PHYSICAL REVIEW A, VOLUME 61, 042304

Postselected versus nonpostselected quantum teleportation using parametric down-conversion
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We study the experimental realization of quantum teleportation as performed by BouwnetedtEXature
(London 390 575(1997] and the adjustments to it suggested by Braunstein and KipNaéeure (London
394, 841(1998]. These suggestions include the employment of a detector cascade and a relative slow-down of
one of the two down-converters. We show that coincidences between photon pairs from parametric down-
conversion automatically probe the non-Poissonian structure of these sources. Furthermore, we find that de-
tector cascading is of limited use, and that modifying the relative strengths of the down-conversion efficiencies
will increase the time of the experiment to the order of weeks. Our analysis therefore points to the benefits of
single-photon detectors in non post selected-type experiments, a technology currently requiring roughly 6 °K
operating conditions.

PACS numbsd(s): 03.67.Hk, 42.50.Dv

Quantum entanglement, an aspect of quantum theory atition ensemble fallacy,” or PEF for short. It relies on a
ready recognized in the early days, clearly sets quantum meparticular partition of the outgoing density matrix, and this is
chanics apart from classical mechanics. More recently, funnot consistent with quantum mechanjdg]. Circumventing
damentally new phenomena involving entanglement such ae PEF leads to the notion pbstselectedeleportation, in
cryptography, error correction, and dense coding have beefhich the teleported state is detected. The postselected tele-
discovered1—3]. In particular, the field has witnessed major portation indeed has a high fidelity and a low efficiency.
steps forward with the experimental realizationcpfantum  Although generally the PEF is harmleés might even be
teleportation[4—9]. considered a useful tool in understanding aspects of quantum

We speak of quantum teleportation wheripassibly un-  theory, to our knowledge, this is the first instance where it
known) quantum statés) held by Alice is sent to Bob with- leads to aquantitatively different evaluation of an experi-
out actually traversing the intermediate space. The protocdhent.
uses an entangled state of two systems which is shared be- The main result of this paper is that the suggested im-
tween Alice and Bob. To bring teleportation about, Alice andprovements require near-perfect efficiency photodetectors or
Bob proceed as follows: a Bell measurement|@ and a considerable increase in the time needed to run the experi-
Alice’s half of the entangled pair will correlate Bob’s half to ment. The remaining practical alternative in order to obtain
the original staté¢). Bob then uses the outcome of Alice’s nonpostselectedjuantum teleportation(i.e., teleportation
measurement to determine which unitary transformatiorwithout the need for detecting the teleported phot@to
brings his state into the original one). employ a single-photon detector in the state-preparation

In this paper, we study the experimental realization ofmode(a technology currently requiring approximately 6 °K
quantum teleportation of a single polarized photon as peroperating conditions
formed in Innsbruck, henceforth called the “Innsbruck ex- We startin Sec. | by reviewing photon-pair creation using
periment” (Bouwmeesteet al. [5]). Our aim is to evaluate parametric down-conversion. In Sec. Il we present the fidel-
the suggestions to “improve” the experiment in order to ity of teleportation and discuss some of its interpretations.
yield nonpostselected operation, as given by Braunstein anfinally, Sec. Ill is devoted to an analysis of a generalized
Kimble [10], (also see Ref.11]). These suggestions include Vversion of the Innsbruck experiment, and requirements are
the employment of a so-called detector cascade in the stagiven to sufficiently enhance the fidelity.
preparation mode, and enhancement of the photon-pair
source responsible for the entanglement channel relative to
the one responsible for the initial-state preparation. I. INNSBRUCK EXPERIMENT

Subsequently, we hope to clarify some of the differences
in the interpretation of the Innsbruck experiment. As pointed In this section we review the Innsbruck experiment. In
out by Braunstein and KimblgL0], to lowest order the tele- Sec. | A we calculate the probability distribution of finding
ported state in the Innsbruck experiment is a mixture of thephoton pairs, and subsequently we compare this with the
vacuum and a single-photon state. However, we cannot inPoisson distribution fon photon pairs. The difference be-
terpret thisstateas a low-efficiency teleported state, where tween the two distributions, in terms of distinguishability, is
sometimes a photon emerges from the apparatus and som@raluated by means of the so-callsthtistical distancen
times not. This reasoning is based on what we call the “parSec. | B.

In the Innsbruck experiment, parametric down-conversion
is used to create two entangled photon-pairs. One pair con-
*Electronic address: pieter@sees.bangor.ac.uk stitutes the entangled state shared between Alice and Bob,
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FIG. 1. Schematic representation of the experiment conducted in ) )
Innsbruck. An UV pulse is sent into a nonlinear crystal, thus creat- F!G. 2. Schematic “unfolded" representation of the teleporta-
ing an entangled photon pair. The UV pulse is reflected by a mirrofion experiment with two independent down-converters and a po-
and returned into the crystal again. This reflected pulse creates tH@rization rotation in mode. The state-preparation detector is ac-
second photon pair. Phototisand ¢ are sent into a beam splitter tually a detector cascade, and Bob does not detect the mode he
and are detected. This is the Bell measurement. Plaiodetected ~ f€Celves.

to prepare the input state, and photbis the teleported output state . ) )
Bob receives. In order to rule out the possibility that there are ndor sufficiently weak down-conversion the two pairs created

photons in model, Bob detects this mode. by one sourcéwhich give rise to the vacuum contribution in
the teleported output statean be considered independent
while the other is used by Victor to create an “unknown” from each other. However, we show that this is not the case.

single-photon polarization Statd)>; Victor detects mode, In what follows we find it convenient to “unfold” the ex-
shown in Fig. 1 to prepare the single-photon input state ifPerimental setup according to Fig. 2.

modeb. This mode is sent to Alice. A coincidence in the

detection of the two outgoing modes of the beam splitter A. Probability for n pairs
(Alice’s—incomplete—Bell measurementells us that Al-
ice’s two photons are in & ~) Bell state[13,14]. The re-

maining photor(held by Bob is now in the same u_nknqwn ing n photon pairs deviates from the Poisson distribution,
state as the photon prepared by Victor because in this Casen in the weak limit

the unitary transformation Bob has to apply coincides with Let a andb be two field modes with a particular polariza-

tk:se Is(::'glgblﬁe',tr?:Isr;lgrr?gthcl)rllgr.iEac;i?)\r:ea::il:SV\/tEifhb\)/lvgsethgg%tion along thex andy axes of a given coordinate system. We
9 P re working in the interaction picture of the Hamiltonian

Victor. A fourfold coincidence in the detectors of Victor's which governs the dynamics of creating two entangled field

SE‘;:]E psrgtjzr?nt:j?gét':‘“gqeats Buegng]?na?glrsrgftr:tigzdOE(;bSSinOllgﬁwodesa andb using weak parametric down-conversion. In
going . q P 9Che rotating-wave approximation this Hamiltonian reads (
photon state is complete.

There is, however, a complication which gave rise to azl)

different interpretation of the experimefit0,11. Analysis H=ix(albl—albl)+H.c. (1.1)
shows that the state detected by Bob is a mixture of the Yy

vacuum and the original staf&,10] (to lowest ordex. This  |n this equation H.c. means Hermitian conjugate, arislthe
vacuum contribution occurs when the down-converter reproduct of the pump amp”tude and the Coup"ng constant
sponsible for creating the input stdig) yields two photon  petween the electromagnetic field and the crystal. The opera-
pairs, while the other gives nothing. The detectors used iforsal, b anda;, b; are creation and annihilation operators

the experime_nt cannot _distinguish petween one or Severghy polarizationsi e {x,y} respectively. They satisfy the
photons coming in, so Victor’s detection of modén Fig. 1 commurtation relations

will not reveal the presence of more than one photon. A

In this section we study the statistics of parametric down-
conversion. We show that the probabil®sp(n) for find-

threefold coincidence in the detectors of Victor and Alice is [a;,a]]= Si. [a ,a,-]=[aiT .a'1=0,

still possible, but Bob has not received a photon and quan- ' J 1.2

tum teleportation has not been achieved. Bob therefore needs [b; bT]= 5 [b; bj]=[b7 b7]=0 '
M H ’ [l | ’

to detect his state in order to identify successful quantum
teleportation. When Victor uses a detector which can distinyhere i ,je{x,y}. The time evolution due to this Hamil-
guish between one or several photons this problem vanisheg,nian is given by
However, currently such detectors require an operating envi-
ronment of roughly 6 °K15-17. U(t)=exp( —iHt), (1.3

In Sec. Il we give a detailed analysis of the Innsbruck
experiment, and the suggestions for improvement given invheret is the time it takes for the pulse to travel through the
Ref. [11]. Here we investigate the creation of entangledcrystal. By applying this unitary transformation to the
photon-pairs using weak parametric down-convergit8l.  vacuum|0), the statd ¥, is obtained:
In this process, there is a small probability of creating more
than one photon pair simultaneously. One might expect that | W0 =U(t)|0)y=exp(—iHt)|0). 1.9
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We are interested in the properties |8f). Define the The scaled timer is defined asr=«t. Without loss of gen-

L, andL _ operators to be erality we can taker to be real. Since the “lowering” op-
eratorL_ is placed on the right, it will yield zero when
L+=a:§b§—a;r,b:£=Li. (1.5  applied to the vacuum, and the exponential reduces to the
identity. Similarly, the exponential containirg, will yield a
This will render Egs(1.1) and(1.3) into c number, contributing only to the normalization.
] . We can now ask the question whether the pairs thus
H=ixL, —ix*L_, formed are independent of each other, i.e., whether they
(1.6)  yield the Poisson distribution. SuppoBgp(n) is the prob-
U(t)=exd «xtL —«*tL_]. ability of creatingn photon pairs with parametric down-

. _— ) conversion, and let
Applying L , to the vacuum will yield a singlet statep

to a normalization factgrin modesa andb: r=tanhr and =2 In(coshr), (1.12
Li|0)=]|<,T)ab— 11, )ab then the probability of findingn entangled photon pairs is
=11,0,0, D00 6, ~ 10,1100 b5, (1.7) Peod ) =|(®"Wd|?

=|(0|(L"N,)(e'-+e dtoe~--)|0)|?
We henceforth use the latter notation, whBrg;K,1), 2 b b I<ol¢ ) )10Vl

. . . Xy XY ® 2
is shorthand f0'||>ax®|l>ay®|k>bx®||>by, a tensor pr_oduct e 2oL, S r_LI+ 0)
of photon number states. Applying this operatortimes <o I
gives a stat¢d") (where we have included a normalization
factorN,, so that{®"|®d")=1), =(n+1)r*e 2, (1.13
|dMy=N,L"|0) It should be noted that this is only a normalized probability
distribution in the limit ofr,q—0.
" Given Eqs(1.12, Pppd(n) deviates from the Poisson dis-
:NanO n!(—=1)™my,(n=m)y;(N—m),,My)ap, tribution, and the pairs are therefore not independent. For

weak sources, however, one might expect ®at(n) ap-
(1.8 proaches the Poisson distribution sufficiently closely. This
_ hypothesis can be tested by studying the distinguishability of
with the two distributions.

o 1 (1.9 B. Distinguishability

NZ= :
n'(n+1)!
( ) Here we study the distinguishability of the pair distribu-

tion calculated in Sec. | A and the Poisson distribution. The

We interpret|®") as the state ofi entangled photon pairs. i et : - \
Poisson distribution for independently created objects is

We want the unitary operatds(t) in Eq.(1.6) to be in a A
normal ordered form, because then the annihilation operato@&ven by
will “act” on the vacuum first, in which case Eq1.4) sim- ple P
plifies. In order to obtain the normal ordered form (t) PpoissoN) = —
we examine the properties &f, andL_. Given the com- n:
mutation relationg1.2), it is straightforward to show that

(1.19

Furthermore, rewrite the pair distribution in E4..13 as

n

e P for p<1, (1.19

[L_,L.]=afac+ala,+blb,+blb,+2

E2'.0,

Pppdn)=(n+1) 5

(1.10

[Lo,L.]=*L.. using g~r? and p=2r2=2 tanttr for small scaled times.
B N Here p is the probability of creating one entangled photon
An algebra which satisfies these commutation relatidgos  pair. Are these probability distributions distinguishable? Na-
gether with the propertiei_=L1 and Ly= L(‘g) is an ively one would say that for sufficiently weak down-
su(1,1) algebra. The normal ordering for this algebra isFOr_l(\j/erSion(ir-]e-. _When?fP r':hese diT_tribugons_la(;gelybcq-
known 191 (with = 7/171): incide, so that instead of the complicated pair distribution
wn [19] (with 7= /| ) (1.15 we can use the Poisson distribution, which is much
ok _ - easier from a mathematical point of view. The distributions
exp(rL. —r*L_)=exp(rtantjr|L.) are distinguishable when the “difference” between them is
xexf — 2 In(cosh7|)Lg] larger than the size of an average statistical fluctuation of the
~ difference. This fluctuation depends on the number of sam-
xexp—7*tanh7|L_). (1.11)  plings.
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Consider two nearby discrete probability distributions This corresponds to the lower bound for the probability of
{p;} and{p;+dp;}. A natural difference between these dis- mistakingp,, for |¢) in any possiblgsingle measurement
tributions is given by the so-calle@hfinitesima) statistical ~ [23]. When py,; is an exact replica of¢), thenF=1, and

distance d§20-22: when p,, is an imprecise copy of¢) then F<1. Finally,
5 whenp,,is completely othogonal thp) the fidelity is zero.
dsz—E dﬁ (116 In the context of this paper, the fidelity is used to distin-
- T op ' guish between quantum teleportation and teleportation which

could have been achieved “classically.” Classical teleporta-
When the typical statistical fluctuation aftrsamplings is  tion is the disembodied transport of some quantum state from
1/yN, the two probability distributions are distinguishable if Alice to Bob by means of a classical communication chan-
nel. There imo shared entanglement between Alice and Bob.
1 Since classical communication can be duplicated, such a
ds= — & Nds°=1. (1.17  scheme can lead to many copies of the transported output
\/N state (so-calledclones. Classical teleportation with perfect
fidelity (i.e., F=1) would then lead to the possibility of
perfectcloning, thus violating the no-cloning theordi4].
This means that the maximum fidelity for classical telepor-
) 8 tation has an upper bound which is less than 1.
ds2ocp— O NE=— (1.18 Quantum teleportation, on the other hand, can achieve
2 perfect fidelity(and circumvents the no-cloning theorem by
disrupting the original To demonstrateuantumteleporta-
On the other hand, the average number of trials in the teletion therefore mean$25] that the teleported state should
portation experiment required to obtain one photon pair fromhave a higher fidelity than possible for a state obtained by

The statistical distance between E¢k.14 and(1.15, and
therefore the distinguishability criterion, is

both down-converters is any scheme involving classical communicat&one
For classical teleportation of randomly sampled polariza-
1 tions, the maximum attainable fidelity is=2/3. When only
N=—. (1.19  Jinear polarizations are to be teleported, the maximum attain-
P able fidelity is F=3/4 [26—28,23. These are the values

The minimum number of trials in the experiment thus aImostWhICh the quantum teleportation f'de“.ty should exceed.
In the case of the Innsbruck experiment) denotes the

immediately renders the two probability distributions distin- o . !
nknown” linear polarization state of the photon issued by

guishable, and we therefore cannot approximate the actuaj. . !
probability distribution with the Poisson distribution. ictor. We can write the undetected outgoing state to lowest
order as

Since the Poisson distribution in E(..14) is derived by
requiring the statistical independenceropairs, and the pair 2 2
digtributgi]on is distinguishabl% from th(:OFlgoisson distribrijtion, Pour|a710)01+ | 8% 6){ 41, 2.2
the photon pairs cannot be considered to be independentwherem)
producedgven in the weak limitin the analysis of the Inns-
bruck experiment we need to take extra care due to this pro
erty of parametric down-converters.

is the vacuum state. The overlap betwéeh and
out IS given by Eq.(2.1). In the Innsbruck experiment the
idelity F is then given by

2
Il. TELEPORTATION FIDELITY F=Tr{poul ¢><¢|]:ﬁ. (2.3
o

In this section we introduce the so-callgdelity for quan-
tum teleportation. This is already recognized as an importanthis should be larger than 3/4 in order to demonstrate quan-
tool in quantum information theory, and it is therefore natu-tum teleportation. The vacuum contribution in E@.2)
ral to consider teleportation criteria based upon it. Subsearises from the fact that Victor cannot distinguish between
quently, we discuss different points of view of the Innsbruckone photon or several photons entering his detector, i.e., Vic-
experiment emerging from this concept. We restrict our distor’s inability to properly prepare a single-photon state.
cussion to the subset of events where successful Bell-state As pointed out by Braunstein and KimHl&0], the fidelity
and state-preparation detections have occufedsubse- of the Innsbruck experiment remains well below the lower
guent statements amnditionedon such evenjs Since the bound of 3/4 due to the vacuum contributi@he exact value
interpretation of the experiment has become a slightly conef F will be calculated in Sec. Ij)| Replying to this, Bouw-
troversial issue, we treat this in some detalil. meester and co-workef41,29 argued that “when a photon

In order to define the fidelity, denote the input state byappears, it has all the properties required by the teleportation
|¢) (which is here assumed to be pum@nd the outgoing protocol.” The vacuum contribution in Eq(2.2) should
(teleported state by a density matrig,,,. The fidelityF is  therefore only affect the efficiency of the experiment, with a

the overlap between incoming and outgoing states: consequently high fidelity. However, this is a potentially am-
biguous statement. If by “appear” we mean “appearing in a
F=Tr poul ®){ |1 (2.1  photodetector,” we agree that a high fidelitgnd low effi-
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ciency can be inferred. However, this yields a so-called o
postselectedidelity, where the detection destroys the tele- c
ported state. The fidelity prior téor withoup Bob’s detec-
tion is called thenorpostselected fidelity. The question is b
now whether we can say that a photon appears wien Y
detection is made, thus yielding a highrpostselected fidel- N
ity.
This turns out not to be the case. Making @mtological
distinction between a photon amt photon in a mixed state
(without a detectiopis based on what we call the “partition a
ensemble fallacy.” We now study this in more detail. FIG. 3. A model of an inefficient detector. The beam splitter
Consider the statg,,; of the form of Eq.(2.2). To lowest  will reflect part of the incoming moda to moded, which is thrown
order, it is the sum of two pure states. However, this is not away. The transmitted pactwill be sent into a ideal detector. Mode
unique “partition.” Whereas in a chemical mixture of, say, b is vacuum.
nitrogen and oxygen there is a unique partitioto N, and
0O,), a quantum mixture can be decomposed many ways. F
instance p,; can equally be written in terms of

— d

([50] for Victor's state-preparation detection and parametric
down-converters with different specifications, rather than
|4y =al0)+Bl¢) and |4,)=al0)—Ble) (2.4 two ide_ntical_down-converters. We consider a de’Fector cas-
cade since single-photon detectors currently require roughly

as 6 °K operating conditionfl7]. Furthermore, an arbitrary po-
larization rotation in the state-preparation mode allows us to

2.5 consider any superposition &fandy polarizations.

' First, we give an expression for detectors with a finite
efficiency. Then we calculate the output state and give an

In fact, this is just one of an infinite number of possible gyxpression for the teleportation fidelity in terms of the detec-
decompositions. Quantum mechanics dictates that all parti,, efficiencies and down-converter probabilities.
tions are equivalent to each othgl2]. They are indistin-

guishable. To elevate one partition over another is to commit
the partition ensemble fallacy. A. Detectors

Returning to the Innsbruck experiment, we observe that in o ]
the absence of Bob’s detection’ the density matrix of the There are two sources of errors for a detector: it m|ght fail
teleported statéi.e., thenorpostselected statenay be de- to detect a photon, or it might give a signal although there
composed into an infinite number of partitions. These partiwas not actually a photon present. The former is called a
tions do not necessarily include the vacuum state at all, asdetector loss,” and the latter a “dark count.” Dark counts
exemplified in Eq.(2.5). It would therefore be incorrect to are negligible in the teleportation experiment because the
say that teleportation did or did not occur except throughUV pump is fired during very short-time intervals, and the
some operational mean@.g., a detection performed by probability of finding a dark count in such a small interval is
Bob). negligible. Consequently, the model for real, finite-efficiency

Bob’s detection thus leads to a high postselected fidelitydetectors we adopt here only takes into account detector
However, the vacuum term in E@2.2) contributes to the |osses. Furthermore, the detectors cannot distinguish be-
norpostselected fidelity, decreasing it well below the lowertween one or several photons.
bound of 3/4(see Sec. I)l. Due to this vacuum contribution, 7o simulate a realistic detector we make use of projection
the Innsbruck experiment didot demonstratenorpostse-  gperator valued measures, or POVM's for sH@t]. Con-
lected quantum t_eleportation. Nonetheless, t_eleportation Wa§der a beam splitter in the mode which is to be detected so
demonstrated using postselec_ted data obtained by detectifg, part of the signal is reflectedee Fig. 3 The second
the teleported state. By selecting events where a photon Wz'fﬁcoming mode of the beam splitter is the vacu(me ne-

observed in the teleported state, a postselected fidelity high%rI :

; : ect higher photon number states because they hardly con-
than 3/4 could be. mfer.re(iastlmatgd at roughly 80%29)). tribute at room temperatureThe transmitted signal is sent
(We recall that this entire discussion is restricted to the sub-

set of events where successful Bell state and state prepaujlg-tO an ideal detector. We identity modkwith the detector
tion have occurredl. 0SS.

1 1
Pout:§| )|+ §| o).

Suppose in modea there aren x-polarized andm
y-polarized photons. Furthermore, let these photons all be
reflected by the beam splittésince the detectors cannot dis-

In this section we present a generalized scheme for thénguish between one or more photons, we do not consider
Innsbruck experiment which enables us to establish the rehe case where only some of the photons are reflected; we are
quirements to obtain nonpostselected quantum teleportatidnterested in a “click” in the detector and partially reflected
(based on a threefold coincidence of Victor and Alice’s de-modes still give a click The projector for finding these pho-
tectorg. The generalization consists of a detector cascad&ns in thed mode is given by

Ill. GENERALIZED EXPERIMENT
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Eq=[n,m)gq (n.m|

1
= (d)"(d})™0,0/4 4 (0,0d3dy'.

T n'm! @D

The beam-splitter equations are taken to he=(/1— 7?)
c=npa+yb and d=7a—yb. (3.2

Substituting these equations in E§.1), summing over alh
andm, and using the binomial expansion yields

n2m2_12(k+l)~ 5
Eap=2, (k) ( | ) %(mb”*k(nbbkwa@mf'

X (7b])']0)a5( 0l (7a) " X(7b,) (ma,)™ (nby)".
(3.3

Since theb mode is the vacuum, the only contributing term

is k=1=0. So the POVME!Y of finding no detector counts
in modea is

“niat\nTm oT\m
7'(ay)"7"(ay)
EQ=>

0)a,8,(01 77"y

n'm!

=2 77 ™[n,m, o (n,ml. (3.4
n,m
The required POVM for finding a detector count is
ED=1-EQ=2 (17" lInm) e (nml, (35

wherel is the unity operatory? is the detector efficiency,
and7? is the detector loss. When we IE£" act on the total

state and trace out mode we have inefficiently detected
this mode. However, it is worth noting that this model only
applies for short periods of detection. In the case of continu-

ous detection we need a more elaborate m¢zid, e.g., Ref.

[32)).

PHYSICAL REVIEW A61 042304
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FIG. 4. A simple detector cascade. The fractions 1/2 and 1/3 are
the beam splitter’s intensity transmission coefficients. Several pho-
tons in modea are likely to enter different detectors, thus revealing
that more than one photon was present in this mode.

EQ=2 7 In)adnl,
(3.6)
EQ=2 [1-7"Im)a(nl.

with j e{X,y}. We choose to detect thepolarized mode.
This means that we only have to make sure that there are no
photons in they mode. The output state will include a prod-
uct of the two POVM'’s, one for finding a photon in mode
a,, and one for findingio photons in mode, : Eglx)Egg).

To make a cascade with two detectorsajnand one i,
employ another 50:50 beam splitter in moalg and repeat
the above procedure of detecting the outgoing madeasdd
[Eq. (3.6)]. Since we can detect a photon in either one of the
modes, we have to include the sum of the corresponding
POVM's, yielding a transformatioE{E{”)+ ELE(!. This
is easily expandable to larger cascades by using more beam
splitters and summing over all possible detector hits.

B. Output state

In this section we incorporate the finite-efficiency detec-
tors and the detector cascade in our calculation of the unde-

In order for Victor to distinguish between one or more tected teleported output state. This calculation includes the

photons in the state-preparation maalewe consider a de-

creation of two photon pairdowest ordey and three photon

tector cascadé¢Victor does not have a detector which can pairs (higher-order corrections due to four or more photon
distinguish between one photon or several photons comingairs in the experiment are highly negligiblé formula for
in). When there is a detector coincidence in the cascadehe vacuum contribution to the teleportation fidelity is given

more than one photon was present in magdand the event

should be dismissed. In the case of ideal detectors, this will

for double-pair productiorflowest ordey.
Let the two down-converters in the generalized experi-

improve the fidelity of the teleportation up to an arbitrary mental setup yield evolutions g,.; and U, on modesa, b

level (we assume there are no beam-splitter lossgiace we
employ the cascade in tllemode(which was used by Victor

and c, d respectively(see Figs. 1 and)2according to Eq.
(1.4). The beam splitter which transforms modeandc into

to project modeb onto a superposition in the polarization y and v (see Fig. 2 is incorporated by a suitable unitary

basig we need to perform polarization-sensitiveletection.

transformationUgg, as is the polarization rotatiod , over

In order to model this we separate the incoming stateyn angled in modea. The n cascade will be modeled by

|n,m>axay of modea into two spatially separated modl&rs)aX
and|m)a1y by means of a polarization beam splittsee Fig.

n—1 beam splitters in the-polarization branch of the cas-
cade, and can therefore be expressed in terms of a unitary

4). The modes, anda, will now be detected. The POVM's  transformationd, ., on the Hilbert space corresponding
corresponding to inefficient detectors are derived along théo modesa; to a, (i.e., replace mode with modesa, to

same lines as Sec. Il, and read

a,):
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|‘I’e><‘1’a|=Ual...anU UpsUscriUserd0) detectors i_n the cascador simplicity we assume tha_t the
detectors in the cascade have the same efficjeriggfine
XUV gsUiUL, - (37 Que=747,7;. The detectors in modesandv are polar-
ization insensitive, whereas the cascade consists of
Detecting modes; . ..a,, u andv with real (inefficieny  polarization-sensitive detectors. Bearing this in mind, we
detectors means taking the partial trace over the detectdthve up to ordep? for ann cascade in moda,, and find no

modes, including the POVM'’s derived in Sec. Il A, detector click in thea, mode,
- (EOT={EIEST I
Pout™ Tra1 . .anUU[En—caﬁu E, |\P0>al o .anUUd<q,0|]i Pout™ %gumlﬁ[l"' (5n—3)(1— 7](2:)]|0><0|
(3.8 n
with E, _..sthe superposition of POVM's for a polarization- Tp.| W MWW L+ O(p3 31
sensitive detector cascade havimgetectors with finite effi- pal ¥ o) (Wl (P9, 313

ciency. In the case=2 this expression reduces to the two-
cascade POVM superposition derived in Sec. Il. Equatio
(3.9) is an analytic expression of the undetected outgoin
state in the generalization of the Innsbruck experiment.
The evolutionsUg; and U, are exponentials of cre-

ation operators. In the computer simulatifusing MATH-
EMATICA) we truncated these exponentials at first and secon
orders. The terms that remain correspond to double- an@nd
triple-pair production in the experimental setup. To preserve

here the vacuum contribution formula was calculated and
ound to be correct fon<4 (andn#0).

In order to have nonpostselected quantum teleportation,
the fidelity F must be larger than 3/28,23. Since we only
estimated the two lowest-order contributidits p? andp3),
the fidelity is also correct up tp® andp®, and we writeF(?

F®), respectively. Using Eq$2.3) and(3.11), we have

the order of the creation operators we put them as arguments F@)= NP = 3 (3.12
in a functionf. We defined the following algebraic rules for p1[1+(5n—3)(1— nﬁ)]+ np, 4
f:
(15n—=6)p;—np;
fx,y+w,z]:=f[x,y,z]+ f[x,w,z], = o= (15-9p, (3.13
f[x,na,y]:=nf[x,a,y], (3.9  This means that in the limit of infinite detector cascading
(n—o0) and p;=p, the efficiency of the detectors must be
f[x,na’,y]:=nf[x,a’,y], better than 93.3% to achieve nonpostselected quantum tele-

portation. When we have detectors with efficiencies of 98%,
wherex,y,z, andw are arbitrary expressions including cre- we need at least four detectors in the cascade to obtain un-
ation and annihilation operators{ and a), andn some  equivocal quantum teleportatioithe necessity of a lower
expressiomot depending on creation or annihilation opera- hound on the efficiency of the detectors used in the cascade
tors. The last entry of is always a photon number state might seem surprisingut this can be explained as follows.
(including the initial vacuum state Suppose the detector efficiencies become smaller than a cer-

Since we now have functions of creation and annihilationtain valuex. Then upon a two-photon state entering the de-
operators, it is quite straightforward to defiflsts of) sub-  tector, finding only one click becomes more likely than find-
stitution rules for a beam splitt¢see also Eq(3.2], polar-  ing a coincidence, and “wrong” events end up contributing
ization rotation, POVM'’s, and the trace operation. We theno the output state. EquatidB.13 places a severe limitation
use these substitution rules to “build” a model of the gen-on the practical use of detector cascades in this situation.

eralized experimental setup. In the experiment in Innsbruck, no detector cascade was
employed and also the, mode was left undetected. The
C. Results state entering Bob’s detector therefore wap to orderp?)
The probability of creating one entangled photon pair us- p?
ing the weak parametric down-conversion source 1 orf® is Pout™ gguw[@— 72)[0)(0]+| ¥ )W |1+ O(p).
or p,, respectively(see Fig. 2 We calculated the output (3.14
state both for am cascade up to orde? (i.e., pi or p1p») '
and for a 1 cascade up to the orger (p3, p2p, or p,p3). Remember thap;=p,, since the experiment involves one
The results are given below. For brevity, we take source which is pumped twice. The detector efficiengyin
the Innsbruck experiment was 10§83], and the fidelity
| W ,)=c0s6|0,1) +sin 6] 1,0), without detecting the outgoing mode therefore would have
(3.10  beenF(®=26% (conditioned only on successful Bell detec-
| W) =sin6]0,1)— cos6|1,0) tion and state preparatinnThis clearly exemplifies the need

for Bob’s detection. Braunstein and KimHl&0] predicted a
as the ideally prepared state and the state orthogonal to iheoretical maximum of 50% for the teleportation fidelity,
Supposer: and 7 are the efficiencies of the detectors in which was conditioned upofperfect detection of both the
mode u and v, respectively, andr;ﬁ the efficiency of the a, and thea, modes.
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Rather than improving the detector efficiencies and usingA\ppendix it is shown that th@-photon contribution to the
a detector cascade, E(.12 can be satisfied by adjusting outgoing density matrix is always proportional pg.
the probabilitieg, andp, of creating entangled photon pairs  The teleportation fidelity including the third-order contri-

[10]. From Eq.(3.12 we have bution (3.18 can be derived along the same lines as Eq.
(3.12. Assuming that all detectors have the same efficiency
n »? andp,=p,=p, the teleportation fidelity up to third order
pis 7 P2 (315 g v
3[1+(5n=3)(1~-7g)]
2\2
Experimentally,p; can be diminished by employing a beam E) 4+p2—77)
splitter with a suitable reflection coefficient rather than a mir- 4(4— 5?)+p(80— 7672+ 345" —37°%)
ror to reverse the pump beafsee Fig. 1 Bearing in mind (3.20

that « is proportional to the pump amplitude, the equation o o
p;=2 tant(xt) [see the discussion following Eq1.15), With p= 10~* and a detector efficiency af?=0.1, this fi-
with i=1 and J gives a relation between the pump ampli- delity differs from Eq.(3.12, with only a few parts in ten
tude and the probability of creating a photon pair. In particu-thousand:
lar, whenp,=xp;,
P2=XpP1 F)_F® )
tanl"(Kzt) po~10 . (32])

—tanl‘(Klt) =VX. (3.16

) ) ) On the other hand, let us compare two experiments in
Decreasing the production rate of one photon-pair sourcich the cascades have different detector efficienties
will increase the time needed to run the experiment. In parg| the detectors in one cascade still have the same effi-

ticular, we have from Eq(3.14) that ciency). The ratio between the teleportation fidelity with de-
(3,2 31 tector efficienciesy? and 7> (with > and »2 the lower
P2=3(3—7¢)Ps. (3.179 and higher detector efficiencies respectiyelyp to lowest
order is

With 72=10%, we obtainp,=8.7p;. Using Eq.(1.19 we
estimate that diminishing the probabilify, by a factor 8.7 F2) _E@ A2
will increase the running time by that same factioe., run- 9% T10% 27
ning the experiment about nine days, rather than 24 h F&, 2— >
The third-order contribution to the outgoing density ma-
trix without cascading and without detecting th@ mode is whereA 772 is the difference between these efficiencies. This
shows that detector efficiencies have a considerably larger

~10°1, (3.22

o1 , 1 ) > 4 influence on the teleportation fidelity than the higher-order
Pout"g Yuoc(4= 75— 17,) 7 6P1(6—477c+ 75)[0) pair production.
To summarize our results, we have found that detector
X 0]+ 2p1pa(2— 72)(|W N W o + | T 5P |) cascading is only useful when the detectors in the cascade
5 ) have near-unit efficiency. In particular, there is a lower
+8p1P2(3— 75)p1t 12p5p, ], (318 pound to the efficiency below which an increase in the num-

ber of detectors in the cascade actually decreases the ability

to distinguish between one or several photons entering the

1 cascade. Finally, enhancement of the photon-pair source re-

p1==(]1,0(1,0+]0,1)(0,1)), sponsible for the entanglement channel relative to the one

2 responsible for the state preparation increases the time
(3.19 needed to run the experiment by an order of magnitude.

with

1
=—|(2+c0s20)|0,2(0,2+(2—cos 20)|2,0
P2 6( )10.2¢0.3+( 120 IV. CONCLUSIONS

We studied the experimental realization of quantum tele-
portation as performed in the Innsbruck experimiggitin-
cluding possible improvements suggested by Braunstein and
1,1(0,2) Kimb_le to achieve a high nonpos_tselec_:ted fide[ity]. _The

' i creation of entangled photon pairs using parametric down-
conversion was analyzed, and we presented a discussion

We have explicitly extracted the state which is to be tele-about the teleportation fidelity. Finally, we determined the
ported (W ,)(¥,|) from the density-matrix contributiop;  usefulness of detector cascading and the slowdown of one
(this is not necessarilythe decomposition with the largest down-converter relative to the other for the generalized ex-
| W) (¥, contribution. As expected, this term is less im- periment.
portant in the third order than it is in the second. In the The difficulties of the Innsbruck experiment can be traced

1
X (2,0+2]1,0(1,1] + Eﬁ sin 26(|2,00(1,1 +1,1)

x(2,0+10,2(1,4+
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to the state preparatiafe., to the sources of the entangled unknown input state. This can improve the fidelity up to

photon pairs, see Fig.2In particular, there is a probability arbitrary level. Nevertheless, we feel that our analysis dem-

that the source responsible for creating entangled photoanstrates the definite benefits of single-photon detectors for

pairs produces two pairs simultaneously. We studied thessuch experiments or applications in the future. This technol-

sources in some detail, and have found thhbton pairs  ogy currently requires roughly 6 °K operating conditions.

created in a parametric down-converter are not independent

of each other Employing two parametric down-converters ACKNOWLEDGMENT

therefore automatically probes the non-Poissonian structure ] )
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The teleportedtatein the Innsbruck experiment is a mix- GR/L91344.

ture of the vacuum and a single-photon state. However, we

cannot interpret this state as a low-efficiency teleported state, APPENDIX: CROSS-TERMS

where sometimes a photon emerges from the apparatus and |, his appendix we show that all the cross-terms of the

sometimes not. This reasoning is based on a particular part&ensity matrix in Eq(3.8) must vanish. The density matrix

tion of the outgoing density matrix, and this is not consistent,qsists of several distinct parts: a vacuum contribution, a

with quantum mechanicgo our knowledge, this is the first .,ntribution due to one photon in modetwo photons, and

instance where the PEF leads to a different evaluation of ag, 4, Suppose there anghoton pairs created in the whole

experimenk In Sec. Il we showed how a high fidelity in the system, andm photon pairs out of are produced by the

Innsbruck experiment could only be interpreted in a postya-ond sourcémodesc and d). The outgoing mode must

selected manner. ___then containm photons. Reversing this argument, when we
The interpretation of what quantum teleportation is, givesq m photons in the outgoing mode the probability of cre-

rise to different evaluations of the Innst_)ruck experiment. ting this particular contribution must be proportional to
When one holds that the freely propagating output state o;n—

. . 1~ MpJ'. Expanding thenth-order output state into parts of
quantum telep(_)rtatlon should resemble the input state .SUﬁdefinite photon number, we can write
ciently closely(i.e., nonpostselected quantum teleportgtion
the nonpostselected teleportation fidelity in the Innsbruck ex- n-1
periment should be at least 3/4. This requirement was not pM="> pl mprp, (A1)
met. Nonetheless the Innsbruck experiment demonstrated m=0
postselectedjuantum teleportatiofi.e., teleportation condi-
tioned on the detection of the outgoing sjate
In the generalized version of the Innsbruck experinant
la Braunstein and Kimblewe have modeled a detector cas-
cade in the state-preparation mode. However, for the casca 08 it . . .
y matrix must vanish. The cross-terarg present in

to work, the detectors need to have near unit efficiency. IrIE (3.7, and we must therefore show that the partial t .
. e . o 'Eq.(3.7), partial trace in
particular, for infinite cascading the efficiency of the detec Eq. (3.8) makes them vanish. Suppose thereraghotons in

o Do : ;
Lqrs should be at Igast 9.3 . F|'n|te cascading requires eveile total system. A cross-term in the density matrix will have
igher detector efficiencies. This places a severe limitatior)

wherep(" is the (unnormalizedi nth-order contribution con-
taining all terms withm photons.

An immediate corollary of this argument is that all the
8ross-terms between different photon number states in the

on the practical use of detector cascades in this situatior;[.he form
Detector losses in the cascade have an immediate influence ik LMY aali KM,

on the teleportation fidelity, yielding an effect which is much

stronger than the higher-order corrections due to multiplewith m#m’. We also know thaf +k+I+m=j’'+k’'+I’

pair creation(three pairs or mopeof the down-converters. +m’=n, so that at least one of the other modes must have
If the stability of the experimental setup can be main-the cross-term property as well. Suppéds not equal tdk’.

tained for a longer timéthe order of weeKs it is possible to ~ Since we have Ttk)(k’|]= & , the cross-terms must van-

slow down the down-converter responsible for creating thesh.
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