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Postselected versus nonpostselected quantum teleportation using parametric down-conversion
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We study the experimental realization of quantum teleportation as performed by Bouwmeesteret al. @Nature
~London! 390, 575 ~1997!# and the adjustments to it suggested by Braunstein and Kimble@Nature~London!
394, 841~1998!#. These suggestions include the employment of a detector cascade and a relative slow-down of
one of the two down-converters. We show that coincidences between photon pairs from parametric down-
conversion automatically probe the non-Poissonian structure of these sources. Furthermore, we find that de-
tector cascading is of limited use, and that modifying the relative strengths of the down-conversion efficiencies
will increase the time of the experiment to the order of weeks. Our analysis therefore points to the benefits of
single-photon detectors in non post selected-type experiments, a technology currently requiring roughly 6 °K
operating conditions.

PACS number~s!: 03.67.Hk, 42.50.Dv
a
m
un
h
e
or

c
b

nd

o
’s
io

o
e
x

to
a
e
ta
pa
e

ce
te
-
th
t i
re
om
a

a
is

tele-
y.

tum
it

-

im-
s or
peri-
ain

tion
K

ng
el-
ns.
ed
are

In

the
-
is

ion
on-
ob,
Quantum entanglement, an aspect of quantum theory
ready recognized in the early days, clearly sets quantum
chanics apart from classical mechanics. More recently, f
damentally new phenomena involving entanglement suc
cryptography, error correction, and dense coding have b
discovered@1–3#. In particular, the field has witnessed maj
steps forward with the experimental realization ofquantum
teleportation@4–9#.

We speak of quantum teleportation when a~possibly un-
known! quantum stateuf& held by Alice is sent to Bob with-
out actually traversing the intermediate space. The proto
uses an entangled state of two systems which is shared
tween Alice and Bob. To bring teleportation about, Alice a
Bob proceed as follows: a Bell measurement ofuf& and
Alice’s half of the entangled pair will correlate Bob’s half t
the original stateuf&. Bob then uses the outcome of Alice
measurement to determine which unitary transformat
brings his state into the original oneuf&.

In this paper, we study the experimental realization
quantum teleportation of a single polarized photon as p
formed in Innsbruck, henceforth called the ‘‘Innsbruck e
periment’’ ~Bouwmeesteret al. @5#!. Our aim is to evaluate
the suggestions to ‘‘improve’’ the experiment in order
yield nonpostselected operation, as given by Braunstein
Kimble @10#, ~also see Ref.@11#!. These suggestions includ
the employment of a so-called detector cascade in the s
preparation mode, and enhancement of the photon-
source responsible for the entanglement channel relativ
the one responsible for the initial-state preparation.

Subsequently, we hope to clarify some of the differen
in the interpretation of the Innsbruck experiment. As poin
out by Braunstein and Kimble@10#, to lowest order the tele
ported state in the Innsbruck experiment is a mixture of
vacuum and a single-photon state. However, we canno
terpret thisstateas a low-efficiency teleported state, whe
sometimes a photon emerges from the apparatus and s
times not. This reasoning is based on what we call the ‘‘p
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tition ensemble fallacy,’’ or PEF for short. It relies on
particular partition of the outgoing density matrix, and this
not consistent with quantum mechanics@12#. Circumventing
the PEF leads to the notion ofpostselectedteleportation, in
which the teleported state is detected. The postselected
portation indeed has a high fidelity and a low efficienc
Although generally the PEF is harmless~it might even be
considered a useful tool in understanding aspects of quan
theory!, to our knowledge, this is the first instance where
leads to aquantitativelydifferent evaluation of an experi
ment.

The main result of this paper is that the suggested
provements require near-perfect efficiency photodetector
a considerable increase in the time needed to run the ex
ment. The remaining practical alternative in order to obt
nonpostselectedquantum teleportation~i.e., teleportation
without the need for detecting the teleported photon! is to
employ a single-photon detector in the state-prepara
mode~a technology currently requiring approximately 6 °
operating conditions!.

We start in Sec. I by reviewing photon-pair creation usi
parametric down-conversion. In Sec. II we present the fid
ity of teleportation and discuss some of its interpretatio
Finally, Sec. III is devoted to an analysis of a generaliz
version of the Innsbruck experiment, and requirements
given to sufficiently enhance the fidelity.

I. INNSBRUCK EXPERIMENT

In this section we review the Innsbruck experiment.
Sec. I A we calculate the probability distribution of findingn
photon pairs, and subsequently we compare this with
Poisson distribution forn photon pairs. The difference be
tween the two distributions, in terms of distinguishability,
evaluated by means of the so-calledstatistical distancein
Sec. I B.

In the Innsbruck experiment, parametric down-convers
is used to create two entangled photon-pairs. One pair c
stitutes the entangled state shared between Alice and B
©2000 The American Physical Society04-1
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while the other is used by Victor to create an ‘‘unknown
single-photon polarization stateuf&: Victor detects modea,
shown in Fig. 1 to prepare the single-photon input state
mode b. This mode is sent to Alice. A coincidence in th
detection of the two outgoing modes of the beam spli
~Alice’s—incomplete—Bell measurement! tells us that Al-
ice’s two photons are in auC2& Bell state@13,14#. The re-
maining photon~held by Bob! is now in the same unknown
state as the photon prepared by Victor because in this
the unitary transformation Bob has to apply coincides w
the identity, i.e., doing nothing. Bob verifies this by detecti
his state along the same polarization axis which was use
Victor. A fourfold coincidence in the detectors of Victor’
state preparation, Alice’s Bell measurement and Bob’s o
going state indicate that quantum teleportation of a sing
photon state is complete.

There is, however, a complication which gave rise to
different interpretation of the experiment@10,11#. Analysis
shows that the state detected by Bob is a mixture of
vacuum and the original state@5,10# ~to lowest order!. This
vacuum contribution occurs when the down-converter
sponsible for creating the input stateuf& yields two photon
pairs, while the other gives nothing. The detectors used
the experiment cannot distinguish between one or sev
photons coming in, so Victor’s detection of modea in Fig. 1
will not reveal the presence of more than one photon
threefold coincidence in the detectors of Victor and Alice
still possible, but Bob has not received a photon and qu
tum teleportation has not been achieved. Bob therefore n
to detect his state in order to identify successful quant
teleportation. When Victor uses a detector which can dis
guish between one or several photons this problem vanis
However, currently such detectors require an operating e
ronment of roughly 6 °K@15–17#.

In Sec. III we give a detailed analysis of the Innsbru
experiment, and the suggestions for improvement given
Ref. @11#. Here we investigate the creation of entangl
photon-pairs using weak parametric down-conversion@18#.
In this process, there is a small probability of creating m
than one photon pair simultaneously. One might expect

FIG. 1. Schematic representation of the experiment conducte
Innsbruck. An UV pulse is sent into a nonlinear crystal, thus cre
ing an entangled photon pair. The UV pulse is reflected by a mi
and returned into the crystal again. This reflected pulse create
second photon pair. Photonsb and c are sent into a beam splitte
and are detected. This is the Bell measurement. Photona is detected
to prepare the input state, and photond is the teleported output stat
Bob receives. In order to rule out the possibility that there are
photons in moded, Bob detects this mode.
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for sufficiently weak down-conversion the two pairs creat
by one source~which give rise to the vacuum contribution i
the teleported output state! can be considered independe
from each other. However, we show that this is not the ca
In what follows we find it convenient to ‘‘unfold’’ the ex-
perimental setup according to Fig. 2.

A. Probability for n pairs

In this section we study the statistics of parametric dow
conversion. We show that the probabilityPPDC(n) for find-
ing n photon pairs deviates from the Poisson distributio
even in the weak limit.

Let a andb be two field modes with a particular polariza
tion along thex andy axes of a given coordinate system. W
are working in the interaction picture of the Hamiltonia
which governs the dynamics of creating two entangled fi
modesa and b using weak parametric down-conversion.
the rotating-wave approximation this Hamiltonian reads\
51)

H5 ik~ax
†by

†2ay
†bx

†!1H.c. ~1.1!

In this equation H.c. means Hermitian conjugate, andk is the
product of the pump amplitude and the coupling const
between the electromagnetic field and the crystal. The op
torsai

† , bi
† andai , bi are creation and annihilation operato

for polarizations i P$x,y% respectively. They satisfy the
commutation relations

@ai ,aj
†#5d i j , @ai ,aj #5@ai

† ,aj
†#50,

~1.2!
@bi ,bj

†#5d i j , @bi ,bj #5@bi
† ,bj

†#50,

where i , j P$x,y%. The time evolution due to this Hamil
tonian is given by

U~ t ![exp~2 iHt !, ~1.3!

wheret is the time it takes for the pulse to travel through t
crystal. By applying this unitary transformation to th
vacuumu0&, the stateuCsrc& is obtained:

uCsrc&5U~ t !u0&5exp~2 iHt !u0&. ~1.4!

in
t-
r
he

o

FIG. 2. Schematic ‘‘unfolded’’ representation of the telepor
tion experiment with two independent down-converters and a
larization rotation in modea. The state-preparation detector is a
tually a detector cascade, and Bob does not detect the mod
receives.
4-2
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We are interested in the properties ofuCsrc&. Define the
L1 andL2 operators to be

L15ax
†by

†2ay
†bx

†5L2
† . ~1.5!

This will render Eqs.~1.1! and ~1.3! into

H5 ikL12 ik* L2 ,
~1.6!

U~ t !5exp@ktL12k* tL2#.

Applying L1 to the vacuum will yield a singlet state~up
to a normalization factor! in modesa andb:

L1u0&5u↔,l&ab2ul,↔&ab

5u1,0;0,1&axaybxby
2u0,1;1,0&axaybxby

. ~1.7!

We henceforth use the latter notation, whereu i , j ;k,l &axaybxby

is shorthand foru i &ax
^ u j &ay

^ uk&bx
^ u l &by

, a tensor product
of photon number states. Applying this operatorn times
gives a stateuFn& ~where we have included a normalizatio
factor Nn , so that^FnuFn&51),

uFn&[NnL1
n u0&

5Nn (
m50

n

n! ~21!mumx ,~n2m!y ;~n2m!x ,my&ab ,

~1.8!

with

Nn
25

1

n! ~n11!!
. ~1.9!

We interpretuFn& as the state ofn entangled photon pairs.
We want the unitary operatorU(t) in Eq. ~1.6! to be in a

normal ordered form, because then the annihilation opera
will ‘‘act’’ on the vacuum first, in which case Eq.~1.4! sim-
plifies. In order to obtain the normal ordered form ofU(t)
we examine the properties ofL1 and L2 . Given the com-
mutation relations~1.2!, it is straightforward to show that

@L2 ,L1#5ax
†ax1ay

†ay1bx
†bx1by

†by12

[2L0 ,
~1.10!

@L0 ,L6#56L6 .

An algebra which satisfies these commutation relations~to-
gether with the propertiesL25L1

† and L05L0
†) is an

su(1,1) algebra. The normal ordering for this algebra
known @19# ~with t̂5t/utu):

exp~tL12t* L2!5exp~ t̂ tanhutuL1!

3exp@22 ln~coshutu!L0#

3exp~2 t̂* tanhutuL2!. ~1.11!
04230
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The scaled timet is defined ast[kt. Without loss of gen-
erality we can taket to be real. Since the ‘‘lowering’’ op-
erator L2 is placed on the right, it will yield zero when
applied to the vacuum, and the exponential reduces to
identity. Similarly, the exponential containingL0 will yield a
c number, contributing only to the normalization.

We can now ask the question whether the pairs t
formed are independent of each other, i.e., whether t
yield the Poisson distribution. SupposePPDC(n) is the prob-
ability of creating n photon pairs with parametric down
conversion, and let

r[tanht and q[2 ln~cosht!, ~1.12!

then the probability of findingn entangled photon pairs is

PPDC~n![u^FnuCsrc&u2

5u^0u~L2
n Nn!~erL 1e2qL0e2rL 2!u0&u2

5e22qU^0uL2
n NnF(

l 50

`
r l

l !
L1

l G u0&U2

5~n11!r 2ne22q. ~1.13!

It should be noted that this is only a normalized probabil
distribution in the limit ofr ,q→0.

Given Eqs.~1.12!, PPDC(n) deviates from the Poisson dis
tribution, and the pairs are therefore not independent.
weak sources, however, one might expect thatPPDC(n) ap-
proaches the Poisson distribution sufficiently closely. T
hypothesis can be tested by studying the distinguishability
the two distributions.

B. Distinguishability

Here we study the distinguishability of the pair distrib
tion calculated in Sec. I A and the Poisson distribution. T
Poisson distribution for independently created objects
given by

PPoisson~n!5
pne2p

n!
. ~1.14!

Furthermore, rewrite the pair distribution in Eq.~1.13! as

PPDC~n!5~n11!S p

2D n

e2p for p!1, ~1.15!

using q'r 2 and p[2r 252 tanh2t for small scaled times.
Here p is the probability of creating one entangled phot
pair. Are these probability distributions distinguishable? N
ively one would say that for sufficiently weak down
conversion~i.e., whenp!1) these distributions largely co
incide, so that instead of the complicated pair distributi
~1.15! we can use the Poisson distribution, which is mu
easier from a mathematical point of view. The distributio
are distinguishable when the ‘‘difference’’ between them
larger than the size of an average statistical fluctuation of
difference. This fluctuation depends on the number of sa
plings.
4-3
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Consider two nearby discrete probability distributio
$pj% and$pj1dpj%. A natural difference between these di
tributions is given by the so-called~infinitesimal! statistical
distance ds@20–22#:

ds25(
j

dpj
2

pj
. ~1.16!

When the typical statistical fluctuation afterN samplings is
1/AN, the two probability distributions are distinguishable

ds*
1

AN
⇔ Nds2*1. ~1.17!

The statistical distance between Eqs.~1.14! and ~1.15!, and
therefore the distinguishability criterion, is

ds2}
p2

8
→ N*

8

p2
. ~1.18!

On the other hand, the average number of trials in the t
portation experiment required to obtain one photon pair fr
both down-converters is

N5
1

p2
. ~1.19!

The minimum number of trials in the experiment thus alm
immediately renders the two probability distributions dist
guishable, and we therefore cannot approximate the ac
probability distribution with the Poisson distribution.

Since the Poisson distribution in Eq.~1.14! is derived by
requiring the statistical independence ofn pairs, and the pair
distribution is distinguishable from the Poisson distributio
the photon pairs cannot be considered to be independe
produced,even in the weak limit. In the analysis of the Inns
bruck experiment we need to take extra care due to this p
erty of parametric down-converters.

II. TELEPORTATION FIDELITY

In this section we introduce the so-calledfidelity for quan-
tum teleportation. This is already recognized as an impor
tool in quantum information theory, and it is therefore na
ral to consider teleportation criteria based upon it. Sub
quently, we discuss different points of view of the Innsbru
experiment emerging from this concept. We restrict our d
cussion to the subset of events where successful Bell-s
and state-preparation detections have occurred~all subse-
quent statements areconditionedon such events!. Since the
interpretation of the experiment has become a slightly c
troversial issue, we treat this in some detail.

In order to define the fidelity, denote the input state
uf& ~which is here assumed to be pure! and the outgoing
~teleported! state by a density matrixrout. The fidelity F is
the overlap between incoming and outgoing states:

F5Tr@routuf&^fu#. ~2.1!
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This corresponds to the lower bound for the probability
mistakingrout for uf& in any possible~single! measurement
@23#. Whenrout is an exact replica ofuf&, thenF51, and
when rout is an imprecise copy ofuf& then F,1. Finally,
whenrout is completely othogonal touf& the fidelity is zero.

In the context of this paper, the fidelity is used to disti
guish between quantum teleportation and teleportation wh
could have been achieved ‘‘classically.’’ Classical telepor
tion is the disembodied transport of some quantum state f
Alice to Bob by means of a classical communication cha
nel. There isno shared entanglement between Alice and Bo
Since classical communication can be duplicated, suc
scheme can lead to many copies of the transported ou
state~so-calledclones!. Classical teleportation with perfec
fidelity ~i.e., F51) would then lead to the possibility o
perfectcloning, thus violating the no-cloning theorem@24#.
This means that the maximum fidelity for classical telep
tation has an upper bound which is less than 1.

Quantum teleportation, on the other hand, can achi
perfect fidelity~and circumvents the no-cloning theorem b
disrupting the original!. To demonstratequantumteleporta-
tion therefore means@25# that the teleported state shou
have a higher fidelity than possible for a state obtained
any scheme involving classical communicationalone.

For classical teleportation of randomly sampled polari
tions, the maximum attainable fidelity isF52/3. When only
linear polarizations are to be teleported, the maximum atta
able fidelity is F53/4 @26–28,23#. These are the value
which the quantum teleportation fidelity should exceed.

In the case of the Innsbruck experiment,uf& denotes the
‘‘unknown’’ linear polarization state of the photon issued b
Victor. We can write the undetected outgoing state to low
order as

rout}uau2u0&^0u1ubu2uf&^fu, ~2.2!

whereu0& is the vacuum state. The overlap betweenuf& and
rout is given by Eq.~2.1!. In the Innsbruck experiment th
fidelity F is then given by

F[Tr@routuf&^fu#5
ubu2

uau21ubu2
. ~2.3!

This should be larger than 3/4 in order to demonstrate qu
tum teleportation. The vacuum contribution in Eq.~2.2!
arises from the fact that Victor cannot distinguish betwe
one photon or several photons entering his detector, i.e.,
tor’s inability to properly prepare a single-photon state.

As pointed out by Braunstein and Kimble@10#, the fidelity
of the Innsbruck experiment remains well below the low
bound of 3/4 due to the vacuum contribution~the exact value
of F will be calculated in Sec. III!. Replying to this, Bouw-
meester and co-workers@11,29# argued that ‘‘when a photon
appears, it has all the properties required by the teleporta
protocol.’’ The vacuum contribution in Eq.~2.2! should
therefore only affect the efficiency of the experiment, with
consequently high fidelity. However, this is a potentially a
biguous statement. If by ‘‘appear’’ we mean ‘‘appearing in
photodetector,’’ we agree that a high fidelity~and low effi-
4-4
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ciency! can be inferred. However, this yields a so-call
postselectedfidelity, where the detection destroys the te
ported state. The fidelity prior to~or without! Bob’s detec-
tion is called thenonpostselected fidelity. The question
now whether we can say that a photon appears whenno
detection is made, thus yielding a highnonpostselected fidel-
ity.

This turns out not to be the case. Making anontological
distinction between a photon andno photon in a mixed state
~without a detection! is based on what we call the ‘‘partitio
ensemble fallacy.’’ We now study this in more detail.

Consider the staterout of the form of Eq.~2.2!. To lowest
order, it is the sum of two pure states. However, this is no
unique ‘‘partition.’’ Whereas in a chemical mixture of, sa
nitrogen and oxygen there is a unique partition~into N2 and
O2), a quantum mixture can be decomposed many ways.
instance,rout can equally be written in terms of

uc1&5au0&1buf& and uc2&5au0&2buf& ~2.4!

as

rout5
1

2
uc1&^c1u1

1

2
uc2&^c2u. ~2.5!

In fact, this is just one of an infinite number of possib
decompositions. Quantum mechanics dictates that all p
tions are equivalent to each other@12#. They are indistin-
guishable. To elevate one partition over another is to com
the partition ensemble fallacy.

Returning to the Innsbruck experiment, we observe tha
the absence of Bob’s detection, the density matrix of
teleported state~i.e., thenonpostselected state! may be de-
composed into an infinite number of partitions. These pa
tions do not necessarily include the vacuum state at all
exemplified in Eq.~2.5!. It would therefore be incorrect to
say that teleportation did or did not occur except throu
some operational means~e.g., a detection performed b
Bob!.

Bob’s detection thus leads to a high postselected fide
However, the vacuum term in Eq.~2.2! contributes to the
nonpostselected fidelity, decreasing it well below the low
bound of 3/4~see Sec. III!. Due to this vacuum contribution
the Innsbruck experiment didnot demonstratenonpostse-
lected quantum teleportation. Nonetheless, teleportation
demonstrated using postselected data obtained by dete
the teleported state. By selecting events where a photon
observed in the teleported state, a postselected fidelity hi
than 3/4 could be inferred~estimated at roughly 80%@29#!.
~We recall that this entire discussion is restricted to the s
set of events where successful Bell state and state prep
tion have occurred.!

III. GENERALIZED EXPERIMENT

In this section we present a generalized scheme for
Innsbruck experiment which enables us to establish the
quirements to obtain nonpostselected quantum teleporta
~based on a threefold coincidence of Victor and Alice’s d
tectors!. The generalization consists of a detector casc
04230
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@30# for Victor’s state-preparation detection and parame
down-converters with different specifications, rather th
two identical down-converters. We consider a detector c
cade since single-photon detectors currently require roug
6 °K operating conditions@17#. Furthermore, an arbitrary po
larization rotation in the state-preparation mode allows us
consider any superposition ofx andy polarizations.

First, we give an expression for detectors with a fin
efficiency. Then we calculate the output state and give
expression for the teleportation fidelity in terms of the det
tor efficiencies and down-converter probabilities.

A. Detectors

There are two sources of errors for a detector: it might
to detect a photon, or it might give a signal although the
was not actually a photon present. The former is calle
‘‘detector loss,’’ and the latter a ‘‘dark count.’’ Dark count
are negligible in the teleportation experiment because
UV pump is fired during very short-time intervals, and th
probability of finding a dark count in such a small interval
negligible. Consequently, the model for real, finite-efficien
detectors we adopt here only takes into account dete
losses. Furthermore, the detectors cannot distinguish
tween one or several photons.

To simulate a realistic detector we make use of project
operator valued measures, or POVM’s for short@31#. Con-
sider a beam splitter in the mode which is to be detected
that part of the signal is reflected~see Fig. 3!. The second
incoming mode of the beam splitter is the vacuum~we ne-
glect higher photon number states because they hardly
tribute at room temperature!. The transmitted signalc is sent
into an ideal detector. We identify moded with the detector
loss.

Suppose in modea there are n x-polarized andm
y-polarized photons. Furthermore, let these photons all
reflected by the beam splitter~since the detectors cannot di
tinguish between one or more photons, we do not cons
the case where only some of the photons are reflected; we
interested in a ‘‘click’’ in the detector and partially reflecte
modes still give a click!. The projector for finding these pho
tons in thed mode is given by

FIG. 3. A model of an inefficient detector. The beam splitt
will reflect part of the incoming modea to moded, which is thrown
away. The transmitted partc will be sent into a ideal detector. Mod
b is vacuum.
4-5
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Ed5un,m&dxdy
^n,mu

5
1

n!m!
~dx

†!n~dy
†!mu0,0&dxdy

^0,0udx
ndy

m . ~3.1!

The beam-splitter equations are taken to be (h̃[A12h2)

c5ha1h̃b and d5h̃a2hb. ~3.2!

Substituting these equations in Eq.~3.1!, summing over alln
andm, and using the binomial expansion yields

Eab5(
n,m

S n

kD 2S m

l D 2
~21!2(k1 l )

n!m!
~ h̃ax

†!n2k~hbx
†!k~ h̃ay

†!m2 l

3~hby
†! l u0&ab^0u~ h̃ax!

n2k~hbx!
k~ h̃ay!m2 l~hby! l .

~3.3!

Since theb mode is the vacuum, the only contributing ter
is k5 l 50. So the POVMEa

(0) of finding no detector counts
in modea is

Ea
(0)5(

n,m

h̃n~ax
†!nh̃m~ay

†!m

n!m!
u0&axay

^0uh̃nax
nh̃may

m

5(
n,m

h̃2(n1m)un,m&axay
^n,mu. ~3.4!

The required POVM for finding a detector count is

Ea
(1)5I 2Ea

(0)5(
n,m

@12h̃2(n1m)#un,m&axay
^n,mu, ~3.5!

where I is the unity operator,h2 is the detector efficiency
andh̃2 is the detector loss. When we letEa

(1) act on the total
state and trace out modea, we have inefficiently detected
this mode. However, it is worth noting that this model on
applies for short periods of detection. In the case of conti
ous detection we need a more elaborate model~see, e.g., Ref.
@32#!.

In order for Victor to distinguish between one or mo
photons in the state-preparation modea, we consider a de-
tector cascade~Victor does not have a detector which ca
distinguish between one photon or several photons com
in!. When there is a detector coincidence in the casca
more than one photon was present in modea, and the event
should be dismissed. In the case of ideal detectors, this
improve the fidelity of the teleportation up to an arbitra
level ~we assume there are no beam-splitter losses!. Since we
employ the cascade in thea mode~which was used by Victor
to project modeb onto a superposition in the polarizatio
basis! we need to perform apolarization-sensitivedetection.

In order to model this we separate the incoming st
un,m&axay

of modea into two spatially separated modesun&ax

and um&ay
by means of a polarization beam splitter~see Fig.

4!. The modesax anday will now be detected. The POVM’s
corresponding to inefficient detectors are derived along
same lines as Sec. II, and read
04230
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Eaj

(0)5(
n

h̃2nun&aj
^nu,

~3.6!

Eaj

(1)5(
n

@12h̃2n#un&aj
^nu.

with j P$x,y%. We choose to detect thex-polarized mode.
This means that we only have to make sure that there ar
photons in they mode. The output state will include a prod
uct of the two POVM’s, one for finding a photon in mod
ax , and one for findingno photons in modeay : Eax

(1)Eay

(0) .

To make a cascade with two detectors inax and one inay
employ another 50:50 beam splitter in modeax , and repeat
the above procedure of detecting the outgoing modesc andd
@Eq. ~3.6!#. Since we can detect a photon in either one of
modes, we have to include the sum of the correspond
POVM’s, yielding a transformationEcx

(1)Edx

(0)1Ecx

(0)Edx

(1) . This

is easily expandable to larger cascades by using more b
splitters and summing over all possible detector hits.

B. Output state

In this section we incorporate the finite-efficiency dete
tors and the detector cascade in our calculation of the un
tected teleported output state. This calculation includes
creation of two photon pairs~lowest order! and three photon
pairs ~higher-order corrections due to four or more phot
pairs in the experiment are highly negligible!. A formula for
the vacuum contribution to the teleportation fidelity is giv
for double-pair production~lowest order!.

Let the two down-converters in the generalized expe
mental setup yield evolutionsUsrc1 andUsrc2 on modesa, b
and c, d respectively~see Figs. 1 and 2! according to Eq.
~1.4!. The beam splitter which transforms modesb andc into
u and v ~see Fig. 2! is incorporated by a suitable unitar
transformationUBS, as is the polarization rotationUu over
an angleu in mode a. The n cascade will be modeled b
n21 beam splitters in thex-polarization branch of the cas
cade, and can therefore be expressed in terms of a un
transformationUa1 . . . an

on the Hilbert space correspondin

to modesa1 to an ~i.e., replace modea with modesa1 to
an):

FIG. 4. A simple detector cascade. The fractions 1/2 and 1/3
the beam splitter’s intensity transmission coefficients. Several p
tons in modea are likely to enter different detectors, thus reveali
that more than one photon was present in this mode.
4-6
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uCu&^Cuu5Ua1 . . . an
UuUBSUscr1Uscr2u0&

3^0uUscr1
† Uscr2

† UBS
† Uu

†Ua1 . . . an

† . ~3.7!

Detecting modesa1 . . . an , u and v with real ~inefficient!
detectors means taking the partial trace over the dete
modes, including the POVM’s derived in Sec. III A,

rout5Tra1 . . . anuv@En-casEu
(1)Ev

(1)uC̃u&a1 . . . anuvd^C̃uu#,
~3.8!

with En-cas the superposition of POVM’s for a polarization
sensitive detector cascade havingn detectors with finite effi-
ciency. In the casen52 this expression reduces to the tw
cascade POVM superposition derived in Sec. II. Equat
~3.8! is an analytic expression of the undetected outgo
state in the generalization of the Innsbruck experiment.

The evolutionsUsrc1 and Usrc2 are exponentials of cre
ation operators. In the computer simulation~using MATH-

EMATICA! we truncated these exponentials at first and sec
orders. The terms that remain correspond to double-
triple-pair production in the experimental setup. To prese
the order of the creation operators we put them as argum
in a functionf. We defined the following algebraic rules fo
f:

f @x,y1w,z#ª f @x,y,z#1 f @x,w,z#,

f @x,na,y#ªn f@x,a,y#, ~3.9!

f @x,na†,y#ªn f@x,a†,y#,

wherex,y,z, andw are arbitrary expressions including cr
ation and annihilation operators (a† and a), and n some
expressionnot depending on creation or annihilation oper
tors. The last entry off is always a photon number sta
~including the initial vacuum state!.

Since we now have functions of creation and annihilat
operators, it is quite straightforward to define~lists of! sub-
stitution rules for a beam splitter@see also Eq.~3.2!#, polar-
ization rotation, POVM’s, and the trace operation. We th
use these substitution rules to ‘‘build’’ a model of the ge
eralized experimental setup.

C. Results

The probability of creating one entangled photon pair
ing the weak parametric down-conversion source 1 or 2 isp1
or p2, respectively~see Fig. 2!. We calculated the outpu
state both for ann cascade up to orderp2 ~i.e., p1

2 or p1p2)
and for a 1 cascade up to the orderp3 (p1

3, p1
2p2 or p1p2

2).
The results are given below. For brevity, we take

uCu&5cosuu0,1&1sinuu1,0&,
~3.10!

uCu
'&5sinuu0,1&2cosuu1,0&

as the ideally prepared state and the state orthogonal t
Supposehu

2 and hv
2 are the efficiencies of the detectors

mode u and v, respectively, andhc
2 the efficiency of the
04230
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detectors in the cascade~for simplicity we assume that the
detectors in the cascade have the same efficiency!. Define
guvc5hu

2hv
2hc

2 . The detectors in modesu and v are polar-
ization insensitive, whereas the cascade consists
polarization-sensitive detectors. Bearing this in mind,
have up to orderp2 for ann cascade in modeax , and find no
detector click in theay mode,

rout}
p1

8
guvcH p1

n
@11~5n23!~12hc

2!#u0&^0u

1p2uCu&^Cuu J 1O~p3!, ~3.11!

where the vacuum contribution formula was calculated a
found to be correct forn<4 ~andnÞ0).

In order to have nonpostselected quantum teleportat
the fidelityF must be larger than 3/4@28,23#. Since we only
estimated the two lowest-order contributions~to p2 andp3),
the fidelity is also correct up top2 andp3, and we writeF (2)

andF (3), respectively. Using Eqs.~2.3! and~3.11!, we have

F (2)5
np2

p1@11~5n23!~12hc
2!#1np2

>
3

4
~3.12!

⇒hc
2>

~15n26!p12np2

~15n29!p1
. ~3.13!

This means that in the limit of infinite detector cascadi
(n→`) and p15p2 the efficiency of the detectors must b
better than 93.3% to achieve nonpostselected quantum
portation. When we have detectors with efficiencies of 98
we need at least four detectors in the cascade to obtain
equivocal quantum teleportation.The necessity of a lowe
bound on the efficiency of the detectors used in the casc
might seem surprising, but this can be explained as follow
Suppose the detector efficiencies become smaller than a
tain valuex. Then upon a two-photon state entering the d
tector, finding only one click becomes more likely than fin
ing a coincidence, and ‘‘wrong’’ events end up contributin
to the output state. Equation~3.13! places a severe limitation
on the practical use of detector cascades in this situation

In the experiment in Innsbruck, no detector cascade w
employed and also theay mode was left undetected. Th
state entering Bob’s detector therefore was~up to orderp2)

rout}
p2

8
guvc@~32hc

2!u0&^0u1uCu&^Cuu#1O~p3!.

~3.14!

Remember thatp15p2, since the experiment involves on
source which is pumped twice. The detector efficiencyhc

2 in
the Innsbruck experiment was 10%@33#, and the fidelity
without detecting the outgoing mode therefore would ha
beenF (2).26% ~conditioned only on successful Bell dete
tion and state preparation!. This clearly exemplifies the nee
for Bob’s detection. Braunstein and Kimble@10# predicted a
theoretical maximum of 50% for the teleportation fidelit
which was conditioned upon~perfect! detection of both the
ax and theay modes.
4-7
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Rather than improving the detector efficiencies and us
a detector cascade, Eq.~3.12! can be satisfied by adjustin
the probabilitiesp1 andp2 of creating entangled photon pai
@10#. From Eq.~3.12! we have

p1<
n

3@11~5n23!~12hc
2!#

p2 . ~3.15!

Experimentally,p1 can be diminished by employing a bea
splitter with a suitable reflection coefficient rather than a m
ror to reverse the pump beam~see Fig. 1!. Bearing in mind
that k is proportional to the pump amplitude, the equati
pi52 tanh2(kit) @see the discussion following Eq.~1.15!,
with i 51 and 2# gives a relation between the pump amp
tude and the probability of creating a photon pair. In partic
lar, whenp25xp1,

tanh~k2t !

tanh~k1t !
5Ax. ~3.16!

Decreasing the production rate of one photon-pair sou
will increase the time needed to run the experiment. In p
ticular, we have from Eq.~3.14! that

p2>3~32hc
2!p1 . ~3.17!

With hc
2510%, we obtainp2>8.7p1. Using Eq.~1.19! we

estimate that diminishing the probabilityp1 by a factor 8.7
will increase the running time by that same factor~i.e., run-
ning the experiment about nine days, rather than 24 h!.

The third-order contribution to the outgoing density m
trix without cascading and without detecting theay mode is

rout}
p1

8
guvc~42hu

22hv
2!

1

16
@6p1

2~624hc
21hc

4!u0&

3^0u12p1p2~22hc
2!~ uCu&^Cuu1uCu

'&^Cu
'u!

18p1p2~32hc
2!r1112p2

2r2#, ~3.18!

with

r15
1

2
~ u1,0&^1,0u1u0,1&^0,1u!,

~3.19!

r25
1

6 F ~21cos 2u!u0,2&^0,2u1~22cos 2u!u2,0&

3^2,0u12u1,1&^1,1u1
1

2
A2 sin 2u~ u2,0&^1,1u1u1,1&

3^2,0u1u0,2&^1,1u1u1,1&^0,2u!G .
We have explicitly extracted the state which is to be te

ported (uCu&^Cuu) from the density-matrix contributionr1
~this is not necessarilythe decomposition with the larges
uCu&^Cuu contribution!. As expected, this term is less im
portant in the third order than it is in the second. In t
04230
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Appendix it is shown that then-photon contribution to the
outgoing density matrix is always proportional top2

n .
The teleportation fidelity including the third-order contr

bution ~3.18! can be derived along the same lines as E
~3.12!. Assuming that all detectors have the same efficien
h2 andp15p25p, the teleportation fidelity up to third orde
is

F (3)5
41p~22h2!2

4~42h2!1p~80276h2134h423h6!
.

~3.20!

With p51024 and a detector efficiency ofh250.1, this fi-
delity differs from Eq.~3.12!, with only a few parts in ten
thousand:

F (2)2F (3)

F (2)
}p;1024. ~3.21!

On the other hand, let us compare two experiments
which the cascades have different detector efficiencies~but
all the detectors in one cascade still have the same
ciency!. The ratio between the teleportation fidelity with d
tector efficienciesh2

2 and h1
2 ~with h2

2 and h1
2 the lower

and higher detector efficiencies respectively! up to lowest
order is

F95%
(2) 2F10%

(2)

F95%
(2)

}
Dh2

22h2
2

;1021, ~3.22!

whereDh2 is the difference between these efficiencies. T
shows that detector efficiencies have a considerably la
influence on the teleportation fidelity than the higher-ord
pair production.

To summarize our results, we have found that detec
cascading is only useful when the detectors in the casc
have near-unit efficiency. In particular, there is a low
bound to the efficiency below which an increase in the nu
ber of detectors in the cascade actually decreases the a
to distinguish between one or several photons entering
cascade. Finally, enhancement of the photon-pair source
sponsible for the entanglement channel relative to the
responsible for the state preparation increases the
needed to run the experiment by an order of magnitude.

IV. CONCLUSIONS

We studied the experimental realization of quantum te
portation as performed in the Innsbruck experiment@5# in-
cluding possible improvements suggested by Braunstein
Kimble to achieve a high nonpostselected fidelity@10#. The
creation of entangled photon pairs using parametric do
conversion was analyzed, and we presented a discus
about the teleportation fidelity. Finally, we determined t
usefulness of detector cascading and the slowdown of
down-converter relative to the other for the generalized
periment.

The difficulties of the Innsbruck experiment can be trac
4-8
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to the state preparation~i.e., to the sources of the entangle
photon pairs, see Fig. 2!. In particular, there is a probability
that the source responsible for creating entangled pho
pairs produces two pairs simultaneously. We studied th
sources in some detail, and have found thatphoton pairs
created in a parametric down-converter are not independ
of each other. Employing two parametric down-converte
therefore automatically probes the non-Poissonian struc
of these sources.

The teleportedstatein the Innsbruck experiment is a mix
ture of the vacuum and a single-photon state. However,
cannot interpret this state as a low-efficiency teleported st
where sometimes a photon emerges from the apparatus
sometimes not. This reasoning is based on a particular p
tion of the outgoing density matrix, and this is not consist
with quantum mechanics~to our knowledge, this is the firs
instance where the PEF leads to a different evaluation o
experiment!. In Sec. II we showed how a high fidelity in th
Innsbruck experiment could only be interpreted in a po
selected manner.

The interpretation of what quantum teleportation is, giv
rise to different evaluations of the Innsbruck experime
When one holds that the freely propagating output state
quantum teleportation should resemble the input state s
ciently closely~i.e., nonpostselected quantum teleportatio!,
the nonpostselected teleportation fidelity in the Innsbruck
periment should be at least 3/4. This requirement was
met. Nonetheless the Innsbruck experiment demonstr
postselectedquantum teleportation~i.e., teleportation condi-
tioned on the detection of the outgoing state!.

In the generalized version of the Innsbruck experimen~à
la Braunstein and Kimble! we have modeled a detector ca
cade in the state-preparation mode. However, for the cas
to work, the detectors need to have near unit efficiency
particular, for infinite cascading the efficiency of the dete
tors should be at least 93%. Finite cascading requires e
higher detector efficiencies. This places a severe limita
on the practical use of detector cascades in this situat
Detector losses in the cascade have an immediate influ
on the teleportation fidelity, yielding an effect which is mu
stronger than the higher-order corrections due to multip
pair creation~three pairs or more! of the down-converters.

If the stability of the experimental setup can be ma
tained for a longer time~the order of weeks!, it is possible to
slow down the down-converter responsible for creating
d

-

cu
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unknown input state. This can improve the fidelity up
arbitrary level. Nevertheless, we feel that our analysis de
onstrates the definite benefits of single-photon detectors
such experiments or applications in the future. This techn
ogy currently requires roughly 6 °K operating conditions.
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APPENDIX: CROSS-TERMS

In this appendix we show that all the cross-terms of
density matrix in Eq.~3.8! must vanish. The density matri
consists of several distinct parts: a vacuum contribution
contribution due to one photon in moded, two photons, and
so on. Suppose there aren photon pairs created in the whol
system, andm photon pairs out ofn are produced by the
second source~modesc and d). The outgoing mode mus
then containm photons. Reversing this argument, when w
find m photons in the outgoing mode the probability of cr
ating this particular contribution must be proportional
p1

n2mp2
m . Expanding thenth-order output state into parts o

definite photon number, we can write

rout
(n)5 (

m50

n21

p1
n2mp2

mrm
(n) , ~A1!

whererm
(n) is the~unnormalized! nth-order contribution con-

taining all terms withm photons.
An immediate corollary of this argument is that all th

cross-terms between different photon number states in
density matrix must vanish. The cross-termsare present in
Eq. ~3.7!, and we must therefore show that the partial trace
Eq. ~3.8! makes them vanish. Suppose there aren photons in
the total system. A cross-term in the density matrix will ha
the form

u j ,k,l ,m&auvd^ j 8,k8,l 8,m8u,

with mÞm8. We also know thatj 1k1 l 1m5 j 81k81 l 8
1m85n, so that at least one of the other modes must h
the cross-term property as well. Supposek is not equal tok8.
Since we have Tr@ uk&^k8u#5dk,k8 , the cross-terms must van
ish.
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