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[1] We evaluate the effect of coseismic stress changes on the fault slip at midcrustal
depth, assuming a velocity-strengthening brittle creep rheology. We show that this model
can help reconcile the time evolution of afterslip, as measured from geodesy, with
aftershocks decay. We propose an analytical expression for slip of the brittle creeping fault
zone (BCFZ) that applies to any dynamic or static stress perturbation, including shear
stress and normal stress changes. The model predicts an initial logarithmic increase of slip
with time. Postseismic slip rate decays over a characteristic time tr =

as
_t
that does not

depend on the amplitude of the stress perturbation, and it asymptotically joins the long-
term creep imposed by interseismic stress buildup _t. Given that the seismicity rate might be
considered proportional to the sliding velocity of the BCFZ, the model predicts a decay rate
of aftershocks that follows Omori’s law, with a mathematical formalism identical to that
of Dieterich [1994] although based on a different mechanical rationale. Our model also
differs fromDieterich’smodel in that it requires that aftershock sequences and deep afterslip,
as constrained from geodetic measurements, should follow the same temporal evolution.We
test this for the 1999 Chi-Chi earthquake, Mw = 7.6 and find that both sets of data are
consistent with a model of afterslip due to the response of the BCFZ. The inferred relaxation
time tr = 8.5 years requires a value for a = @m/@log(V) (m being the coefficient of friction) in
the range between 1.3 10�3 and 10�2. INDEX TERMS: 3210 Mathematical Geophysics: Modeling;

3902 Mineral Physics: Creep and deformation; 5120 Physical Properties of Rocks: Plasticity, diffusion, and

creep; 8123 Tectonophysics: Dynamics, seismotectonics; 8159 Tectonophysics: Rheology—crust and

lithosphere; KEYWORDS: postseismic relaxation, Omori law, Chi-Chi earthquake
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1. Introduction

[2] In this paper, we discuss the dynamic response of
brittle creep and the potential role of this mechanism
to explain some aspects of fault behavior including post-
seismic slip, aftershocks and triggered seismicity. It is
commonly admitted that throughout the upper crust, defor-
mation is accommodated by cataclastic (brittle) processes
while ductile deformation, dominated by thermally activated
dislocation creep, would prevail in the lower crust. The key
point for seismogenesis is that brittle deformation may be
either rate weakening, allowing for runaway seismic rupture
or rate strengthening, favoring quasi-static stable shear.
Both experimental results and theoretical consideration
show that rate strengthening is thermally activated and

enhanced by the presence of fluids due to physicochemical
effects and dilatancy [Blanpied et al., 1991, 1995; Chester,
1995; Marone, 1998; Frye and Marone, 2002]. It follows
that rate strengthening may occur at shallow depth on faults
cutting through loose sediments [Marone and Scholz, 1988]
or at midcrustal depths where temperature gets higher than
about 250�C but remains too low to activate ductile flow
associated with crystal plasticity. Hereinafter we refer to this
midcrustal fault portion as the brittle creeping fault zone
(BCFZ).
[3] The motivation of the present study lies in our belief

that the importance of rate-strengthening brittle creep (here-
inafter referred to as ‘‘brittle creep’’) has been somewhat
overlooked in seismotectonic studies. This mechanism has
not been ignored however. It has been advocated to explain
postseismic slip at shallow depth on a ruptured fault
[Marone et al., 1991] and has been advocated to explain
deep afterslip in few case studies, in particular following the
1999 Izmit earthquake [Hearn et al., 2002]. Also it is
explicitly accounted for in conceptual models of the seismic

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B02304, doi:10.1029/2003JB002488, 2004

1Now at Institut de Recherche pour le Développement/Laboratoire des
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cycle based on static fatigue [Main, 2000] or on friction laws
[e.g., Tse and Rice, 1986; Lapusta et al., 2000]. Such models,
which ignore the viscous response of the crust, predict a
postseismic relaxation in the form of afterslip governed by
brittle creep. This is in keeping with evidence for afterslip at
midcrustal depths observed following many earthquakes
[Savage and Svarc, 1997; Burgmann et al., 1997; Pollitz et
al., 1998; Segall et al., 2000; Hsu et al., 2002; Melbourne et
al., 2002;Owen et al., 2002]. Also the microstructure of fault
zones exhumed from midcrustal depths does sometimes bear
evidence for postseismic relaxation [Trepmann and
Stockhert, 2002]. By contrast, mechanical models of post-
seismic deformation designed to fit observational data gen-
erally ignore the specific response of this fault portion [e.g.,
Pollitz et al., 2000; Pollitz, 2001; Cohen, 2000; Deng et al.,
1999; Zheng et al., 1996; Khazaradze et al., 2002]. Either
afterslip is not explicitly modeled, or it is considered to be
driven by viscous deformation. Such models can be adjusted
to fit postseismic geodetic data quite satisfactorily, but they
are quite ineffective at explaining simultaneously the decay
rate of aftershocks [e.g., Deng et al., 1999]. The current most
popular model of aftershocks sequence does not imply any
direct link between postseismic deformation and aftershocks
[Dieterich, 1994]. According to Dieterich’s model, after-
shocks result from the direct effect of coseismic stress change
on a population of nucleating faults with a rate-weakening
rheology. So postseismic relaxation expressed in seismicity
or geodesy would relate to different mechanisms. In the
present paper, we show that postseismic deformation mea-
sured from GPS and aftershocks following the Chi-Chi
earthquake, Taiwan, did follow the same temporal evolution
consistent with triggered afterslip in the BCFZ. The devel-
opment of an elaborated numerical model that would fully
account for the rheological layering of the crust, including the
BCFZ, is beyond the scope of this paper. We rather use a
simple analytical formulation. This paper might therefore be
seen as a complement, and generalization, ofMarone et al.’s
[1991] analysis.
[4] We first describe the simplified fault model underly-

ing our analysis and discuss the rheology ascribed to the
fault portion in brittle creep. We discuss whether the zone of
brittle creep should be considered as a fault zone with finite
width, characterized by some brittle creep rheology, or as a
interface with velocity-strengthening friction. We show that
both approaches lead to the same formalism. We next assess
the response to a stress increase or dynamic stress varia-
tions. We show, in particular, that the intrinsic response of
the BCFZ might provide a way to reconcile crustal post-
seismic relaxation and aftershocks following the 1999 Chi-
Chi earthquake in Taiwan.

2. Fault Model

2.1. Geometry

[5] The theoretical fault zone model underlying our
investigation is depicted in Figure 1. It conforms to the
more general fault zone model described above [e.g.,
Scholz, 1990]. The particular geometry shown here was
inspired from case examples of intracrustal thrust faults in
the Himalaya or in Taiwan [Cattin and Avouac, 2000;
Dominguez et al., 2003; H. Kao, unpublished manuscript,
2002], where some simple physical rationale was proposed

to relate microseismicity and interseismic deformation.
Deformation is thought to be dominated by ductile flow at
depth where temperatures get higher enough to enhance
dislocation creep (T ^ 400�C). The shallow fault portion
where T ] 250�C is assumed to have a stick-slip behavior
due to a velocity-weakening friction law. The zone of
transition that connects the down-dip extent of this seismo-
genic zone with the zone of ductile flow, where T is between
250 and 400�C, is assumed to obey rate-strengthening brittle
creep. In the interseismic period, stresses build up around the
down-dip end of the locked fault portion, triggering micro-
seismic activity in the surrounding medium at midcrustal to
upper crustal levels [Cattin and Avouac, 2000]. Since this
microseismic activity accounts for at most a few percent of
the observed strain in the interseismic period and since it
coincides with the zone of elastic straining indicated from
geodetic measurements, it might be seen as reflecting slip on
minor faults embedded in the deforming elastic medium. So
in this particular context, seismicity rate in the interseismic
period might reasonably be considered to be proportional to
strain rate, as measured from geodetic measurement. This
rationale might also hold for the postseismic deformation
insofar as the seismic moment of aftershocks only accounts
for a small fraction of the measured strain. During interseis-
mic or postseismic deformation, the strain rate measured at
the surface from geodesy, together with the seismicity rate,
might be taken to be representative of elastic loading of the
upper crust associated with ductile shear at depth. In the
following, we will neglect the viscous response of
the lithosphere due to ductile flow. We therefore assume
that any stress drop on the locked fault zone is transferred to
a stress increase on the BCFZ. This simplification allows us
to draw some simple inferences based on some analytical
considerations. A more realistic model should account for
the stress transfer in three dimensions to both the BCFZ and
the viscous lower crust below.
[6] In order to estimate the response of the BCFZ to a

temporal stress perturbation, we use a one-dimensional (1-D)
spring-block model as shown in Figure 1b. A block is loaded
at constant velocity V0, and the elastic response of the
medium surrounding the brittle creep section of characteristic
size H is modeled by a spring with stiffness k:

k ¼
G

H
; ð1Þ

where G is the shear modulus of the medium. The
equivalent stiffness k depends slightly on the deformation
mode and the geometry of the slipping zone [Marone et al.,
1991; Dieterich, 1992]. Despite its simplicity, the 1-D
spring-block model has been shown to produce results in
qualitative agreement with those obtained from more
elaborated 2-D models [e.g., Dieterich, 1992; Dieterich
and Kilgore, 1996; Perfettini et al., 2003a, 2003b] and was
therefore adopted in the present study.

2.2. Rheology of the BCFZ: Cataclastic Flow Versus
Stable Frictional Sliding

2.2.1. Cataclastic Flow
[7] Observations of exhumed natural fault zones suggest

that faulting at depth is accommodated by cataclastic
deformation (frictional sliding between gouge fragments
and fragments crushing) in association with solution transfer
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processes [e.g., Chester, 1995]. These observations have
prompted the view that faults rheology should be interpreted
in terms of brittle creep of a fluid-saturated fault gouge
[Chester, 1995; Sleep, 1995]. Brittle creep has long been
known in soil mechanics [Mitchell, 1976]. It is a pressure-
sensitive mechanism that implies porosity changes due to
collapse of initial porosity (for a relatively porous initial
sample) and porosity increases associated with dilatancy. The
micromechanical processes associated with these phenomena
have received some attention in the geophysical literature,
and some authors have derived theoretical fault models
[Marone et al., 1990; Sleep, 1995, 1997; Segall and Rice,
1995; Main, 2000]. In triaxial ‘‘creep tests’’ in which a
sample is submitted to a constant axial force and a symmetric
confining pressure, the strain-stress curve generally shows
three domains. A first period of decelerating ‘‘primary’’ creep
is followed by some steady state ‘‘secondary’’ creep until
some accelerating ‘‘tertiary’’ creep that ultimately leads to
failure by static fatigue. It has been shown that the entire
creep process, including primary, secondary, and tertiary
creep, can be modeled from some thermodynamical analysis
(based on a single thermoactivated process) providing theo-
retical support to these empirical laws [Fish, 1984]. Through-
out the interseismic period, secondary creep would be the

dominant process. Many empirical laws can be found in the
literature. They generally propose a power law or exponential
law dependence of strain rate on stress. For example, on the
basis of triaxial compressional tests on drained and undrained
soils, Singh and Mitchell [1968] have obtained

d�

dt
¼ A1 exp A2Dð Þ

t1

t

� �m

; ð2Þ

where A1, A2, t1, and m are some empirical constants to be
determined experimentally, d�/dt is the strain rate, and D is
given by

D ¼
s1 � s3ð Þ

s1 � s3ð Þf
; ð3Þ

where (s1 � s3)f is the deviatoric stress at rupture and (s1 �
s3) is the deviatoric stress at time t, both quantities being
proportional to the effective confining pressure. Equation (3)
can be written as

s1 � s3ð Þ ¼
s1 � s3ð Þf

A2

� log A1ð Þ � m log t1ð Þ½

þ log d�=dtð Þ þ m log tð Þ�: ð4Þ

Figure 1. (a) Fault model considered in this study consisting of three main domains each of which
obeys a different rheology. The upper part of the fault, where temperature is less than 250�C, is the
seismogenic zone where rate-weakening friction can allow earthquake nucleation. At depth, where
temperature gets higher than about 400�C, it roots into a ductile shear zone, governed by dislocation
creep. Between these two domains, the fault rheology is assumed to obey rate-strengthening brittle creep.
In the interseismic period the seismogenic fault portion is locked, while the long-term thrusting rate, V0,
is absorbed by ductile shear at depth. The slip rate tapers in the BCFZ dominated by stable brittle creep.
In that setting, seismicity is driven by stress buildup near the down-dip end of the locked fault zone as
observed in the Himalaya [Cattin and Avouac, 2000] and in Taiwan [Dominguez et al., 2003]. (b) Spring-
slider model used to derive the analytical expression of transient slip along the BCFZ.
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Therefore, prior to rupture the shear stress t would relate to
the velocity V/ d�/dt and the time t and the effective normal
stress s according to some equation of the form

t ¼ s A3 þ A4 log Vð Þ þ A5 log tð Þ½ �; ð5Þ

where A3, A4, and A5 are some empirical constants.
[8] The time dependence only plays a role during primary

creep. During steady sate sliding, the time dependence can
be neglected so that

t ’ s A6 þ A4 log Vð Þ½ �: ð6Þ

A similar brittle creep law, with some exponential
dependence of strain rate on deviatoric stresses, has been
obtained from intact granite rocks, in which brittle creep is
probably controlled by subcritical crack growth [Lockner,
1998], showing that this kind of law probably holds for a
wide range of cases.
2.2.2. Frictional Sliding
[9] The formalism in equation (5) might also be com-

pared with the rate-and-state formalism deduced from
sliding experiments. Whether faulting should be interpreted
in terms of frictional sliding along an interface or deforma-
tion distributed within a fault gouge with finite width has
long been a matter of debate. The two approaches are
reconcilable since rate-and-state friction laws, initially de-
veloped from sliding experiments with bare surfaces [e.g.,
Dieterich, 1979; Ruina, 1983; Baumberger et al., 1995;
Dieterich and Kilgore, 1996], seem to still hold in experi-
ments conducted with a synthetic wet or dry gouge [e.g.,
Marone et al., 1990; Blanpied et al., 1995; Chester, 1995]
and are also consistent with constitutive brittle creep laws
established for intact rocks [Lockner, 1998]. Also, the two
approaches can be reconciled from theoretical considera-
tions [Sleep, 1995].
[10] According to these experiments the shear stress

during frictional sliding, tf, obeys

tf V ; qð Þ ¼ s m* þ a log
V

V*

� �

þ b log
qV*
Dc

� �� �

; ð7Þ

where s is the effective normal stress, V is the sliding
velocity, and q is a variable describing the ‘‘state’’ of the
surface; a, b, Dc, and m* are some frictional parameters, and
V* is defined such that the friction coefficient is m* when
the fault slides at steady velocity V*.
[11] The evolution of the state variable with time is given

by

dq

dt
¼ 1�

Vq

Dc

: ð8Þ

For bare surfaces (no gouge), q can be interpreted as the
average age of the contacts between the sides of the fault
[Dieterich and Kilgore, 1994; Baumberger et al., 1999],
while for wet fault gouge, it might represent the difference
between the actual porosity and a critical porosity
corresponding to failure [Sleep, 1995].
[12] When the sliding velocity tends to 0, we see from

equation (8) that q is given by q = t + t0, where t0 is a
constant. In this case, equation (7) is identical to equation (5)

used to describe brittle creep. Therefore the two approaches
yield the same functional dependency on sliding velocity
and time.
[13] For sliding at steady state the value of the state

variable is qss and verifies qss = Dc/V such that _q = 0. In
this case, the shear stress at steady state, tf

ss, is

tssf Vð Þ ¼ s m0* þ a� bð Þ log Vð Þ
h i

; ð9Þ

with

m0* ¼ m* � a� bð Þ log V*
	 


: ð10Þ

Other evolution laws exist, but they all lead to equation (9)
for sliding at steady state [Ruina, 1983; Marone, 1998].
[14] Accordingly, friction decreases with increasing ve-

locity when b > a. In this velocity-weakening case, sliding
is potentially unstable and may give rise to stick slip when
the equivalent stiffness k of the elastic medium is lower than
a critical value kc [Rice and Ruina, 1983]. If a > b, the
material is velocity strengthening and can only undergo
steady sliding.
[15] Blanpied et al. [1995] have studied frictional slip of

granite at hydrothermal conditions. They have shown that
steady state friction was velocity strengthening for 0 < T <
100�C and T > 250�C, while it was velocity weakening for
100�C < T < 250�C. For temperatures higher than 250�C,
which is the temperature regime which corresponds to
brittle creep in our model, the individual parameters a and
b were poorly constrained. Therefore we will set b = 0 in
our work as previously proposed by Rice [1993]. Doing so,
we only consider a rate dependence of friction and neglect
the state dependence. Note that Blanpied et al. [1995] found
a = 0.02 as a representative value when T > 250�C.
2.2.3. Constitutive Law for the BCFZ
[16] With our choice of b = 0, the velocity-dependent

frictional law turns out to be like that inferred from steady
state brittle creep or ‘‘secondary creep’’ (see equation (6)).
So, the dependency of shear stress on slip rate might
generally be written

tf Vð Þ ¼ s m0* þ a log Vð Þ
h i

; ð11Þ

with the coefficient a > 0 characterizing the dependence of
the strength of the material to a change in the deformation
rate.

3. Response to Stress Perturbations

3.1. Analytical Expression for a Spring-Slider System

[17] We consider here only a shear stress perturbation�t.
In Appendix A we show that the same formalism applies to
the general case of a perturbation involving both shear and
normal stress changes, provided that �t is replaced by the
Coulomb stress change �CFF.
[18] The equation of motion of the spring-slider (see

Figure 1b) system is given by

tf Vð Þ ¼ ti þ k V0t � dð Þ þ�t tð Þ; ð12Þ

where ti is the initial shear stress, d is the slip of the block, t
is time, and �t(t) is the shear stress perturbations.
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Introducing the initial velocity, Vi, and slip, di, and given the
initial stress balance

tf Við Þ ¼ ti � kdi; ð13Þ

we get

as log V=Við Þ ¼ k V0t � dþ dið Þ þ�t tð Þ: ð14Þ

Introducing the slip increment U = d � di and noting that
V = dd/dt = dU/dt, we obtain

dU

dt
¼ Vi exp c V0t � Uð Þ þ

�t tð Þ

as

� �

; ð15Þ

where c = k/as. A characteristic time tr is associated with
equation (15) and can be written

tr ¼
as

kV0

¼
as

_t
; ð16Þ

where _t = kV0 is the interseismic shear stressing rate.
[19] After integration, equation (15) yields

U tð Þ ¼
1

c
log 1þ cViF tð Þ½ �; ð17Þ

where

F tð Þ ¼

Z t

0

exp
t0

tr
þ
�t t0ð Þ

as

� �

dt0; ð18Þ

which finally leads to

d tð Þ ¼ di þ
1

c
log 1þ cViF tð Þ½ �: ð19Þ

The sliding velocity V(t) = dd/dt is therefore given by

V tð Þ ¼ Vi

exp
t

tr
þ
�t tð Þ

as

� �

1þ cViF tð Þ
: ð20Þ

Equations (19) and (20) allow one to calculate, at any time,
the slip and sliding velocity of a rate-strengthening creeping

zone in response to any shear stress perturbations.
Accordingly, any stress perturbation is expected to induce
a change in the sliding velocity, which remains finite, that
relaxes and tend back to V0 once the perturbation has
stopped. This is a reasonable assumption to estimate
afterslip provided that tr is large compared to the
characteristic duration of the seismic wave train. As shown
below (see section 5 for an estimate of tr for the Chi-Chi
earthquake), this is probably a reasonable assumption.
[20] Let us now consider the particular case of a sudden

shear stress increase, i.e., �t(t) = �tH(t), where H(t) is the
Heaviside function. For such a perturbation the function F(t)
defined in equation (18) is

F tð Þ ¼ trd exp t=trð Þ � 1½ �; ð21Þ

where

d ¼ exp �t=asð Þ: ð22Þ

A coseismic shear stress change �t at time t = 0 should
produce a discontinuity of the sliding velocity which
increases (or decreases) by a factor d. Using equation (19)
and (21), we obtain

d tð Þ ¼ di þ
1

c
log 1þ d

Vi

V0

exp t=trð Þ � 1ð Þ

� �

; ð23Þ

while the velocity follows

V tð Þ ¼ Vi

d exp t=trð Þ

1þ d Vi

V0
exp t=trð Þ � 1ð Þ

: ð24Þ

In Figures 2a and 2b we show the characteristic time
evolution of slip and velocity for various values of d.

3.2. Comparison With Marone et al.’s [1991]
Formulation

[21] Here, we compare our formulation with that pro-
posed by Marone et al. [1991], who also considered a 1-D
spring-slider model with rate-and-state friction to model

Figure 2. (a) Afterslip and (b) velocity as a function of time for various values of d (10, 102, 103, 104,
and 105).
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shallow afterslip. They obtained that in response to an
increase in the sliding velocity from V0 to Vcs, equivalent
to a stress step �t given by

�t ¼ as log Vcs=V0ð Þ; ð25Þ

the postseismic slip dp(t) should follow [see Marone et al.,
1991, equation (5)]:

dp tð Þ ¼ a log
Vcst

a
þ 1

� �

; ð26Þ

with

a ¼
as

k
: ð27Þ

Equation (23) can be written for comparison using the
notations ofMarone et al. [1991] with Vi = V0 since the fault
is assumed to be creeping at long-term velocity prior to the
perturbation

d tð Þ � d0 ¼ a log 1þ
Vcs

V0

exp V0t=að Þ � 1½ �

� 

: ð28Þ

At ‘‘small’’ times, namely, t � tr = a/V0, equation (28)
simplifies to

d tð Þ � d0 ’ a log 1þ
Vcst

a

� �

¼ dp tð Þ; ð29Þ

which is the formulation of Marone et al. [1991]. However,
our formulation is more general since it allows determina-
tion of the response of the system to any stress perturbations

and remains valid throughout the interseismic period. The
two expressions (equations (23) and (26)) are compared
graphically in Figure 3. It should be noticed that our model
predicts an afterslip that cannot exceed �t/k, while this
physical requirement is not met by the formulation of
Marone et al. [1991].

4. Implication for Aftershocks

4.1. Seismicity Rate Change Following an Arbitrary
Stress Perturbation

[22] As argued in section 2.1, we assume that the post-
seismic response of the BCFZ drives aftershocks, the
seismicity rate around the tip of the creeping zone being
proportional to the stress rate. We assume that the stress rate
depends primarily on the slip rate along the BCFZ. There
must also be some contribution from the zone of ductile
flow at depth, but this term may be considered to be in
steady state since the characteristic time of viscous relaxa-
tion is probably much longer than the one associated with
deep afterslip. In that case, referring to the more general
formulation derived in Appendix A (equation (A15)) which
deals with shear and normal stress changes, the seismicity
rate may be written

R tð Þ ¼ R0 Vi=V0ð Þ

exp
t

tr
þ
�CFF tð Þ

a�s

� �

1þ cGViFG tð Þ
; ð30Þ

where the function FG(t) that accounts for the stress
perturbations is given in equation (A10) and R0 corresponds
to the background seismicity rate during interseismic stress
buildup. The function �CFF(t) represents the Coulomb
stress changes induced by the main shock and related to
shear and normal stress changes through equation (A1).
Equation (30) determines the seismicity rate change
following any stress perturbations, assuming that seismicity
is triggered by the postseismic relaxation of the BCFZ. It
should be realized that this formulation is correct only if the
nonelastic deformation resulting from the aftershocks
remains small compared to total postseismic deformation.
Finally, it should be noted that according to this formula-
tion, the seismicity rate change is sensitive to the stress
perturbation through the factor exp[�CFF(t)/a�s] and the
function FG(t). Estimating seismicity rate change from real
data is not straightforward. A more robust quantity
reflecting the seismicity rate change is the cumulated
number N(t) of earthquakes, which should follow

N tð Þ ¼ N t ¼ 0ð Þ þ R0tr log 1þ
Vi

V0tr
FG tð Þ

� �

; ð31Þ

where N(t = 0) is the cumulated number of earthquakes at
time t = 0. In the case of a stress step in Coulomb stress of
amplitude �CFF occurring at t = 0 on a BCFZ creeping at
an initial velocity Vi, the cumulated number of earthquakes
at later times is given by

N tð Þ ¼ N t ¼ 0ð Þ þ R0tr log 1þ Vi=V0ð ÞdG exp t=trð Þ � 1ð Þ
� �

;

ð32Þ

using equation (A17) with �t = 0 and dG = exp[�CFF/
(a�s)].

Figure 3. Slip as a function of time. The straight line
corresponds to the total displacement field predicted by our
model which diverges as V0t at large times. The long dashed
line shows the contribution of the afterslip process alone
derived from our model. This afterslip becomes signifi-
cantly small for times greater than tr, unlike the afterslip
predicted by Marone et al. [1991] (see the dotted line)
which diverges at large times. The three curves are in close
agreement for times lower than tr, since the contribution of
the interseismic loading can be neglected.
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[23] Also note that for practical use, the seismicity rate
R(t = 0+) immediately after any stress step characterized by
dG relates to the seismicity rate R(t = 0�) immediately
before so that R(t = 0+) = dGR(t = 0�). So, equation (32)
may also be written

N tð Þ ¼ N t ¼ 0ð Þ þ R0tr � log 1þ
R t ¼ 0þð Þ

R0

exp t=trð Þ � 1½ �

� �

:

ð33Þ

Figure 4 shows the evolution of the normalized seismicity
rate in response to Coulomb stress steps of various
amplitude (d = 104, 102, 10�2, and 10�4). After an elapsed
time of the order of tr, the seismicity rate returns to its
background value R0. In the case of an increase of the
Coulomb stress (d > 1), the seismicity rate shows a 1/t decay
in agreement with the empirical Omori’s law of aftershocks.
This important feature will be discussed in section 4.2.

4.2. Consistency With Omori’s Law

[24] Omori Using equation (30) with the Coulomb stress
given in equation (A16), we obtain, after use of equation
(A17),

R tð Þ ¼ R0 Vi=V0ð Þ

�

exp
t

tr
þ
�CFF tð Þ

a�s

� �

1þ cGVifFG �tð Þ þ trdG exp t=trð Þ � exp �t=trð Þ½ �g
:

ð34Þ

Once the dynamic stress field has vanished, i.e., when t >
�t, the only stress field that is left is the static Coulomb

stress field �CFFs(t) = �CFFsH(t � �t). After the change
of variable t0 = t � �t, equation (34) becomes

R t0ð Þ ¼R0 Vi=V0ð Þ

�

dG exp
�t

tr

� �

exp
t0

tr

� �

1þ cGViFG �tð Þ þ cGVitrdG exp �t=trð Þ exp t0=trð Þ � 1½ �

� 8 t0 > 0: ð35Þ

At small times after the end of the dynamic stress field,
namely, t0 � tr, the seismicity rate is

R t0ð Þ ’
R0

cGV0

1þ cGViF
G
�tð Þ

cGVidG exp �t=trð Þ

� �

þ t0
� �1

: ð36Þ

Thus equation (36) takes the form of the empirical Omori’s
law of aftershocks decay rate

R tð Þ ¼
a1

b1 þ t
; ð37Þ

where a1 and b1 are some constants determined empirically.
Within the framework of our model these constants would
be

a1 ¼
R0

cGV0

¼ R0tr ð38Þ

b1 ¼
1þ cGViF

G
�tð Þ

cGVidG exp
�t

tr

� � : ð39Þ

4.3. Comparison With the Model of Dieterich [1994]

[25] In this section we compare our interpretation of
aftershock decay with the formulation of Dieterich [1994].
Dieterich considered a population of faults in the self-
accelerating phase (so that dq/dt ’ �Vq/Dc in equation (8)
and therefore only the slip-weakening influence of q is
considered), which are not interacting, assuming the exis-
tence of a steady state background seismicity rate R0. On the
basis of these assumptions, he derived the initial velocity
distribution of such faults in order to have the constant
seismicity rate R0 prior to the stress perturbation. When the
perturbation is applied, the velocity distribution is modified,
and these faults are brought, depending on the Coulomb
stress variation, closer to or farther away from failure. For a
Coulomb stress increase on a given population of faults, this
mechanism leads to an increase of the seismicity rate
followed by some decay according to

R tð Þ ¼
R0

g tð Þ _t
; ð40Þ

where _t is the reference stressing rate. The variable g

accounts for the stress variations

dg

dt
¼

1

as
1� g

dt

dt
þ g

t

s
� a

� � ds

dt

� �

; ð41Þ

where t (s) is the total shear (normal) stress and a is a
frictional parameter that takes into account the response of

Figure 4. Seismicity rate change following a step in shear
stress of various amplitudes (d = 104, 102, 10�2, and 10�4)
for c = 100. The characteristic time for the aftershock
duration is tr. Note that the decrease in seismicity rates (due
to a decrease in the shear stress) lasts longer than increase in
seismicity rates (due to an increase in shear stress).
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the interface to normal stress variations [Linker and
Dieterich, 1992]. Because the potential effect of normal
stress variations is not explicitly taken into account in our
analytical approach above, we draw a parallel between
Dieterich’s model and ours in the particular case a = 0.
[26] Actually, it can be shown that although based on

radically different physical rationale, our model predicts the
same evolution laws as equation (41). The seismicity rate
given in equation (30) can be written as

R tð Þ ¼
R0

g tð ÞkV0

; ð42Þ

the function g(t) being given by

g tð Þ ¼
1

kVi

� �

exp
�t

tr
þ
��CFF tð Þ

a�s

� �

� 1þ cGViF
G tð Þ

� �

;

ð43Þ

where FG(t) can be calculated using equation (A10) and
�CFF(t) is the perturbation in the Coulomb stress. The
derivative of g(t) with respect to time reads

dg tð Þ

dt
¼

cG

k
� g tð Þ

1

tr
þ

1

a�s

d �CFF tð Þð Þ

dt

� �

: ð44Þ

Since the total shear stress is given by t(t) = ti + _tt + �t(t)
with _t = kV0, ti being the initial shear stress, we get

d �t tð Þð Þ

dt
¼

dt

dt
� _t; ð45Þ

and considering the normal stress, we get

d �s tð Þð Þ

dt
¼

ds

dt
: ð46Þ

Using equations (45), (46) and (A1) in (44) leads to

dg tð Þ

dt
¼

cG

k
� g tð Þ

1

tr
�

_t

a�s
þ

1

a�s

dt

dt
� m*

ds

dt

� �� �

: ð47Þ

Using equations (A9) and (A12), we obtain

dg tð Þ

dt
¼

1

a�s
1� g tð Þ

dt

dt
� m*g tð Þ

ds

dt

� �

: ð48Þ

Equation (48) has the same form as equation (41) for a = 0
and noting that t/s ’ m*.
[27] Our formulation can be easily extended to a 6¼ 0

noting that changing m* by m* � a removes the term a in
equation (41). Practically the only change in the formalism
that we presented earlier is that the Coulomb stress change
has to be estimated using �CFF(t) = �t(t) � (m*� a)
�s(t) instead of equation (A1).
[28] Therefore we can identify the variable g(t) intro-

duced by Dieterich [1994] with the function g(t) defined in
equation (43). Physically, the variable g(t) in Dieterich’s
work is proportional to the inverse of the sliding velocity (or
‘‘slowness’’) of the BCFZ in our model. So the two models

lead to the same mathematical formalism. In both models,
the term a represents the direct velocity effect in the friction
law. Since those two models are based on different physical
assumptions, this convergence might seem paradoxical. The
most surprising result in the work of Dieterich [1994] is that
even though the strength of each individual fault depends on
the state variable q (see equation (7)), the evolution of the
seismicity rate no longer contains any information about
this variable since the term b no longer appear at the end of
the calculation. The assumption of the existence of a
constant seismicity rate prior to the stress changes is
probably the key assumption that removes the dependence
on the state variable q. Indeed, only the dependence in q is
responsible for the slip instability, since the ‘‘viscous’’ term
a log(V), which is rate strengthening, tends to stabilize slip.
In spite of their differences both models show that the
viscous term governs the decay rate of aftershocks. How-
ever, we point out that in Dieterich’s model the ‘‘viscous
term that controls the aftershock decay’’ relates to the
friction parameter of the faults rupturing during the after-
shock sequence, while in our model it relates to the friction
parameter of the BCFZ. Note that one could envision a
more complex model in which the faults in the zones of
aftershocks would obey rate-weakening friction and would
be submitted to a decaying stress rate due to the response of
the BCFZ. Dieterich’s model and the BCFZ model would
then stand as end-member cases.

5. Application to the 1999 Chi-Chi Earthquake

5.1. Parameters of the Model for the Chi-Chi
Earthquake

[29] Here we test the model taking advantage of the
numerous data acquired following the 1999 Chi-Chi earth-
quake, Mw = 7.6 in Taiwan. This earthquake broke a major
thrust fault along the western foothills of the Central Range
(Figure 5). The earthquake induced surface ruptures extend-
ing over 80 km along the Chelungpu fault trace with
coseismic slip as large as 11 m at some places [Chen et
al., 2001; Dominguez et al., 2003]. Waveform inversion and
geodetic data indicate that coseismic slip that occurred on
shallow 20–35� east dipping ramp released a moment
estimated between 2.9 and 3.4 1020 N m [Ma et al., 2001;
Ji et al., 2001; Johnson et al., 2001;Dominguez et al., 2003].
The fault soles out into a low dipping décollement at a depth
of about 6–8 km. Geodetic measurements acquired before
the earthquake indicate rapid horizontal shortening in a
direction roughly perpendicular to the trend of the orogenic
belt and close to the N306�E plate convergence azimuth
[Yu et al., 1997]. This pattern can be interpreted as due to
aseismic shear beneath the Central Range, as schematized in
Figure 1, while the fault portion that ruptured during the Chi-
Chi earthquake would have remained locked [Loevenbruck
et al., 2001; Dominguez et al., 2003].
[30] The main shock was followed by a sequence of

aftershocks mainly concentrated along the down-dip contin-
uation of the ruptured fault [Ji et al., 2001; H. Kao,
unpublished manuscript, 2002]. Rapid postseismic deforma-
tion was also measured after the earthquake [Yu et al., 2001]
(Figure 6) and was shown to require afterslip on the décolle-
ment down dip of the ruptured fault portion, in the depth
range of 8–12 km [Yu et al., 2001]. The afterslip distribution
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shows maximum slip of 25 cm in the hypocentral area. For
the purpose of this study we have used the postseismic
relaxation measured at GPS station I007 (see Figure 5) as
discussed by Yu et al. [2001]. Velocity at this station was
determined from both campaign measurements before the
earthquake and continuous measurements. Before the main
shock, this station was moving by about 15.8 mm/yr toward
296�E with respect to some reference point on the footwall
far from any effect of interseismic loading. During the
earthquake it moved by 85 ± 1.1 cm toward 313�E, and its

eastward displacement increased by about 20 cm over about
200 days (Figure 6).
[31] The seismicity rate in the zone of aftershocks does

shows a coeval decay (Figure 7). The cumulated seismic
moment during the aftershock sequence is of the order of
1.6 � 1019 N m and is small in comparison to the straining
of the upper crust measured over this period [Hsu et al.,
2002]. It therefore makes sense to interpret the displacement
measured at the surface as being due to the elastic defor-
mation of the upper crust driven by deep afterslip. For the

Figure 5. Location of the 1999 Chi-Chi earthquake, Mw = 7.6 in Taiwan, and of GPS station I007.
Aftershocks (dates, ML > 2.5) from Lee [2001]. Box shows the area considered within which cumulated
number of earthquakes was measured.
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purpose of the modeling, we will consider that the motion at
station I007 results from two terms. One is due to ductile
flow at depth. Although this term may have varied during
relaxation, as assumed in viscoelastic models of postseismic
relaxation, we assume a constant value. The slip rate at
depth is estimated to V0 ’ 40 mm/yr [Dominguez et al.,
2003], but the contribution of this mechanism to the
displacement at I007 cannot be constrained tightly because
it depends on the position of the updip termination of the
ductile flow zone. Therefore we assume that the velocity
measured at station I007 and due to ductile flow is an
unknown fraction, a, of the velocity at depth V0. The other
term is the contribution of the BCFZ, which is assumed to
control the postseismic relaxation. This zone might be seen
as a transition zone along which the slip rate in the
interseismic period tapers from V0 = 40 mm/yr (for conti-
nuity with ductile flow at depth) to 0 mm/yr at the down-dip
end of the locked fault portion. The steady state creep rate
on the BCFZ, V1, must therefore be a fraction, b, of the
long-term slip rate (40 mm/yr).
[32] So we get that before the earthquake the eastward

displacement at I007 relative to the footwall might be written

U tð Þ ¼ aV0t þ bV0t; ð49Þ

with aV0 + bV0 = 15.8sin(296�) = 14.2 mm/yr toward east
[Yu et al., 2001]. According to our model the postseismic
response should then be written

U tð Þ ¼ aV0t þ bV0tr log 1þ d exp t=trð Þ � 1ð Þ½ �; ð50Þ

where a and b are some geometric factor and

d ¼ exp �CFF= a�sð Þ½ �; ð51Þ

�CFF being the static Coulomb stress change due to the
main shock. The corresponding cumulated number N(t) of
earthquakes following the main shock should obey

N tð Þ ¼ N t ¼ 0ð Þ þ R0tr log 1þ d exp t=trð Þ � 1ð Þ½ �; ð52Þ

where equation (32) has been used.
[33] To test the correspondence between the two sets of

data, we selected the zone that might reflect seismicity
triggered by stress buildup near the down-dip end of the
locked fault portion (large box in Figure 5). We used the
catalog of Lee [2001], which seems complete for magnitude

Figure 6. Postseismic eastward displacement at station I007 following the Chi-Chi earthquake [from Yu
et al., 2001]. See Figure 5 for location of the GPS station. The thin line represents the fit of Yu et al.
[2001]. The parameters used in our model (thick line) are the ones given by the inversion of the
cumulated number of earthquakes with ML > 2.5 (see Figure 7), i.e., tr = 8.5 years and d = 640. The
model (thick line) is in good agreement with the data if the coseismic slip is �Ucos = 17.2 cm, the long-
term sliding velocity of the BCFZ is V1 = bV0 = 6.6 mm/yr, and the long-term sliding velocity of the
ductile portion of the crust is aV0 = 7.6 mm/yr, both toward west.

Figure 7. Cumulated number of earthquakes with ML >
2.5 following the Chi-Chi earthquake within the area
outlined by the box in Figure 5. The model that fits the data
better gives tr = 8.5 years, d = 640 and R0 = 0.97 events per
day with ML > 2.5.
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above ML > 2.5, and determine the cumulated number of
events above that threshold. By trial and error, we actually
found that a good fit to both data (Figures 6 and 7) can be
obtained ford = 640, tr = 8.5 years, V1 = bV0 = 6.6 mm/yr, and
aV0 = 7.6mm/yr. This model predicts correctly the decay rate
of aftershocks and the velocity at station I007 including an
asymptotic value equal to the preseismic velocity as deter-
mined from pre-Chi-Chi campaign GPS measurements, i.e.,
14.2 mm/yr toward west [Yu et al., 2001].

5.2. Discussion of the Results

5.2.1. Value of the Relaxation Time tr

[34] The characteristic relaxation time tr = 8.5 years
obtained for the Chi-Chi aftershock sequence might be
compared with more global analysis of earthquakes cluster-
ing. Dieterich [1994] found that the mathematical formula-
tion of equations (40) and (41) (and hence our formulation of
equation (30)) was correctly predicting the statistics deduced
from the Harvard catalog. For shallow events (at depth less
than 70 km), he obtained a global average value for tr of 10.2
years, relatively close to the 8.5 year value inferred from our
analysis of the Chi-Chi aftershocks. For comparison, we may
also mention that [Parsons, 2002] analysis of triggered
events globally obey an Omori law with a characteristic
decay time typically between 7 and 11 years. So, the
particular case of the Chi-Chi aftershocks is not at odds with
more global analysis, and we contend that brittle creep could
be a common mechanism controlling the time evolution of
seismicity. However, according to the rationale proposed
here, there should be some variability on tr depending on the
local tectonic setting and the thermal structure.
5.2.2. Value of a��S and a Parameters
[35] The stress drop during the Chi-Chi earthquake ranges

between 6.5 and 30 MPa [Huang et al., 2001]. Considering
that the zone of afterslip must have experienced a compa-
rable coseismic (static) Coulomb stress increase, we may
consider �CFF ’ 10 MPa. Using equation (A18) leads to

a�s ¼
�CFF

log dð Þ
: ð53Þ

Given that d = 640, we infer a�s ’ 1.5 MPa.
[36] An alternative way to estimate a�s is to use equation

(16). The stressing rate _t is roughly given by

_t ¼
�CFF

Tinter
; ð54Þ

where Tinter is the average time interval between two
earthquakes similar to the 1999 Chi-Chi event. Using
equation (16) together with equation (54) leads to

a�s ¼
tr

Tinter
�CFF: ð55Þ

Using tr = 8.5 years and Tinter ’ 150–250 years [Dominguez
et al., 2003], we found using equation (55) that a�s ’ 0.34–
0.57 MPa. Therefore the estimate of a�s using equation (53)
or (55) leads to the same order of magnitude, namely,
a�s ’ 0.34–1.5 MPa. Note also that the combination of
equations (53) and (55) predicts that

log dð Þ ¼
�CFF

a�s
¼

Tinter

tr
; ð56Þ

this last relation being only approximately verified in the
case of the Chi-Chi earthquake since log(d) = log(640) ’
6.5, while Tinter/tr ranges from 17.6 to 29.4.
[37] Given the fact that most of the aftershocks occurred

at a depth of about 10 km (H. Kao, unpublished manu-
script, 2002) and assuming that the mean normal stress �s
may vary from the hydrostatic to the lithostatic pressure,
we found that the mean normal stress is of the order of �s =
150–260 MPa. Assuming that a�s ’ 0.34–1.5 MPa leads
to a = @m/@log(V) ’ 1.3 10�3–10�2, m being the coeffi-
cient of friction of the BCFZ. This value makes sense in
view of the sensitivity of friction to velocity changes
estimated from laboratory experiments which fall in the
range a = 5 10�3 � 1.5 10�2 [Dieterich, 1994; Dieterich
and Kilgore, 1996].

6. Limitations of the Model

[38] Our model is based on some strong hypothesis that
might need to be discussed. First of all, the model is 1-D
and therefore assumes that the fault has homogeneous
properties. Even though it is well known that the stress
field acting on the fault varies spatially (see, for instance,
Bouchon et al. [1998] for the Landers earthquake), spring-
slider models have been successful in describing the general
behavior of 2-D fault models with spatially variable prop-
erties [Dieterich, 1992; Perfettini et al., 2003a, 2003b]. In
addition, the assumption of a homogeneous fault is probably
reasonable for a creeping fault which has a natural tendency
to slide as a whole at constant velocity, in spite of spatial
heterogeneities.
[39] Another limitation of the model is that it does not

take into account the viscous relaxation of the deep crust or
upper mantle. This should be true for moderate earthquakes
which may not transfer high stress below the seismogenic
zone but may be violated for very large earthquake such as
the 1960, Mw = 9.5, Chile earthquake [Khazaradze et al.,
2002]. However, viscous relaxation occurs probably in a
characteristic time much larger than the value of about
10 years inferred for tr (see discussion in section 5.2). If
the viscosity of the deep crust is of the order of 1018 Pa s, as
deduced from case examples of viscoelastic response to lake
level changes [Bills and May, 1987], the viscous relaxation
time is of the order of a few thousand years.
[40] Another limiting assumption that we have made

when modeling the Chi-Chi earthquake is that the contri-
bution of aftershocks to seismicity rate changes is negligi-
ble. In case of aftershocks with significant coseismic
deformation, the formalism we present could be modified
to include these secondary sources of geodetic displace-
ments and stress transfer. The model would then probably
become too complex to help capture the real physics behind
the observations.

7. Conclusion

[41] We contend that rate-strengthening brittle deforma-
tion might explain some aspect of fault behavior, in partic-
ular during postseismic relaxation. This mechanism might
be dominant down dip of the seismogenic portion of a fault
zone and might give rise to afterslip driving stress variation
and hence coeval seismicity rate changes in the medium
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around. This physical rationale is shown here to be a viable
hypothesis in the particular case of a dip-slip setting, but we
believe it may apply more generally. A major limiting
assumption of the analytical model presented here is that
the postseismic response is assumed to be governed only by
brittle creep at midcrustal depths. This is obviously not true
since, in a number of case examples, it has been shown that
postseismic relaxation does involve viscous flow at greater
depth. However, we contend that brittle creep is a mecha-
nism that must operate concurrently with other postseismic
processes involving viscous deformation of the lithosphere
but also fluid flow redistribution within the upper crust
[Nur and Booker, 1972; Peltzer et al., 1998]. Future models
of postseismic deformation should account for brittle creep
because those based only on viscous deformation are
probably biased toward a too small viscosity if forced to
fit the early period of relaxation which is probably domi-
nated by brittle creep. It should also be noticed that we have
restricted the analysis to the case where brittle creep is only
rate-dependent. If the fault zone is undergoing brittle creep
static fatigue or instabilities inherent to rate-and-state fric-
tion laws [Rice and Gu, 1983], it might also be at the origin
of transient crustal deformation other than related to post-
seismic relaxation. With the development of geodetic mon-
itoring, it has indeed become clear that major fault zones
can produce a rich variety of transient deformation that
radiate very little or no seismic waves. There are, for
example, a number of observations of deep or shallow
creep events following major earthquakes [e.g., Schaff et
al., 1998; Hirose et al., 1999; Hutton et al., 2001; Fialko et
al., 2002; Melbourne et al., 2002; Owen et al., 2002], but
some slow events seem to have developed spontaneously
[Sacks et al., 1981; Linde et al., 1996; Lowry et al., 2001;
Dragert et al., 2001; Miller et al., 2002] and, in some cases,
may have preceded and triggered large earthquakes
[Katsumata et al., 2002]. In several cases the geodetic data
show that afterslip occurred down dip of the locked fault
portion, so probably in the BCFZ [Dragert et al., 2001;
Hutton et al., 2001; Katsumata et al., 2002; Owen et al.,
2002].

Appendix A: Generalization to Any Type of
Perturbations

[42] The analytical derivation presented in section 3
cannot be applied to normal stress perturbations because
the separation between the variables time displacement can
no longer be carried on. We present here an approximation
that applies to any type of stress perturbations. This ap-
proximation is based on earlier studies that considered 2-D
faults governed by rate-and-state friction with depth vari-
able frictional properties, to address the problem of static
and dynamic triggering [Perfettini et al., 2003a, 2003b]. For
most of the perturbations they have considered (stress steps,
pulses, and wave packets) combining shear and normal
stress variations, the Coulomb stress defined as

�CFF tð Þ ¼ �t tð Þ � m*�s tð Þ; ðA1Þ

where m* is given in equation (7) and �t(t) (�s(t)), the
perturbation in the shear (normal) stress, is a good proxy to
the effect of those perturbations.

[43] In the case of a variable effective normal stress with
time, the strength of the fault tf is given by

tf V ; tð Þ ¼ s tð Þm Vð Þ: ðA2Þ

The effective normal stress may indeed vary in particular
due fluid pressure changes associated with compaction or
dilatancy [Sleep, 1995; Marone, 1998]. As a first-order
approximation we may write

s tð Þ ¼ �sþ _st þ�s tð Þ: ðA3Þ

In the main text, _s = 0. We also assume that the normal
stress variations during the seismic cycle of duration Tinter
are negligible compared to the total mean stress �s, i.e.,
j�s(t)j � �s and j _sTinterj � �s, those assumptions being
reasonable at seismogenic depths. The coefficient of friction
m is given by

m Vð Þ ¼ m*
0 þ a log Vð Þ; ðA4Þ

and we assume that it has no dependence on normal stress
variations, the effect of the latter being mostly due to the
proportionality between the strength tf and the normal
stress. Such a hypothesis has to be made in order to still
assume that the material is only rate-dependent. Considering
the discussion above, equation (12) becomes, in the case of
normal stress variations,

�sm Vð Þ þ m*�s tð Þ þ m* _st ’ ti þ k V0t � dð Þ þ�t tð Þ; ðA5Þ

or, equivalently,

�sm Vð Þ ’ ti þ kV0 � m* _s
� �

t � kdþ�CFF tð Þ; ðA6Þ

where �CFF(t) is defined in equation (A1). We see that
equation (A6) is equivalent to (12) when the perturbation in
shear stress �t(t) is replaced by the Coulomb stress change
�CFF(t) and the stressing rate _t = kV0 is replaced by the
generalized stressing rate

_tG ¼ _t� m* _s; ðA7Þ

which takes into account the shear and compaction of the
fault zone. One can equivalently replace the loading
velocity V0 by a generalized loading velocity V0

G defined as

VG
0 ¼

_t� m* _s

_t
V0: ðA8Þ

Note that the long-term sliding velocity V0
G is equal to the

loading shear velocity V0 only in the absence of compaction
( _s = 0).
[44] Therefore, in equations (18) and (20) we can replace

the term �t(t) by �CFF(t), the effective normal stress s by
the normal stress �s acting on the fault when no perturbations
in normal stress are considered, and the characteristic time tr
by the generalized relaxation time tr

G defined as

tGr ¼
a�s

_tG
¼

a�s

kVG
0

: ðA9Þ
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Making those substitutions, the function F(t) becomes

FG tð Þ ¼

Z t

0

exp
t0

tGr
þ
�CFF t0ð Þ

a�s

� �

dt0; ðA10Þ

where the index G means ‘‘generalized.’’ It is important to
note that

FG 0ð Þ ¼ 0: ðA11Þ

It is useful to introduce the generalize parameter cG

cG ¼
k

a�s
; ðA12Þ

and to note that the following relation between the
generalized parameters holds

1

cGtGr
¼ VG

0 : ðA13Þ

The generalized slip function dG(t) is given by

dG tð Þ ¼ di þ
1

cG
log 1þ cGViF

G tð Þ
� �

; ðA14Þ

while the generalized sliding velocity can be estimated
using

VG tð Þ ¼ Vi

exp t=tGr
	 


þ �CFF tð Þa�sð Þ
� �

1þ cGViFG tð Þ
: ðA15Þ

The stress field generated by an earthquake may be
expressed as

�CFF tð Þ ¼ �CFFd tð Þ þ�CFFsH t ��tð Þ; ðA16Þ

where �CFFd(t) is the dynamic Coulomb stress field
existing only for t < �t and �CFFsH(t � �t) is the static
Coulomb stress field active only when t > �t. For such
a stress field the function FG(t) can be written using
�CFFd(t) = 0 for t > �t

FG tð Þ ¼ FG
�tð Þ þ tGr d

G exp t=tGr
	 


� exp �t=tGr
	 
� �

; ðA17Þ

where we have introduced the generalized parameter dG

dG ¼ exp �CFFs=a�sð Þ: ðA18Þ

It follows that

limt!1 FG tð Þ ¼ tGr d
G exp t=tGr

	 


: ðA19Þ

Using equation (A19), we find that

limt!1 dG tð Þ ¼ VG
0 t þ

�CFFs

k
þ

1

cG
log Vi=V

G
0

	 


; ðA20Þ

and

limt!1 VG tð Þ ¼
1

cGtGr
¼ VG

0 ; ðA21Þ

with the use of equation (A13). For an initial sliding
velocity equal to the generalized loading velocity, i.e., Vi =
V0
G, the long-term response of the slip function is equal to

the slip in absence of perturbation (term d0 + V0
Gt)

incremented by the slip due to the Coulomb stress step
(term �CFFs/k) for a pure elastic system with no ‘‘viscous’’
response (by viscous, we mean the positive log(V)
dependence in the strength of the material). Equations
(A20) and (A21) show that a creeping material will end up
sliding at the loading velocity V0

G and that whatever the
stress perturbations are.
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rue des 36 ponts, F-31400, Toulouse, France. (perfetti@lmtg.ups-tlse.fr)

B02304 PERFETTINI AND AVOUAC: DYNAMICS OF BRITTLE CREEP

15 of 15

B02304


