image and be

a set which contains all the neighboring pixels of . The Markov

random field (MRF) assumes the value of a pixel is conditionally

dependent only on the values of its neighboring pixels, i.e.,

(9)
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Fig. 5. Postprocessing results around the shoulder of “Lena”, which tests the “deblocking” ability of the methods; (h) and (i) suppress the blocking artifacts
effectively. (a) Original image, (b) coded image, (c)WT [5], (d)MPEG [31], (e) POCS [11], (f) POCS [10], (g)MAP [22], (h)WT [6], (i) proposed
method.

where the set contains all the pixels of the image , the set

contains all the pixels except denotes values of

the pixels in , and denotes values of the pixels in .

Whilse MRF models local interactions in an image, it is hard

to write the joint p.d.f. of an image from the local conditional

p.d.f. The Hammersley–Clifford theorem [28] establishes that

an MRF is equivalent to a Gibbs random field (GRF) and the

joint p.d.f. can be written as a Gibbs distribution

(10)

where , called a clique, is a set whose elements are neighbors

to each other, is a set which contains all the possible cliques

in the image, is a clique potential function defined on the

values of all the pixels in , and is a normalization parameter.

Though widely used in image processing applications, MRF

exhibits serious limitations because the clique potential func-

tions are usually hand crafted and the neighborhood systems

are small. Hence, it characterizes natural images only coarsely.

Sparse coding, on the other hand, models the complex structural

information in natural images in terms of a set of linear filter re-

sponses [29]. However, it only focuses on small image patches

rather than the whole image. Combining the ideas from sparse

coding with the MRF model, FoE [25] defines the local poten-

tial function of an MRF with learned filters. This learned prior

model is very expressive and has obtained success in applica-

tions such as image denoising and image inpainting.

FoE uses the following form for the distribution:

(11)
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Fig. 6. Postprocessing results around the leg of “Barbara”, which tests both the “deblocking” and the detail-preserving ability of the methods; (e), (h), and
(i) preserve the details well while suppressing the blocking artifacts. (a) Original image, (b) coded image, (c) WT [5], (d) MPEG [31], (e) POCS [11],
(f)POCS [10], (g) MAP [22], (h) WT [6], (i) proposed method.

where

(12)

is a filter of size , the clique adopted by FoE includes

the pixels with as their center, denotes the inner

product between the filter and the local image patch, contains

the center pixels of all the cliques that fully overlap

with the support of the image, is a parameter associated with

, and is the number of filters used. The performance of

different-sized FoE filters will be examined in Section III-A3.

FoE builds the distribution of an image in terms of its re-

sponses to a set of filters. The product form in (11) implicitly

assumes the responses to different filters are statistically inde-

pendent, and to the same filter also independent at different pixel

positions. Equation (12), if properly normalized, is student-t dis-

tribution which is featured by its heavy tails. It has been ob-

served that, for a wide variety of filters, the response of an image

has only a few large coefficients, with the left very small. Such

statistics can be fitted well by the student-t distribution. Then

the parameter associated with each filter controls the width

of the distribution of the filter response, and is positive to make

the proper distributions.

B. Optimization Problem

Maximizing the objective function in (2) is equivalent to min-

imizing its negative log function which will be called the energy

function , and the estimated image is

(13)

From (2), (8), and (11), the energy function is

(14)
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TABLE IV
QUANTIZATION NOISE VARIANCES IN THE DCT DOMAIN FOR “LENA” CODED USING Q2 IN TABLE II

TABLE V
PSNR RESULTS (DECIBELS FOR IMAGES IN FIG. 4 USING QUANTIZATION TABLES Q1, Q2, AND Q3 IN TABLE II

where is a regularization parameter. It balances the con-

straints from the image model and the noise model. Smaller

gives less fidelity to the coded image and generates smoother

images. The setting of will be discussed in Section III.

We adopt the conjugate gradient descent method to minimize

the energy function. At each iteration, the step size is selected

to correspond to the minimum along the search direction. The

gradient of the energy function in (14) is

(15)

where * denotes the convolution operation, is obtained by

mirroring around its center pixel

(16)

and ’s th block, arranged lexicographically into a

column vector of length 64, is

(17)

To increase fidelity, the quantization constraint and the range

constraint are respectively imposed for the DCT coefficients and

the pixel values during the iteration. It is our prior knowledge

that the original DCT coefficients must lie within the quantiza-

tion intervals and the pixel values between 0 and 255. If either

of them is violated, the intermediate result is set to the nearest

value satisfying the corresponding constraint. When the itera-

tion stops, the narrow quantization constraint set (NQCS) [12]

is used for further PSNR gain and the scaling coefficients were

set to be 0.3 in our experiments.

III. EXPERIMENTAL RESULTS

In this section, we first describe the parameter setting for the

proposed method and then give the experimental results. We

also examine the quantization noise model used and discuss

some problems found.

A. Setting Algorithm Parameters

1) Noise Variances: In our experiments, the noise variances

were set as in [22], which are

(18)

Robertson and Stevenson [22] chose because they

assumed the quantization noise in the DCT domain is uniformly

distributed within the corresponding quantization interval. We

will discuss this setting in Section III-C in detail.

2) Regularization Parameter : We investigated by experi-

ments how the value of affects the PSNR performance. Five

512 512 images, coded using quantization tables Q1, Q2, and

Q3 in Table II, were processed by the proposed method with

different . The results, as shown in Fig. 2, show that the PSNR

varies little for less than 10 and then drops quickly for larger

than 10. In general, produces good results for most

images. In our experiments, was used for it is near optimal

for this image set and the three quantization tables in Table II.

3) FoE Filter Size: We compared three groups of FoE fil-

ters of different sizes, including 3 3, 5 5, and 7 7.1 The

numbers of filters for the three groups are respectively 8, 24,

and 48. These filters were obtained using a subset of the 200

training images of the Berkeley Segmentation Database [30]. In

all the experiments, was fixed to be 6. Table I summarizes the

PSNR results and Fig. 3 shows the processed regions around

the shoulder of “Lena” coded by Q3. The 5 5 group has about

0.2-dB gain over the 3 3 group and also produces smoother

images than the latter. In addition, it gives results similar to,

or slightly better than, the 7 7 group. The FoE filters of larger

size are expected to give better results. However, the 7 7 group

does not produce better results than the 5 5 group in our ex-

periments. This implies that filters of size 5 5 are sufficient

to capture the complex structural information in natural images,

1The first two groups and their associated parameters are available at http://
www.cs.brown.edu/~roth/research/foe/downloads.html, and the last group was
provided by Dr. Stefan Roth at Brown University.
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and a larger size helps little. In the following experiments, the

5 5 group was used for its good PSNR performance.

B. Results

We tested the proposed method on twenty three images of

size 512 512. Detailed experimental results on four images

shown in Fig. 4, using the three quantization tables in Table III,

are given here. Blocking artifacts are more prominent in smooth

regions. “Lena” and “Peppers” which contain large smooth re-

gions are selected to examine the suppression of the blocking

artifacts by the proposed method. On the other hand, a post-

processing method should not over-smooth details. Thus, “Bar-

bara” and “Baboon” which have a lot of textures are selected

to reveal the detail-preserving ability of the proposed method.

The quantization tables Q1, Q2, and Q3 in Table II correspond

to 0.24, 0.189, and 0.15 bits per pixel (bpp) compression for

“Lena.”
The proposed method is compared to a few popular post-

processing methods which include Xiong’s wavelet-based

method [5], the MPEG4-VM postfiltering

[31], Paek’s POCS-based method [11], Yang’s
POCS-based method [10], Robertson’s method

[22], and Liew’s wavelet-based method [6].

Table III summarizes the PSNR results of these methods on

the four images in Fig. 4 using the three quantization tables in

Table III. In most cases, the proposed method has the highest

PSNR gain except “Barbara” for which Paek’s POCS-based

method is slightly better. Based on the twenty three images

tested, it achieves about 0.3 and 0.4 dB PSNR gain on average

over Liew’s wavelet-based method and Paek’s POCS-based

method, respectively.

For comparison of visual quality, we show in Figs. 5 and 6

the processed results around the shoulder of “Lena” and the leg

of “Barbara” respectively. We found that Liew’s wavelet-based

method and the proposed method provide the best visual quality

improvement. Both methods suppress blocking artifacts effec-

tively while preserving the details well. However, the proposed

method is computationally expensive, due to the use of iteration.

At present, we are seeking efficient implementation, following

the approach in [32].

C. Investigation on the Quantization Noise Model

In the experiments above, the noise variances for the pro-

posed method were set to be one twelfth of the square of the

corresponding quantization step sizes, as in [22] and [23]. To

examine the correctness of this model, we estimated the actual

noise variances using the original images and the coded images.

For “Lena” coded using Q2, the actual noise variances, as shown

in Table IV, do not deviate much from the predefined values for

the low frequency coefficients. However, they are much smaller

than the predefined values for the high frequency coefficients.

We then found the optimal and performed the MAP estima-

tion using the actual variances. Strangely, the images estimated

using the actual variances have lower PSNR than those esti-

mated using , as shown in Table V.

We believe this apparently strange result is due to the

independent quantization noise assumption made in (5),

which is severely violated by the high frequency coefficients.

Widrow et al. [26] have shown that, under certain conditions,

the input signal of a uniform quantizer and the quantization

TABLE VI
STANDARD DEVIATIONS OF THE ORIGINAL DCT

COEFFICIENTS FOR “LENA” IN FIG. 4

error are uncorrelated, despite their deterministic relationship.

If the standard deviation of the input signal is no less than

the quantization step size, the conditions are approximately

satisfied. Under such conditions, it is reasonable to assume

the input signal and the quantization noise are independent,

when only the quantized signal is available. Table VI shows

the standard deviations of the DCT coefficients of “Lena.”
The standard deviations of the high frequency coefficients are

much smaller than the corresponding quantization step sizes

in Table II. Nearly all these high frequency coefficients are

truncated during quantization, and the original coefficients and

the quantization noise are of the same magnitude and opposite

sign. As a result

(19)

Now we rewrite the term involving the noise model in (14) in

the DCT domain as

(20)

where and denote, respectively, the

th DCT coefficients of the th block of and . If

is set to be very big for large and , the corre-

sponding term in (20) becomes insignificant and the influence

of the inaccurate assumption is reduced. The strategy is to give

the noise model less weights, when its assumption is severely

violated. We should rely more, or solely, on the image model to

estimate the truncated high frequency coefficients.

In another experiment, we used only the image prior model to

estimate the truncated coefficients. In the implementation, the

terms involving the image prior model in (14) and (15) were

computed as before. and were calculated in the

DCT domain according to (20). If the quantized coefficients

were zero, we set the corresponding terms to be zero. As shown

in Table V, the recovered images with the effect of coefficient

truncation considered have comparable PSNR to those recov-

ered with for all the coefficients.

IV. CONCLUSION

We have proposed a postprocessing method according to the

MAP criterion. The prior models are carefully selected to model

accurately both the original image and the distortions caused by

coding. Experimental results on standard images and compar-

ison with other methods have demonstrated the effectiveness of
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the proposed method. In most cases, it achieves higher PSNR

gain than other methods and generates recovered images of good

visual quality. We also examine the quantization noise model

adopted by some state-of-the-art methods. We identify some

problems in the noise model and explain why it still works with

the current parameter setting.
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