
ABSTRACT

RINKU MUKHERJEE. Post-Stall Prediction of Multiple-Lifting-Surface Con-
figurations Using a Decambering Approach. (Under the direction of Dr. Ashok
Gopalarathnam.)

A novel scheme is presented for an iterative decambering approach to predict

the post-stall characteristics of wings using known section data as inputs. The new

scheme differs from earlier ones in the details of how the residual in the Newton

iteration is computed. With earlier schemes, multiple solutions are obtained for

wings at high angles of attack as the final converged solution depends on the

initial conditions used for the iteration. With this scheme, multiple solutions

at high angles of attack are brought to light right during the computation of

the residuals for the Newton iteration. In general, the new scheme is found to

be more robust at achieving convergence. Experimental validation is provided

using experimental airfoil lift curves from Naik and Ostowari for three different

aspect ratios of rectangular wings. Results are presented from a study of the

stall characteristics of wings of different planform shapes and two configurations

of a wing-tail and a wing-canard configuration. Results are also presented from

a study to investigate possible asymmetric lift distributions when the iterations

were started with an initial asymmetric distribution of the decambering.
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Chapter 1

Introduction

The ability of linear aerodynamic methods such as lifting-line theory (LLT),

Weissinger’s method and vortex-lattice methods to successfully predict the lift

and induced drag behavior of medium to high aspect ratio wings at small angles

of attack is well established. In these methods, a linear lift-curve slope is assumed

for the airfoil sections that form the wings. This lift-curve slope is typically close

to 2π per radian. For several decades, researchers have sought to extend these

linear prediction methods to handle the analysis of wings in which nonlinear air-

foil lift curves are taken into consideration. The motivation was provided by the

desire to predict stall and post-stall characteristics of wings using experimental

or computational section data for these high angles of attack. It is recognised

that the flow over a wing at post-stall conditions is highly three dimensional and

that considerable error can result in using a “strip-theory” approach. The im-

petus for such a prediction method, however, is provided by the need for rapid

prediction capabilities for such high-alpha conditions for aircraft stability, con-

trol and simulation purposes and in the early design phases. Furthermore, even

high-fidelity computational fluid dynamics (CFD) techniques are only now ap-

proaching the stage where they can be reliably used for high-alpha aerodynamic

prediction. These CFD based techniques, however, require large computing re-

sources and significant time even for the analysis at a single angle of attack. There
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are also several additional isues that currently prevent the routine use of CFD for

high-alpha predictions such as the time required for generating high-quality grids

for each configuration. Thus the search for approximate approaches for stall and

post-stall prediction of wings using known section data continues to be of interest.

The approaches for extending the linear aerodynamic prediction methods to

handle nonlinear and post-stall airfoil lift curves can be broadly classified into two

kinds. In the first approach, a lift distribution is first assumed on the wing, and

it is then iteratively corrected by determining the effective-α distribution using

the nonlinear airfoil lift curve. In the second approach, the deviation of the airfoil

nonlinear lift curve from the potential-flow linear lift curve is used to apply a

correction to the local α at each section of the wing.

A literature study of the development of flow prediction methods over the

years and brief descriptions of the two approaches follows.

1.1 Literature Study

With the remarkable success of Prandtl’s lifting-line theory (LLT) in being able to

predict the flow past medium to high aspect ratio unswept wings in incompressible

flow, LLT became a standard tool for computing wing aerodynamics. LLT uses

a single unswept lifting line (or bound vortex) to model the circulation on the

wing. The strength of this bound vortex, Γ, varies along the span. At any given

spanwise location, the change in Γ is shed as trailing vorticity, which in turn

causes induced velocities along the lifting line. LLT enables the computation of

the Γ distribution for which the accompanying induced velocities and the resulting

effective angles of attack along the span are consistent with the Γ distribution.

For this purpose, the classical Prandtl LLT assumes a linear lift-curve slope for

the airfoil sections that form the wing. This lift-curve slope is typically close to

2



2π per radian. With the success of LLT in the prediction of wing flows at low

angles of attack, the attention soon turned to whether LLT could be modified for

the analysis of wings where nonlinear lift-curve slopes for the airfoil sections can

be taken into consideration. The studies in this regard can be widely divided into

two categories as described below:

1.1.1 The Iterative Γ distribution Approach

Tani1 is believed to have developed the first successful technique in 1934 for han-

dling nonlinear section lift-curve slopes in the LLT formulation. In his technique,

a spanwise bound vorticity (Γ) distribution is first assumed; this distribution is

used to compute the distribution of induced velocities and hence induced angles

of attack and effective angles of attack along the lifting line. The distribution of

the effective angles of attack is then used to look up the operating Cl of the local

section using the known nonlinear Cl-α data for the airfoil. A new Γ distribution

is then computed from the spanwise Cl distribution. The iteration is carried out

till the Γ distribution converges. This method worked well up to the onset of

stall and was made popular by the NACA report of Sivells and Neely2 in 1947

that provided a detailed description of the method and implemented a tabular

procedure for hand-calculation of the method for unswept wings with arbitrary

planform and airfoil lift-curve slopes. This method was applied for analysis of

wings up to the onset of stall, i.e. until a wing angle of attack at which some

section on the wing has Cl equal to the local section Clmax. At higher angles of

attack where some sections on the wing may have a negative lift-curve slope, this

successive-approximation approach appears to have failed.

Extension of the approach to post-stall angles of attack have been investigated

in several subsequent research efforts. Based on a suggestion by von Kármán,

Schairer3 and Sears4 investigated the possibility of non-unique solutions for post-
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stall angles of attack. According to Sears,4 von Kármán noticed that Prandtl’s

lifting-line equation has non unique solutions for cases when the lift-curve slope

becomes negative (i.e. when the α increases past the onset of stall). These non

unique solutions include both symmetric and antisymmetric lift distributions even

when both the geometry and onset flow are symmetric. Sears4 mentions that von

Kármán further postulated that even in the conditions just past the onset of wing

stall, when some sections of the wing may have positive lift-curve slopes (pre-

stall condition) and other sections may have negative lift-curve slopes (post-stall

condition), non unique and asymmetric lift distributions are possible. It occurred

to von Kármán and Sears that the appearance of large and sometimes violent

rolling moments past stall on symmetric wind-tunnel models at zero yaw may be

explained by the possibility of asymmetric lift distributions at perfectly symmetric

flight conditions.

The investigation suggested by von Kármán on computing the symmetric and

asymmetric lift distributions on wings operating beyond stall was carried out and

was reported in a 1939 thesis3 by Schairer working under the supervision of Sears.

Schairer apparently used the same procedure as that pioneered by Tani, but had

to use a tedious trial-and-error procedure to find the solutions as Tani’s successive-

approximation procedure failed to work for these partially-stalled cases. Sears4

presents some of Schairer’s results for a flat, untwisted elliptic wing of AR 10.19

operating beyond stall. Their research showed that the multiple solutions for post-

stall angles of attack include asymmetric lift distributions even when the flight

condition and geometry are perfectly symmetrical. The results show solutions

consisting of asymmetric lift distributions (in addition to a classical symmetric

solution) with large associated rolling moments for a narrow range of angles of

attack just beyond stall. Sears mentions that the choice between the symmetric

and asymmetrical solution would require the formidable solution of the relative
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stability of the two flows. Sears concludes by pointing out the need for further

progress on the analysis of wings at near- and post-stall conditions.

Piszkin and Levinsky5 developed a nonlinear lifting line method based in part

on the iterative method originally conceived by Tani.1 As described in Ref. 6,

they were motivated by the need for a method that could predict, simulate, and

alleviate adverse wing stalling characteristics such as wing drop, loss of roll control

and roll control reversal at zero yaw. These characteristics were believed to be

caused by the occurrence of asymmetric lift distributions on wings with stalled or

partially-stalled flow.

The method of Piszkin and Levinsky utilizes a finite element, unsteady wake,

incompressible flow theory that can be used for analysis at either zero or nonzero

yaw. The model uses a single chordwise row of horseshoe vortices distributed

along the span, with the bound vortex aligned with the local quarter-chord line.

The boundary condition of zero normal flow is applied at the control point, which

is the three-quarter-chord location for each horseshoe vortex. As a consequence

of using a single chordwise horseshoe vortex, the method is restricted to wings

of moderate to high aspect ratio. Although Levinsky refers to the method as a

lifting-line method, the vortex model is more commonly referred to as a vortex

lattice method (with a single chordwise row of horseshoe vortices) or a discrete-

vortex Weissinger’s method. It must be mentioned that this method differs from

Prandtl’s classical LLT in the implementation of the boundary condition.

In the method of Piszkin and Levinsky, at each step of the iteration, the

downwash computed using the Γ distribution from the previous time step is used

to compute the change in the Γ distribution using the airfoil lift curve. This

change, multiplied by a specified damping factor, C, is then added to the old Γ

distribution to obtain the new Γ distribution for the next iteration. A damping

factor of C < 1 is required to stabilize the iterations, although it results in a larger
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number of iterations for convergence. Unlike in the traditional LLT, where the

distribution of the effective section angles of attack is computed as part of the

solution, with the vortex model that Piszkin and Levinsky used in their method,

the distribution of the effective section angles of attack is not readily available.

They have, however, bypassed this difficulty by defining the effective downwash

angle at a section as α3D − α2D, where α3D is the downwash angle at the control

point resulting from the entire vortex system and α2D is the induced angle from

an infinite span bound vortex along the c/4 line with strength equal to that of the

horseshoe vortex under consideration. From this downwash angle, they compute

the effective angle of attack at every section of the wing. This formulation does not

include the effects of sweep and dihedral for the effective angle of attack.6 Using

their method, Piszkin and Levinsky found that multiple converged solutions are

possible, including some that have saw-tooth type oscillations in the spanwise

lift distributions. Because they were restricted to the use of 10 panels per side

of the wing in their computer program, they were unable to determine whether

these oscillations are present for more dense panel distributions. To avoid these

oscillations, they used a switching logic that restarts the iteration procedure with

an initial distribution having a zero induced α for any wing section found to be

stalled.

With this method, the effects of different wing planform shapes and airfoil

lift curves were investigated. Piszkin and Levinsky present the occurrence of lift

hysteresis for increasing and decreasing α and the occurrence of zero-β rolling

moments at post-stall conditions. The results confirm that depending on the

starting solution for the initial lift distribution for the iteration, multiple solutions

are possible for the converged lift distribution for a post-stall angle of attack. Some

of these lift distributions may be asymmetric even though the flight condition is

exactly symmetric. The asymmetric solutions for zero β were obtained by using
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a converged solution for a nonzero β as a starting point for the iteration. Like

Sears, Levinsky6 also points out the need for a method of calculating the relative

stability of the different possible solutions for the lift distribution at a given angle

of attack. Finally, Levinsky6 points out the need for an unsteady nonlinear lifting

surface theory that can handle low aspect ratio wings for fighters and other such

configurations since until that point nonlinear methods were capable of handling

only moderate to high aspect ratio wings. The Piszkin-Levinsky method has

recently been used by Anderson7 for aircraft high-α stability analysis.

Four years after Levinsky’s publication, Anderson, Corda, and Van Wie8 pub-

lished a nonlinear lifting-line theory that they applied to drooped leading-edge

wings below and above stall. At that time, there was considerable interest in im-

proving the stall-spin behavior of general aviation aircraft, and part-span drooped

leading-edge wings were generating interest for their benign stall characteristics.

Their article provides guidelines for the design of such wings and presents results

for CL-α curves that extended to very high post-stall angles of attack close to 50

deg.

McCormick presents a similar, independently developed approach9 wherein the

nonlinear lifting-line theory was used to examine the loss in roll damping for a

wing near stall. In both Refs. 8 and 9, researchers reported that no asymmetric lift

distributions for symmetric flight conditions are observed even when the iterations

were started with asymmetric initial lift distribution. This observation differs from

those of Sears and Levinsky.

1.1.2 The α Correction Approach

An entirely different approach to the use of nonlinear section data was developed

by Tseng and Lan.10 While their main focus was on vortex-dominated flows on low

aspect ratio fighter-type wings at high α, they incorporate the effect of boundary-
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layer separation by iteratively reducing the angle of attack at each section of the

wing. The reduction at any given wing section is determined by the difference

between the potential flow solution and the viscous Cl from the nonlinear section

Cl-α curve.

More recently, an approach similar to that reported in Ref. 10 was used by van

Dam, Vander Kam and Paris11 for rapid estimation of CLmax and other high-lift

characteristics for airplane configurations. In their method to estimate CLmax, at

least two airfoil data sets for the root and the tips are required for analysis. If

there is significant variation in the spanwise wing geometry, then airfoil data for

additional sections along the span are used. Using the sectional lift curves, the

slope of the lift curve and zero lift angle of attack are calculated for each section

along the wing span. Hence, the initial Cl distribution along span is calculated.

A complete sweep of angles of attack is then performed and at each angle of

attack, an iterative procedure is employed to improve upon the initial spanwise Cl

distribution. The local effective angle of attack is calculated by adding a correction

for viscous flow. If the difference between the viscous and linear potential section

Cl at a section is greater than a given tolerance then the section angle of attack

is corrected by a factor of the difference in the viscous and potential Cl to the lift

curve slope calculated earlier. Having made corrections to the distribution of α

along the wing span, the modified Cl distribution is calculated. This process is

repeated till the difference in the viscous and potential Cl values at all spanwise

sections is within a given tolerance. In Ref. 11, this method was used primarily

for the estimation of CLmax and not for post-stall analysis.
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1.2 Current Approach

In the current research effort, a decambering approach (Scheme 1) was developed12

for predicting post-stall aerodynamic characteristics of wings using known section

data. In this approach, the chordwise camber distribution at each section of

the wing is reduced to account for the viscous effects at high angles of attack.

This approach is somewhat similar to that developed in Ref. 10, but differs in

its capability to use both the Cl and the Cm data for the section and in the

use of a two-variable function for the decambering. In addition, unlike all of the

earlier methods, the current approach uses a multidimensional Newton iteration

that accounts for the cross-coupling effects between the sections in predicting

the decambering for each step in the iteration. This decambering approach was

applied to the post-stall prediction of single wings in Ref. 12.

However, it was found that Scheme 1 worked for only some airfoil lift curves.

Therefore, Scheme 2 was developed13 based on the same approach but differed in

the way the residuals are computed. Scheme 2 is found to be more robust than

Scheme 1 and works for several airfoil lift curves.

Chapter 2 describes the decambering approach for the flow past an airfoil.

Chapter 3 describes the incorporation of the decambering approach into the post-

stall analysis of a three-dimensional wing. Chapter 4 presents results to validate

the use of the decambering approach for post-stall prediction purposes. Conclu-

sions are drawn in Chapter 5. Possible future work is discussed in Chapter 6.

Appendix A provides a detailed description of VLM3D, which is the code de-

veloped to implement the decambering approach in a vortex lattice method, for

post-stall prediction puposes.
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Chapter 2

Illustration of the Decambering
Concept for Flow Past an Airfoil

The overall objective of the current research is to arrive at a scheme for incorporat-

ing the nonlinear section lift curves in wing analysis methods such as Lifting Line

Theory (LLT), discrete-vortex Weissinger’s method and vortex lattice methods

(VLM). For this purpose the wing span is assumed to consist of several sections

and for each of these sections it is assumed that the two-dimensional data (Cl-α

and Cm-α) is available from either experimental or computational results.

Nonlinear lift curve slopes in wing analysis are incorporated by finding the

effective angle of attack, αeff , and the corresponding effective reduction in camber

at each section of the wing. The effective reduction in camber or “decambering”

is determined iteratively. The decambering at each section is modeled using a

function of two variables.

In the following sections in this chapter, the concept of “decambering” is first

discussed for a two-dimensional airfoil. The procedure for calculating the two-

variable decambering function and the use of this decambering function to account

for the differences in the potential and viscous flows for an airfoil is explained in

detail. Results are then presented to show the effectiveness of the decambering

approach for an airfoil. Having introduced the decambering concept for an airfoil
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in this chapter, its incorporation into the post-stall analysis of a three-dimensional

wing is then discussed in Chapter3.

2.1 The Decambering Concept

This section illustrates the concept of decambering by using a simple example

of a two-dimensional flow past a NACA 0012 airfoil. With increasing angle of

attack, the boundary layer thickens on the upper surface and finally separates, as

shown in Fig. 2.1. It is this flow separation that causes the viscous results for Cl

and Cm to deviate from the predictions obtained using potential-flow theory. The

reason for the deviation can be related to the effective change in the airfoil camber

distribution due to the boundary-layer separation. If the decambering is taken

into consideration, then a potential-flow prediction for the decambered airfoil will

closely match the viscous Cl and Cm for the high-α flow past the original airfoil

shape. This decambering idea served as the basis for the formulation of the current

approach for the three-dimensional flow problem.

Figure 2.1: Flow separation from an airfoil at a high angle of attack.

While the camber reduction due to the flow separation can be determined

from computational flows, no such detailed information is available from wind

tunnel results that typically provide only the Cl-α and Cm-α curves. This section

discusses the approach for determining an “equivalent” camber reduction from

Cl-α and Cm-α curves for an airfoil. More specifically, the effective decambering

for an α is computed using the deviations of the viscous Cl and Cm from the

potential flow predictions for that airfoil.
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Figure 2.2: Schematic diagram of functions 1 and 2 (δ1 and δ2 are negative as
shown) used to model effective decambering of an airfoil.

In the current method, the effective decambering for an airfoil is approximated

using a function of two variables δ1 and δ2. The two linear functions shown in

Fig. 2.2 are superposed to obtain the final decambering function. Two variables

are used because the decambering is determined using two pieces of information:

the Cl and Cm from the airfoil data for the α under consideration. This ap-

proximation will, of course, not match the actual viscous decambering, but the

objective is to find an equivalent camber reduction to match the viscous Cl and

Cm for the α under consideration.

For the illustration of the decambering for two-dimensional flow over an airfoil,

the following procedure is used:

1. Determine the viscous Cl and Cm for the α under consideration from exper-

imental or computational data for the airfoil.

2. Compute the corresponding potential-flow Cl and Cm using a lumped vor-

tex model of the actual camberline of the airfoil. Based on an empirical
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Figure 2.3: Cl and Cm of the NACA 0012 airfoil.

approach of Katz and Plotkin,14 a thickness correction is applied to the Cl

by considering the Cl times the factor (1+0.77t/c) where t/c is the maximum

thickness-to-chord ratio of the airfoil.

3. Compute the difference between the viscous and the potential-flow results:

∆Cl = (Cl)visc − (Cl)potential and ∆Cm = (Cm)visc − (Cm)potential.

These differences are shown schematically in Fig. 2.3 for an NACA 0012

airfoil analyzed using the XFOIL code.15

4. Use the differences ∆Cl and ∆Cm between the viscous and the potential-

flow Cl and Cm respectively to calculate the values of δ1 and δ2. Details of

this calculation follow:

The effects of changing δ1 and δ2 on the Cl and Cm for a given α can be

computed reasonably well using thin airfoil theory and a three-term Fourier series

approximation for a flat plate with a flap deflection.14 The values of δ2 and δ1 in

radians for a given ∆Cl and ∆Cm have been derived and are presented in Eqs. 2.1

and 2.2 respectively. In these equations, θ2 is the angular location in radians of
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Figure 2.4: Cl and Cm using potential-flow with decambering.

the start point for the second decambering function shown in Fig. 2.2(b) and can

be expressed in terms of its x-location, denoted by x2, as shown in Eqn. 2.3. In

the current work, x2/c is arbitrarily assumed to be 0.8, although any value from

0.5 to 0.9 typically works well. The overall approach used for this illustration is

shown as a flow chart in Fig. 2.9.

δ2 =
∆Cm

1
4
sin 2θ2 − 1

2
sin θ2

(2.1)

δ1 =
∆Cl − [2(π − θ2) + 2 sin θ2]δ2

2π
(2.2)

θ2 = cos−1(1 − 2x2/c); x2/c = 0.8 (2.3)

To verify the effectiveness of the decambering approach, the values of δ1 and

δ2 were calculated for the viscous Cl-α and Cm-α data shown for the NACA 0012

airfoil in Fig. 2.3. These values were then applied as corrections to the flat-plate
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Figure 2.5: The α s chosen to illustrate effectiveness of decambering.

camberline for potential-flow analysis of the NACA 0012 airfoil using a lumped

vortex method.14 Figure 2.4 shows for comparison the predicted potential-flow

Cl-α and Cm-α curves for the decambered airfoil with the viscous result from

XFOIL analysis. The agreement is seen to be very good, which confirmed that

the two-variable decambering function can be used to model nonlinear lift as well

as pitching moment curves for high angles of attack.

To compare the approximate decambering from the two-variable function with

the actual decambering from the viscous solution, comparison plots have been

made for α of 10, 16 and 18 deg for the NACA 0012 example which are shown as

A, B and C respectively in Fig. 2.5. The actual decambering was computed from

the boundary-layer displacement thickness distributions predicted by XFOIL. Fig-

ures 2.6, 2.7, and 2.8 show (a) the airfoil geometry with the boundary-layer overlay

and (b) the approximate and the actual decambering functions for the three an-

gles of attack. The progressive increase in the decambering required to model

the boundary-layer separation at higher angles of attack is observed from these
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figures. Also observed is that the two-variable function used provides a reasonable

approximation of the actual decambering of the airfoil.

(a) NACA 0012 airfoil with boundary layer at α
of 10 deg.
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(b) Decambering function and XFOIL result.

Figure 2.6: Effectiveness of the decambering for α of 10 deg.
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(a) NACA 0012 airfoil with boundary layer at α
of 16 deg.
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(b) Decambering function compared and result.

Figure 2.7: Effectiveness of the decambering for α of 16 deg.
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(a) NACA 0012 airfoil with boundary layer at α
of 18 deg.
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(b) Decambering function compared and XFOIL
result.

Figure 2.8: Effectiveness of the decambering for α of 18 deg.
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Figure 2.9: Flow chart of the iterative decambering approach in 2D flow.
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Chapter 3

Post-stall prediction of a finite
wing

Using the overall methodology described in chapter 2, two schemes have been

formulated for determining the post-stall solution of a finite wing. The primary

difference between the two schemes is in the details of how the residuals, ∆Cl and

∆Cm, are computed at each section of the wing. The first scheme, introduced

in Ref. 12, was found to work well for certain airfoil lift curves, but failed to

converge for several other airfoil lift-curves. This lack of robustness provided

the impetus for developing the second scheme. The following sections explain

the decambering approach for a wing, the overall iteration procedure used to

implement the decambering approach, and the two schemes in detail.

3.1 Decambering for a wing

The objective of the current research was to incorporate the two-variable decam-

bering function described in Chapter 2 for the analysis of a wing. For this purpose,

a vortex lattice method (VLM) is used and the values of δ1 and δ2 at each section

of a wing(s) are evaluated in an iterative fashion.
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3.1.1 Vortex Lattice Method(VLM)

In a typical VLM, the lifting surface is divided into several spanwise and chord-

wise lattices. Associated with each of these lattices is a ring vortex as shown in

Fig. 3.1. The primary advantage of using ring vortex elements is that they can be

easily implemented in a computer program. Also, the zero-normal-flow boundary

condition is satisfied on the actual lifting surface which may have camber and

different planform shapes. In the current work unsteady analysis is not done.

Therefore, the wake behind the wing is not discretized and in order to satisfy the

Kutta condition at the trailing edge the wake is replaced by a series of horse-shoe

vortices. The leading segment of the vortex ring is placed on the lattice’s quar-

ter chord line and the control point is at the center of the three-quarter chord

line of the lattice. The zero-normal-flow boundary condition is satisfied at the

control point of each lattice. A positive Γ is defined according to the right-hand

rotation rule. Inthe current work, the VLM3D code was developed for analysis

of multiple-lifting-surface configurations and the decambering approach was also

implemented. A complete detailed description of the VLM3D code is provided in

Appendix A.

3.1.2 Predicting the decambering along wing span

As explained earlier, the lifting surface is divided into several spanwise and chord-

wise lattices. Each spanwise section j (composed of a row of chord-wise lattices)

has two variables, δ1j and δ2j, for defining the local decambered geometry at that

section. Unlike in the two-dimensional case, where the δ1 and δ2 are selected

to match the differences between the potential-flow and the viscous-flow results,

in the three-dimensional case, changing a δ on one section is likely to have a

significant effect on the neighboring sections and on the sections of the downstream
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Figure 3.1: Vortex Lattice Method(only six lattices shown for clarity).

lifting surfaces. To account for these effects, a 2N -dimensional Newton iteration

is used to predict the δ1 and δ2 at each of the N sections of all the wings so that

the ∆Cl and ∆Cm at these sections approach zero as the iteration progresses. A

2N × 2N matrix equation as shown in Eqn. 3.1 has to be solved for each step of

the Newton iteration.16 In this equation, F is a 2N -dimensional vector containing

the residuals of the functions fi to be zeroed, δx is the 2N -dimensional vector

containing the corrections required to the 2N variables xi to bring the vector F

closer to zero, and J is the 2N×2N Jacobian of the system containing the gradient

information.

J · δx = −F (3.1)

The Jacobian is partitioned into four sub-matrices as shown in Eqn. 3.2. Equa-

tions 3.3–3.6 show the elements of the four sub-matrices.
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J =




Jl1 Jl2

Jm1 Jm2


 (3.2)

(Jl1)i,j =
∂∆Cli

∂δ1,j

=
(Clp)i − (Cls)i

[(δ1s)j + p] − (δ1s)j

(3.3)

(Jm1)i,j =
∂∆Cmi

∂δ1,j

=
(Cmp)i − (Cms)i

[(δ1s)j + p] − (δ1s)j

(3.4)

(Jl2)i,j =
∂∆Cli

∂δ2,j

=
(Clp)i − (Cls)i

[(δ2s)j + p] − (δ2s)j

(3.5)

(Jm2)i,j =
∂∆Cmi

∂δ2,j

=
(Cmp)i − (Cms)i

[(δ2s)j + p] − (δ2s)j

(3.6)

For each step of the iteration, F and J are determined, and δx is computed

using Eqn. 3.1. The corrections are then applied to the values of δ1 and δ2 for all

the sections in an effort to bring the residuals closer to zero.

3.2 The iteration procedure

The iteration scheme can be summarized using the flow chart in Fig. 3.2, the

illustration in Fig. 3.3 and the following procedure:

1. Assume starting values of the decambering defined by δ1 and δ2 for each

section of the wing; for example, section j has starting values denoted by

(δ1s)j and (δ2s)j;

2. Compute the wing aerodynamic characteristics using VLM3D. For this com-

putation, the unit normal vector of each lattice is rotated to account for the

decambered shape of each section of the wing; the VLM3D analysis provides

the Cl and Cm of each section as output. These are the starting values for
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the current step of the iteration and are denoted by (Cls)j and (Cms)j for

section j.

3. Compute the starting values of the local effective angles of attack of each

section corresponding to the section Cl of that section; for example, the

local effective angle of attack of section j is obtained by setting (Cl)sec =

(Cls)j in Eqn. 3.7. Let this effective angle of attack be denoted by (αs)j.

Eqn. 3.7 assumes a section lift-curve slope of 2π per radian and accounts

for the zero-lift angle of attack of the decambered section, which depends

on the values of δ1 and δ2 and the α0l of the original airfoil camberline.

αeff =
(Cl)sec

2π
− δ1 − δ2[1 − θ2

π
+

sinθ2

π
] + α0l (3.7)

4. Residuals for Scheme 1: Compute the target Cl of each section; for

example, the target Cl of section j is given by (Clt,1)j (subscript 1 denotes

scheme 1), which is the Cl on the airfoil lift curve corresponding to (αs)j,

as shown in Fig. 3.3. Similarly, (Cmt,1)j, the target Cm, is the Cm on the

airfoil Cm-α curve corresponding to (αs)j. Hence, compute the residuals for

scheme 1 as (∆Cl,1)j = (Cls)j − (Clt,1)j and (∆Cm,1)j = (Cms)j − (Cmt,1)j.

5. Perturb δ1 at section j by adding a small perturbation p.

6. Compute the wing aerodynamic characteristics with the perturbed decam-

bering using VLM3D; for example, the resulting Cl and Cm for section j are

denoted by (Clp)j and (Cmp)j. Hence, compute the jth column of Jl1 and

Jm1 using Eqns. 3.3 and 3.4.

7. Residuals for Scheme 2: Compute the local effective angle of attack

of each section using the perturbed decambering; for example, the local

effective angle of attack of section j is obtained by setting (Clsec) = (Clp)j in

Eqn. 3.7. This effective angle of attack is denoted by (αp)j. The line joining
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the points [(αs)j,(Cls)j] and [(αp)j,(Clp)j] is called the “trajectory line,” as

it determines the linearized trajectory of how a point on the Cl-α curve

defined by the local section αeff and local section Cl moves with changes in

δ1. Therefore, in scheme 2, the target Cl, (Clt,2)j, of section j for example,

is the point of intersection between the trajectory line for section j and the

airfoil lift curve, as illustrated in Fig. 3.3. The corresponding α is (αt,2)j and

(Cmt,2)j is the target Cm on the airfoil Cm-α curve corresponding to (αt,2)j.

The residuals for scheme 2 are now computed as (∆Cl,2)j = (Cls)j − (Clt,2)j

and (∆Cm,2)j = (Cms)j − (Cmt,1)j.

8. Reset the value of δ1 at section j to (δ1s)j.

9. Cycle through steps 5–6 for all values of the section index j to compute all

the columns of Jl1 and Jm1.

10. Repeat steps 5–9 now perturbing δ2 instead of δ1 to compute Jl2 and Jm2.

In this process, the computation of the residuals for scheme 2 in step 7 is

ignored, as they have already been computed.

11. Using the Newton equation in Eqn. 3.1, compute the correction vector δx.

Update the values of δ1s and δ2s by adding the correction vector δx multi-

plied by a user-specified damping factor D (also referred to under-relaxation

factor). In the current work, D has been set to 0.1.

This iteration process is carried out until all the residuals have converged to a

specified tolerance. In the current work a tolerance of 0.001 has been used in all

the examples.

3.3 Multiple intersections in scheme 2

Figure 3.4 illustrates an important consequence of using an inclined trajectory

line for determining the target Cl in scheme 2.
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Three possible ways in which the trajectory line may intersect the airfoil lift

curve are illustrated in Fig. 3.4: (i) the trajectory line marked as L1 intersects the

airfoil lift curve at a single pre-stall point, (ii) the trajectory line marked as L2

intersects the airfoil lift curve at multiple points and (iii) the trajectory line marked

as L3 intersects the airfoil lift curve at a single point in the post-stall region.

While there is no ambiguity in determining the values of the target Cl for lines L1

and L3, there are clearly three possible choices for the target Cl for line L2. This

illustration clearly demonstrates that it is possible to obtain multiple solutions for

post-stall conditions; a fact, that was apparently first suggested by von Kármán

(see Ref. 4) and has since been discussed by several researchers.3–6,8, 9, 12 However,

the approach in scheme 2 is novel because this scheme is believed to be the first

one in which the possibility of multiple solutions for high angles of attack is

brought to light right during the iteration process. Earlier approaches including

scheme 1 were able to identify the existence of multiple solutions only as a result

of obtaining multiple converged solutions with different initial conditions in the

iteration procedure.

The existence of multiple intersections also presents a dilemma in choosing

an appropriate target Cl from the possible multiple solutions. The following pro-

cedure was developed for making the choice during the intersection process. At

each step of the iteration, each of the sections on all of the wings is examined to

identify those with single intersections, as identified by points A and B in Fig. 3.4.

The target Cl values for these sections are identified without ambiguity. Using

a logical switch called “lpoststall” in the code, each of these sections are also

tagged as “stalled”or “unstalled” depending on whether the α for the intersec-

tion point is greater than or less than the α for Clmax. The sections with multiple

intersection points are then examined. Using the trajectory line L2 in Fig. 3.4

for example, the intersection point 1 is chosen if the logical switch lpoststall
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for the section is unstalled and the intersection point 3 is chosen if the logical

switch for the section is stalled. This procedure is illustrated using a flow chart

in Fig. 3.5.

Next, another logic is applied in which all the sections of the wings are scanned

to identify sets of contiguous sections, all of which have multiple intersections and

all of which are also tagged as unstalled. If any of these sets of contiguous

sections are bound on both sides by sections tagged as stalled, then all the

sections in this set are also tagged stalled. This logic removed any occurrence

of unstalled regions with multiple-intersections sandwiched between two stalled

regions.

The values of the logical switch for all the sections are carried over from one

iteration to the next as well as from one α to the next when performing the analysis

for a sequence of angles of attack. Thus, if a section gets tagged as “stalled” at

any point in the iteration, then it remains tagged as “stalled” unless the section

ends up with a trajectory line like L1 in Fig. 3.4.
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Figure 3.2: Flow chart of the iterative decambering approach for a wing(s).
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Chapter 4

Results

The iterative decambering approach discussed in Chapter 3 has been implemented

for the analysis of multiple-lifting-surface configurations in VLM3D, a custom

VLM code. In this chapter, post-stall results from VLM3D are presented for

several airfoil lift curves, different planform shapes and several lifting-surface con-

figurations. The computation of the residual has been implemented using two

schemes and the effectiveness of the two schemes are compared. The examples in

this chapter are presented in five sections as follows:

1. Section 4.1: In this section, the examples have been used to compare the

predicted results from the current method with experimental results from

Naik and Ostowari.17 In their work,17 experimental Cl-α data for the NACA

4415 airfoil at Reynolds numbers of 0.5 million and 0.75 million are presented

along with experimental CL-α data for finite constant-chord wings of several

aspect ratios with the same airfoil and at the same Reynolds numbers. For

the examples in this section, the two-dimensional experimental data has

been used as input for the method and the predicted finite-wing lift curves

have been compared with the experimental data. The examples have been

used to compare the effectiveness of the two schemes and to illustrate how

multiple converged solutions can result at post-stall angles of attack when

different starting solutions are used for the iteration.
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2. Section 4.2: The objective of the second set of examples used in this section

was to study the effect of planform shape on the stall characteristics of a

wing. Tapered wings of different taper ratios are used to study where the

wing first stalls and how the stall progresses along the span with increasing

angle of attack.

3. Section 4.3: In this section, a wing-tail configuration is analyzed with the

current method to demonstrate the capability of the current method to

handle multiple-lifting-surface configurations. The effect of the wing stall

on the aircraft pitching moment is shown to illustrate how the method can

be used for providing information for the study of stability and control

characteristics.

4. Section 4.4: A wing-canard configuration is used in this section to provide

another example of an application to a multiple-lifting-surface configuration.

This example illustrates how the canard stall behavior influences the wing

lift distribution because of the downwash/upwash effects of the canard on

the wing.

5. Section 4.5: In this section, an initial asymmetric distribution of δ1 is used for

the iteration process to see if any asymmetries occur in the final converged

Cl distributions.

4.1 Experimental Validation

In this section, experimental two-dimensional data17 for a NACA 4415 airfoil at

two Reynolds numbers of 0.5 million and 0.75 million, shown in Fig. 4.1, is used

as input to generate post-stall results for rectangular wings of aspect ratios 12,

9, and 6 using VLM3D. The results from the iterative decambering approach are
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Figure 4.1: Airfoil lift curves for the NACA 4415 airfoil from Naik and Ostowari17.

then compared with the experimental CL-α curves for the corresponding wings

from the experimental data of Naik and Ostowari.17 The following sub-sections

present the results for each case:

4.1.1 Rectangular Wing (AR=12) with the NACA 4415

Airfoil at Re of 0.5 Million

In this case, the airfoil Cl-α curve is from the experimental data17 for the NACA

4415 airfoil at Re = 0.5 x 106 (Fig. 4.1). A rectangular wing of aspect ratio 12 as

shown in Fig. 4.2(a) is considered. Figure 4.3 shows the wing CL-α curves from

VLM3D using schemes 1 and 2. In the same figure, the airfoil Cl-α curve and

the wing CL-α curve from experiment17 are also shown for comparison. In both

schemes, the starting values of δ1 and δ2 for each α were taken from the converged

values for the previous α. For the first α of the sequence, δ1 was set to −40 deg

and δ2 was set to 0 deg for both schemes.
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Figure 4.2: Planform of the rectangular wings (RHS shown) used in sec. 4.1.
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Figure 4.3: Wing CL-α predicted using schemes 1 and 2 for a rectangular wing of
aspect ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.5 million.
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Figure 4.4: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
1.

As is seen from Fig. 4.3, the two schemes result in identical predictions for

the wing CL for pre-stall angles of attack. For post-stall conditions, the results

of scheme 2 are closer to the experimental results. Figures 4.4 and 4.5 show the

spanwise Cl distributions for angles of attack 18, 21, 32, 36, 45 and 50 degrees from

schemes 1 and 2 respectively. CLmax occurs at around α of 18 degrees. Experi-

mental results for the spanwise Cl distributions were not available for comparison.

As seen from the results of scheme 1 in Fig. 4.4, there is substantial “sawtooth

behavior” in the spanwise section Cl distributions with regions of unstalled flow
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Figure 4.5: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
2.

sandwiched between regions of stalled flow. Similar sawtooth oscillations have

been reported by other researchers3–6,8, 9, 12 for post-stall angles of attack. Al-

though these sawtooth results correspond to numerically converged solutions, it

is believed that a real flow cannot have such spanwise oscillations. The results

from scheme 2, shown in Fig. 4.5, do not exhibit these “sawtooth oscillations” for

a majority of the conditions. For this reason, scheme 2 is considered more accept-

able. The results from both the schemes, however, have numerically converged to

within a tolerance of 0.001 in ∆Cl and ∆Cm.
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The wing CL from scheme 2 in Fig. 4.3 shows that as the α is increased to

18 deg, the CL continues to increase. At this condition the entire wing remains

unstalled as the local section Cl values are less than the CLmax of 1.39. This can

be confirmed by examining the spanwise section Cl distribution from scheme 2 in

Fig. 4.5 for α of 18 deg. At 18 deg the inboard portion of the wing is close to stall.

As the α is increased between 18 deg and 21 deg, a part of the inboard portion of

the wing stalls and another part is close to stall as can be seen from the spanwise

section Cl distribution for α of 21 deg in Fig. 4.5. As the α is increased beyond 21

deg, the spanwise extent of the stalled portion increases. At 32 deg most of the

wing has stalled and the outboard portion is close to stall as shown in Fig. 4.5.

Between 32 deg and 44 deg the Cl on the stalled portion of the wing increases.

The wing CL therefore increases between 32 deg and 44 deg as shown in Fig. 4.3.

Beyond 44 deg, the Cl on the wing does not increase anymore. In fact, it remains

almost constant at 1.2, as shown in Fig. 4.5 for α of 45 deg. At 50 deg, the entire

wing has stalled as seen from the spanwise section Cl distribution for α of 50 deg.

Therefore the wing CL decreases between 44 deg and 51 deg.

The wing CL-α from scheme 1 on the other hand does not show a marked

decrease when the α is increased between 18 and 32 deg as shown in Fig. 4.3.

This can be explained by investigating the spanwise section Cl distributions from

scheme 1 for α of 32, 36, 45 and 50 deg in Fig. 4.4. There is considerable sawtooth

behavior and no large-scale stalling of the wing. Even at 50 deg there are several

unstalled sections sandwiched between stalled sections. Hence, although the wing

CL drops after 18 deg as some sections stall, it does not show any marked decrease

or a CL minimum.

It is to be mentioned that a sequence of angles of attack from −5 to 60 deg was

analyzed using scheme 2 and some angles of attack did not converge. In Fig. 4.3

the wing CL for only the converged angles of attack are plotted for scheme 2. For
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Figure 4.6: Wing CL variation with number of iterations for a rectangular wing
of aspect ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.5 million
from scheme 2.

example, the iterations did not converge at α of 27 deg and Fig. 4.6 shows the

variation of the wing CL with number of iterations for α of 27 deg. It is seen that

the convergence plot for the wing CL exhibits an undamped periodic behavior and

oscillates within a certain range and does not converge to any particular value.

A probable explanation for this behavior is the existence of multiple solutions

(a maximum of 5 possible solutions for the airfoil data considered) at 27 deg.

Scheme 2 uses an inclined trajectory line in order to determine a solution wherein,

whenever more than two solutions are possible the intermediate solutions are

neglected and either the maximum or minimum solution is chosen depending

upon “lpoststall”. In the particular case of 27 deg, the maximum or minimum

solution is not within the required tolerance and so neither of them is chosen. And

any other possible solution is an intermediate solution and therefore that solution

is also not chosen. As a result the iteration oscillates between the maximum and
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minimum values but does not converge.
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Figure 4.7: Sawtooth in spanwise Cl distribution for a rectangular wing of aspect
ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
2.

Also, for α of 21 deg, oscillations were observed in the spanwise section Cl

distribution as shown in Fig. 4.5. This sawtooth region at α of 21 deg is examined

closely in Fig. 4.7 and it illustrates that the sawtooth occurs because of unstalled

sections sandwiched between stalled sections. Such oscillations were observed

for some angles of attack in the sequence, some of which have final converged

solutions. Figure 4.8 shows the section Cl plotted against the section effective

angle of attack on the airfoil Cl-α curve for the points corresponding to the upper

and lower corners of the sawtooth region. It is seen that the upper corners of

the sawtooth region (marked by “*” in Figs. 4.7 and 4.8) have converged to the

unstalled region of the airfoil Cl-α curve as shown in Fig. 4.8 and the lower corners

(marked by “o” in Figs. 4.7 and 4.8) have converged to the stalled region of the

airfoil Cl-α curve as shown in Fig. 4.8. Because of the fact that the trajectory
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Figure 4.8: Location of the upper and lower corners of the sawtooth region shown
in Fig. 4.7 on the NACA 4415 airfoil Cl-α curve.

lines for the upper corner points intersect the airfoil Cl-α curve at only a single

point, the post-stall logic was unable to remove such oscillations.

4.1.2 Effect of initial conditions on the iterations for

Scheme 2

It must be mentioned that for a majority of the cases, Scheme 2 is successful in

converging to realistic solutions with no “sawtooth behavior”. It is only for a few

conditions that the converged solution has a sawtooth behavior (e.g. α = 21 deg

in Fig. 4.5) or the solution does not converge due to an undamped periodic con-

vergence pattern as shown in Fig. 4.6. Figure 4.9 shows the wing CL-α predicted

using scheme 2 for two different starting conditions for the Newton Iteration: (a)

δ1 = −40 deg for all sections at each α and (b) δ1 = 0 deg for all sections at each

α. Figure 4.10 shows the spanwise Cl distributions for the two cases for α of 18
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Figure 4.9: Wing CL-α predicted for a rectangular wing of aspect ratio 12 using a
NACA 4415 airfoil at Reynolds number of 0.5 million for different starting values
of δ1.

deg. The results clearly illustrate that multiple solutions are possible for post-

stall conditions. Furthermore, the results do not provide any clear guidelines as

to which is the correct solution. It can however be said that the different schemes

and starting assumptions predict the wing CL for a given post-stall angle of attack

within a small scatter band. The scatter shown confirms the possibility of multiple

solutions at post-stall angles of attack pointed out by other researchers3–6,8, 9, 12

and the sensitivity of post-stall solutions to initial conditions as well as schemes

used for the Newton iteration.

4.1.3 Rectangular Wing (AR=9) with the NACA 4415

Airfoil at Re of 0.5 Million

For this case also, the airfoil Cl-α curve is from experiment and is as shown in

Fig. 4.1 for Re = 0.5 x 106. A rectangular wing of aspect ratio 9, as shown in
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Figure 4.10: Spanwise section Cl predicted for a rectangular wing of aspect ratio
12 using a NACA 4415 airfoil at Reynolds number of 0.5 million for different
starting values of δ1.

Fig. 4.2, is studied. Figure 4.11 shows the wing CL-α curves from VLM3D using

schemes 1 and 2. In the same figure the airfoil Cl-α curve and the wing CL-α

curve from experiment17 are also shown for comparison. In both schemes, the

starting values of δ1 and δ2 were taken from the converged results of the previous

α. For the first α of the sequence, δ1 was set to −40 deg and δ2 was set to 0 deg

for both schemes. A sequence of angles of attack from −5 to 60 deg was used and

a few angles of attack did not converge for scheme 2. In Fig. 4.11 the wing CL for

only the converged angles of attack are plotted for scheme 2.

It is evident again from Fig. 4.11 that in comparing the results of the two

schemes with the experimental data, scheme 2 gives a better comparison with

experiment. Figs. 4.12 and 4.13 show the spanwise section Cl distribution for

α of 20, 21, 32, 42, 44 and 50 degrees from scheme 1 and scheme 2 respectively.

CLmax occurs at around α of 20 degrees. Experimental results for the spanwise Cl

distributions were not available for comparison. As seen from the results of scheme

1 in Fig. 4.12, there is substantial sawtooth behavior in the spanwise section Cl

distributions. This sawtooth behavior is not present in the results of scheme 2

shown in Fig. 4.13. Results from both schemes have numerically converged to
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Figure 4.11: Wing CL-α predicted using schemes 1 and 2 for a rectangular wing
of aspect ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.5 million.

within a tolerance of 0.001 in ∆Cl and ∆Cm.

4.1.4 Rectangular Wing (AR=6) with the NACA 4415

Airfoil at Re of 0.5 Million

In this case also, the airfoil Cl-α curve is from experiment and is as shown in

Fig. 4.1 for Re = 0.5 x 106. A rectangular wing of aspect ratio 6, as shown in

Fig. 4.2, is studied. Figure 4.14 shows the wing CL-α curve from VLM3D using

scheme 2. In the same figure the airfoil Cl-α curve and the wing CL-α curve

from experiment17 are also shown for comparison. For this case, scheme 1 failed

to converge for post-stall angles of attack. As in the previous cases, the starting

values of δ1 and δ2 were taken from the converged results of the previous α. For the

first α of the sequence, δ1 was set to −40 deg and δ2 was set to 0 deg. A sequence

of angles of attack from −5 to 60 deg was used and a few angles of attack did not

converge for scheme 2. In Fig. 4.14 the wing CL of only the converged angles of
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Figure 4.12: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
1.

attack are plotted for scheme 2.

Fig. 4.15 shows the spanwise section Cl distribution for α of 21, 22, 32, and

43 degrees from scheme 2. The trends are similar to those seen in sec. 4.1.1 for

aspect ratio of 12.
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Figure 4.13: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
2.

4.1.5 Rectangular Wing (AR=12) with the NACA 4415

Airfoil at Re of 0.75 Million

In this case, the airfoil Cl-α curve is from experiment and is as shown in Fig. 4.1

for Re = 0.75 x 106. A rectangular wing of aspect ratio 12, as shown in Fig. 4.2,

is studied. Figure 4.16 shows the wing CL-α curves from VLM3D using schemes

1 and 2. In the same figure the airfoil Cl-α curve and the wing CL-α curve from

experiment17 are also shown for comparison. In both schemes, the starting values

of δ1 and δ2 were taken from the converged results of the previous α. For the
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Figure 4.14: Wing CL-α predicted using scheme 2 for a rectangular wing of aspect
ratio 6, using a NACA 4415 airfoil at Reynolds number of 0.5 million.

first α of the sequence, δ1 was set to −40 deg and δ2 was set to 0 deg for both

schemes. A sequence of angles of attack from −5 to 60 deg was used and a few

angles of attack did not converge for scheme 2. In Fig. 4.16, the wing CL of only

the converged angles of attack are plotted for scheme 2.

As observed before, it can be seen from Fig. 4.16 that scheme 2 gives a better

comparison with experiment. Figs. 4.17 and 4.18 show the spanwise section Cl

distribution for α of 18, 21, 33, 36, 46 and 50 degrees from scheme 1 and scheme

2 respectively. CLmax occurs at around α of 18 degrees. Experimental results for

the spanwise Cl distributions were not available for comparison. As seen from

the results of scheme 1 in Fig. 4.17, there is substantial sawtooth behavior in the

spanwise section Cl distributions. On the other hand, the results from scheme 2

for all conditions, except for α of 21, deg do not exhibit the sawtooth oscillations.

Results from both schemes have numerically converged to within a tolerance of

0.001 in ∆Cl and ∆Cm. In general, the trends are similar to those seen in sec. 4.1.1
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Figure 4.15: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 6, using a NACA 4415 airfoil at Reynolds number of 0.5 million from scheme
2.

for aspect ratio of 12.

4.1.6 Rectangular Wing (AR=9) with the NACA 4415

Airfoil at Re of 0.75 Million

In this case the airfoil Cl-α curve is from experiment and is as shown in Fig. 4.1

for Re = 0.75 x 106. A rectangular wing of aspect ratio 9 as shown in Fig. 4.2

is studied. Figure 4.19 shows the wing CL-α curves from VLM3D using schemes

1 and 2. In the same figure the airfoil Cl-α curve and the wing CL-α curve from

experiment17 are also shown for comparison. In both schemes, the starting values

of δ1 and δ2 were taken from the converged results of the previous α. For the

first α of the sequence, δ1 was set to −40 deg and δ2 was set to 0 deg for both

schemes. A sequence of angles of attack from −5 to 60 deg was used and some

angles of attack did not converge for scheme 2. In Fig. 4.19 the wing CL of only

47



0 20 40 60

−0.5

0

0.5

1

1.5

α(deg)

C
l a

nd
 C

L
2D (experiment)

3D (experiment)

3D (VLM3D, Scm. 1)

3D (VLM3D, Scm. 2)

Figure 4.16: Wing CL-α predicted using schemes 1 and 2 for a rectangular wing
of aspect ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.75 million.

the converged angles of attack are plotted for scheme 2.

As observed in earlier examples, it can be seen from Fig. 4.19 that scheme 2

gives a better comparison with experiment. Figs. 4.20 and 4.21 show the spanwise

section Cl distribution for α of 18, 20, 32, 37, 47 and 50 degrees from scheme 1

and scheme 2 respectively. CLmax occurs at around α of 18 degrees. Experimental

results for the spanwise Cl distributions were not available for comparison. As seen

from the results of scheme 1 in Fig. 4.20, there is substantial sawtooth behavior in

the spanwise section Cl distributions. Except for α of 20 deg, no sawtooth behavior

is seen in the results for scheme 2. Results from both schemes have numerically

converged to within a tolerance of 0.001 in ∆Cl and ∆Cm. The trends are similar

to those observed for earlier cases.
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Figure 4.17: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.75 million from
scheme 1.

4.1.7 Rectangular Wing (AR=6) with the NACA 4415

Airfoil at Re of 0.75 Million

In this case the airfoil Cl-α curve is from experiment and is as shown in Fig. 4.1

for Re = 0.5 x 106. A rectangular wing of aspect ratio 6 as shown in Fig. 4.2 is

studied. Figure 4.22 shows the wing CL-α curve from VLM3D using scheme 2. In

the same figure the airfoil Cl-α curve and the wing CL-α curve from experiment17

are also shown for comparison. For this case scheme 1 failed to converge. As in

the previous cases, the starting values of δ1 and δ2 were taken from the converged
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Figure 4.18: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 12, using a NACA 4415 airfoil at Reynolds number of 0.75 million from
scheme 2.

results of the previous α. For the first α of the sequence, δ1 was set to −40 deg

and δ2 was set to 0 deg. A sequence of angles of attack from −5 to 60 deg was

used and a few angles of attack did not converge for scheme 2. In Fig. 4.22 the

wing CL of only the converged angles of attack are plotted for scheme 2.

Fig. 4.23 shows the spanwise section Cl distribution for α of 18, 19, 37, and

60 degrees from scheme 2. CLmax occurs at around α of 18 degrees. Experimental

results for the spanwise Cl distributions were not available for comparison. Results

from scheme 2 have numerically converged to within a tolerance of 0.001 in ∆Cl
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Figure 4.19: Wing CL-α predicted using schemes 1 and 2 for a rectangular wing
of aspect ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.75 million.

and ∆Cm. Except for α of 19 deg, no sawtooth behavior is exhibited in the results

of scheme 2 in Fig. 4.23.

4.1.8 Changes to the Lift Curve with Change to Aspect

Ratio

In this subsection, the change to the wing CL with aspect ratio is studied. The

airfoil Cl-α curve is from experiment and is as shown in Fig. 4.1 for Re of 0.5

million. The results from earlier subsections for the three rectangular wings of

aspect ratios of 12, 9, and 6 as shown in Fig. 4.2 have been used. Figure 4.24

shows the CL-α curves of the three wings from VLM3D using scheme 2. In the

same figure the airfoil Cl-α curve from experiment17 is also shown for comparison.

Figure 4.25 shows the results for the three wings from the experimental data of

Naik and Ostowari.17It is seen that the current approach is successful in capturing

all of the important trends.

51



0 0.5 1
0

0.5

1

1.5
α = 18 deg

 C
l

C
lmax

0 0.5 1
0

0.5

1

1.5
α = 20 deg

0 0.5 1
0

0.5

1

1.5
α = 32 deg

 C
l

0 0.5 1
0

0.5

1

1.5
α = 37 deg

 C
l

0 0.5 1
0

0.5

1

1.5
α = 47 deg

 C
l

 y/(b/2)
0 0.5 1

0

0.5

1

1.5
α = 50 deg

 y/(b/2)

Figure 4.20: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.75 million from scheme
1.
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Figure 4.21: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 9, using a NACA 4415 airfoil at Reynolds number of 0.75 million from scheme
2.

53



0 20 40 60

−0.5

0

0.5

1

1.5

α(deg)

C
l a

nd
 C

L

2D (experiment)

3D (experiment)

3D (VLM3D, Scm. 2)

Figure 4.22: Wing CL-α predicted using scheme 2 for a rectangular wing of aspect
ratio 6, using a NACA 4415 airfoil at Reynolds number of 0.75 million.
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Figure 4.23: Spanwise Cl distribution predicted for a rectangular wing of aspect
ratio 6, using a NACA 4415 airfoil at Reynolds number of 0.75 million from scheme
2.
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Figure 4.24: Wing CL-α predicted from VLM3D for rectangular wings of aspect
ratios 12, 9 and 6 using a NACA 4415 airfoil at Reynolds number of 0.5 million.
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Figure 4.25: Wing CL-α predicted from experiment for rectangular wings of aspect
ratios 12, 9 and 6 using a NACA 4415 airfoil at Reynolds number of 0.5 million.
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4.1.9 Summary

Having made an in-depth study of the results predicted by schemes 1 and 2, it

is found that Scheme 2 is more robust. The spanwise section Cl distributions

predicted by scheme 1 exhibit substantial undesirable sawtooth behavior. The

spanwise section Cl distributions predicted by Scheme 2, on the other hand, are

devoid of such oscillations for most of the cases studied. Scheme 1 also has far

more convergence problems than Scheme 2. Scheme 2, is therefore found to be

better suited for post-stall prediction purposes and results presented henceforth

will only be from Scheme 2.
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4.2 Study of stall characteristics

In this example, the change in stall characteristics with change in taper ratio is

studied. For this purpose, four wings each of aspect ratio 10 and taper ratios of

0.3, 0.5, 0.75 and 1.0 are studied. The right-side planform of the wing with taper

ratio of 1.0 (rectangular wing), is shown in Fig. 4.26 and the right-side planforms

of the wings of taper ratios of 0.3, 0.5 and 0.75 are as shown in Fig. 4.27. The

airfoil used has the hypothetical lift curve as shown in Fig. 4.28. This lift curve

is similar to those used by Sears4 and by Levinsky.6
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Figure 4.26: Planform of the rectangular wing (RHS shown) used in sec. 4.2.

The wing CL-α of the four wings from scheme 2 is shown in Fig. 4.29 and the

spanwise section Cl distributions from scheme 2 for the four wings for α of 10, 17,

18 and 24 deg are shown in Figs. 4.30, 4.31, 4.32 and 4.33 respectively. It is

observed from the wing CL-α curves for the wings of taper ratios of 0.3, 0.5 and

0.75 that the wing CL increases as the α is increased to 17 deg. However, the

rectangular wing stalls at the root at a slightly lower angle of attack of 16 deg.

This behavior occurs because at a given α, the rectangular wing has the largest

section Cl among all the wings in this study. This can be confirmed by examining

the spanwise section Cl distributions from scheme 2 for the four wings in Fig. 4.30

for α of 10 deg. At 10 deg, the section Cl on the root of the wing of taper ratio

of 1.0 is the largest and with decrease in taper ratio the section Cls on the roots

of the other three wings decrease. This pattern is exactly reversed on the tips of
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Figure 4.27: Planform of the tapered wings (RHS shown) used in sec. 4.2.

the four wings. The section Cl in the vicinity of the tips of the wing of taper ratio

of 1 is the least and with decrease in taper ratio the section Cl on the outboard

portions of the other three wings increase.

As the α is increased beyond 16 deg the wing CL of the wing of taper ratio

of 1 decreases sharply. This is because the root of this wing stalls as can be

seen from the section Cl distribution at 17 deg for the wing of taper ratio of 1 in

Fig. 4.31. At 17 deg, the section Cl on the outboard portions of all the four wings

is increasing. The outboard portion of the wing of taper ratio of 0.3 is closest to

stall and with increase in taper ratio the section Cl on the outboard portion of

the other wings move farther away from CLmax as seen from Fig. 4.31. At 18 deg,

large portions of the three wings of taper ratios of 0.3, 0.5 and 0.75 have stalled

and the outboard portion of the wing of taper ratio of 1.0 is near stall as shown

in Fig. 4.32. A small part of the inboard portion of the wings of taper ratios of

0.3, 0.5 and 0.75 is unstalled. For the wing of taper ratio 0.75 the stalled portion

is located more inboard and for the wing of taper ratio 0.3 the stalled portion is
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Figure 4.28: Airfoil lift curve used in sec. 4.2 – 4.5.

located nearest to the tips as seen from Fig. 4.32. Hence, with increase in taper

ratio the stalled regions are located closer to the root. At 24 deg the root stalls

for the three wings of taper ratios of 0.3, 0.5 and 0.75 and the tips of the wing of

taper ratio of 1.0 stall as shown in Fig. 4.33.

The pre-stall wing CL from scheme 2 does not show any noticeable differences

between the four wings as shown in Fig. 4.29. This is because the four wings are of

the same aspect ratio. However, the four wings have different stall characteristics.

The trends in stall behavior with taper ratio predicted by the current method are

very similar to those seen in experiments. In summary, it is observed that stall

begins at the root of the rectangular wing and at the outboard portion on the

tapered wings. More of the wing tips stall for the wing of taper ratio of 0.3 than

for the taper ratio of 0.75.
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Figure 4.29: Wing CL-α for wings of different taper ratios, each of aspect ratio 10
using scheme 2.
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Figure 4.30: Change in the spanwise section Cl distribution with taper at α of 10
deg using scheme 2.
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Figure 4.31: Change in the spanwise section Cl distribution with taper at α of 17
deg using scheme 2.
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Figure 4.32: Change in the spanwise section Cl distribution with taper at α of 18
deg using scheme 2.
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Figure 4.33: Change in the spanwise section Cl distribution with taper at α of 24
deg using scheme 2.
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Figure 4.34: Planform of the part-tapered wing (RHS shown).

62



4.2.1 Stall Characteristics of a Part-Tapered Wing

As seen in the examples so far, the rectangular wing has a tendency to stall first

at the root which provides stall warning and greater aileron control. A tapered

wing, on the other hand, provides a decrease in induced drag and good structural

properties. A highly tapered wing has a tendency to stall first slightly at the

outboard portion of the wing. A good compromise for a low-speed aircraft is a

combination of both rectangular and tapered planform shapes. The rectangular

inboard portion provides good stall characteristics and is cost effective. The ta-

pered outboard portion decreases weight and increases aspect ratio. Therefore, in

this example, such a planform is studied and the right-side of the planform is as

shown in Fig. 4.34. The airfoil used has the hypothetical lift curve as shown in

Fig. 4.28.
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Figure 4.35: Lift curves for the part-tapered wing.

The wing CL-α for this planform from scheme 2 is as shown in Fig. 4.35 and

the spanwise section Cl distributions for α of 18, 19, 23 and 25 degrees are as
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Figure 4.36: Spanwise Cl distributions for the part-tapered wing.

shown in Fig. 4.36. It can be seen from Fig. 4.35 that as the α is increased to 18

deg the wing CL increases. At this condition the entire wing remains unstalled as

the local section Cl values are less than the Clmax of 1.5. This can be confirmed

by examining the spanwise section Cl distribution from scheme 2 in Fig. 4.36 for

α of 18 deg. As the α is increased to 19 deg the inboard portion of the wing and

a part of the outboard portion near the tips of the wing stall as can be seen from

the spanwise section Cl distribution for α of 19 deg in Fig. 4.36. As a result the

wing CL also drops as the α is increased from 18 to 19 deg. At 23 deg the Cl on

a small portion near the wing tips is near stall as can be seen from the section

Cl distribution at α of 23 deg in Fig. 4.36. At 25 deg, almost the entire wing

is stalled except for a small section in between the wing tips and the wing root.

Such a part-tapered wing planform allows for tailoring of the stall characteristics

by adjusting the location of the planform break and the taper ratio.
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4.3 Wing-Tail Configuration

This example illustrates the effectiveness of the method for a multiple lifting-

surface configuration. In this example, results are presented for a high aspect

ratio (AR = 10) constant-chord wing geometry with a conventional aft tail. The

planform for the wing-tail configuration is shown in Fig. 4.37. For this example,

a single airfoil is assumed for both the wing and tail. The airfoil lift curve is the

hypothetical lift curve as shown in Fig. 4.28.

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 4.37: Planform of the wing-tail configuration (RHS shown).

Figure 4.38 shows the predicted CL-α curve for the wing-tail configuration

with scheme 2 and starting δ1 values of −25 for all sections at each α. Also shown

in the same figure, is the airfoil Cl-α curve for comparison. Figure 4.39 shows

the CL,w and CL,t as a function of α along with the wing-tail total CL-α curve.

It must be mentioned that the tail CL,t in this plot is nondimensionalized with

reference to the tail area. The spanwise Cl distributions are shown in Fig. 4.40

for α values of 10, 15, 18, and 23 deg. These values were chosen for illustrating

the stall behavior.
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Figure 4.38: Lift curves for the wing-tail configuration.

From Fig. 4.38, it is seen that as the α is increased to 17 deg, the CL continues

to increase. At these conditions, the entire wing remains unstalled as the local

section Cl values are less than Clmax of 1.5. This result can be confirmed by

examining the spanwise section Cl distributions for the wing at α of 10 and 15

deg in Fig. 4.40. At α of 17 deg, the inboard portion of the wing is close to stall.

As the α is increased from 17 deg to 18 deg, the inboard portion of the wing stalls

as seen in the spanwise Cl plot for the wing at α of 18 deg. As a result, the wing

CL-α curve shows a stall break at α of 17 deg. Although the inboard portion of

the wing is stalled, the Cl on the outboard portion continues to increase with α;

and this causes the CL to increase again between 20 deg and 25 deg. Beyond α

of 20 deg, the spanwise extent of the stalled region increases with increasing α as

shown in the spanwise Cl plot at α of 23 deg. In this example, the tail remains

unstalled over the entire α range considered.

Of particular interest when studying wing-tail configurations is the aircraft

pitching moment about the CG. For this analysis, the CG was located to provide
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Figure 4.39: Individual contributions of the wing and tail to the total lift of the
wing-tail configuration.

a static margin of 10% of the wing mean aerodynamic chord. A tail incidence of

−5 deg was chosen and results in the aircraft being trimmed at α close to 13 deg.

In other words, the CM cg is nearly zero at α of 13 deg. Figure 4.41 shows the

variation of the aircraft CM cg as a function of α. As the α is increased, a distinct

increase in the nose-down pitching moment (negative CM cg) is seen at the onset

of stall at α of 17 deg.

To examine the cause of this nose-down pitching moment at stall onset, it is

instructive to study the individual contributions of the wing and the tail to the

configuration lift curve as shown in Fig. 4.39. It can be seen that much of the

contribution to the aircraft CL-α-curve behavior can be traced to the character-

istics of the wing lift curve. There is, however, a noticeable increase in the tail

CL,t at the onset of wing stall at α of 17 deg. This increase in CL,t at stall on-

set contributes significantly to the increase in the nose-down pitching moment at

stall. The origin of the sudden increase in CL,t at stall can in turn be traced to the
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Figure 4.40: Spanwise Cl distributions for the wing-tail configuration.

shape of the wing spanwise lift distribution at the onset of stall. As seen earlier

in Fig. 4.40, the wing stall occurs at the root for α of 18 deg for this example.

This loss in lift over the inboard portion of the wing results in a reduction in the

downwash at the tail. In addition, it also results in a pair of vortices that cause

an upwash at the tail. As a consequence of these two factors, there is a distinct

increase in the CL,t at the onset of stall.

Thus, as illustrated by this simple example, a method that can predict the post-

stall characteristics of wing-tail configurations can provide important information

for the study of aircraft longitudinal behavior at these post-stall conditions.
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Figure 4.41: Pitching-moment curve for the wing-tail configuration.
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4.4 Wing-Canard Configuration

This example illustrates the effectiveness of the method for another multiple

lifting-surface configuration, a high aspect ratio (AR = 10) constant-chord wing

geometry with a canard (AR = 10). The planform for the wing-canard configu-

ration is shown in Fig. 4.42. A single airfoil is assumed for both the wing and the

canard. The airfoil lift curve is the hypothetical lift curve as shown in Fig. 4.28.

An important criterion for acceptable stall behavior of such a configuration is that

the canard stalls before the wing. Both the wing and canard have zero incidence.

In this simple example, which is used only for illustration of the capability of the

current method.
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Figure 4.42: Planform of the wing-canard configuration (RHS shown).

Scheme 2 was used with starting δ1 values of 0 deg on all sections on both the

wing and canard for the first α of the α-sequence. The resulting configuration

CL-α curve is shown in Fig. 4.43. The configuration CL is defined with reference

to the wing planform area. Also shown in the same figure is the airfoil lift curve

for comparison. The δ1 and δ2 values for each α is taken from the converged
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Figure 4.43: Lift curves of the wing-canard configuration.

values from the previous α. The spanwise section Cl distributions for the wing

and canard are shown in Fig. 4.44 for α of 15, 16, 19, 20, 23 and 26 degrees.

The values were chosen to explain the stall behavior. Figure 4.45 shows the lift

curves of the wing and canard separately. Also plotted on the same figure are the

wing-canard lift curve and the airfoil lift curve for comparison. The canard CL in

this plot is defined with reference to the canard planform area.

From Fig. 4.43, it is seen that as the α is increased to 19 deg, the CL continues

to increase. At these conditions, the entire wing is unstalled as the local section Cl

values are less than Clmax of 1.5 but the canard has stalled for α greater than 16

deg. From Fig. 4.45 it can be seen from the CL-α curve of the canard that as the

α is increased to 15 deg the canard remains unstalled. At α = 15 deg the canard

is close to stall as can be seen from the section Cl distribution of the canard at

α = 15 deg in Fig. 4.44. As the α is increased just beyond 15 deg the root of

the canard stalls as can be seen from the section Cl distribution of the canard at

α = 16 deg in Fig. 4.44. The wing CL-α on the other hand increases as the α is
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Figure 4.44: Spanwise Cl distributions for the wing-canard configuration.

increased to 19 deg as shown in Fig. 4.43. In such a configuration the inboard

portion of the wing is under the influence of the downwash from the canard so

that as the lift on the canard increases the downwash on the wing, which in turn

causes reduced lift on the inboard portion of the wing. At α = 15 deg the canard

is close to stall and the inboard portion of the wing has reduced lift but the lift

on the outboard portion of the wing is increased because of the upwash from the

canard. This is confirmed by the section Cl distribution on the wing at α of 15

as shown in Fig. 4.44. At 16 deg, the canard stalls and therefore the downwash

on the wing decreases. Also, two trailing vortices are shed from the edges of the
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Figure 4.45: Individual contributions of the wing and canard to the total lift of
the wing-canard configuration.

stalled portion of the canard that cause upwash on the inboard portion of the

wing. As a result, the lift on the inboard portion of the wing now increases as

seen from the section Cl distribution on the wing at 16 as shown in Fig. 4.44. At

19 deg a part of the outboard portion of the wing and the inboard portion of the

wing are close to stall. As the α is increased to 20 deg these portions of the wing

stall as can be seen from the section Cl distribution on the wing at 20 as shown in

Fig. 4.44. As the α is increased beyond 20 deg most of the canard and the wing

has stalled except for two small regions on the outboard portions as shown by the

section Cl distribution of the wing and canard at 23 deg in Fig. 4.44. At 26 deg

both the wing and canard are stalled as shown by the section Cl distribution of

the wing and canard at 26 deg in Fig. 4.44.
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4.5 Spanwise Asymmetry in the Initial

Conditions

In all the examples presented so far, the starting distribution of δ1 and δ2 was

assumed to be a constant along the wing span. The spanwise section Cl distri-

butions obtained for these cases was symmetric. As stated before, while in the

past, some researchers8,9 have observed no asymmetric lift distributions for sym-

metric flight conditions even when the iterations were started with asymmetric

initial conditions, other researchers3,4, 6 have observed asymmetric lift distribu-

tions for perfectly symmetric starting lift distributions. The aim of this example

is, therefore, to investigate the presence of any asymmetry in the final converged

lift distribution when the starting conditions(distribution of δ1 and δ2 along wing

span) are asymmetric.
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Figure 4.46: Initial δ1 distribution along wing span.

The right-side planform of the rectangular wing used in this example is shown

in Fig. 4.26. The airfoil used has the hypothetical lift curve as shown in Fig. 4.28.
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Figure 4.47: Wing CL with an initial asymmetric distribution of δ1.

Figure 4.46 shows the starting distribution of δ1 along wing span. The starting

distribution of δ2 along wing span is constant and in this example it is assumed to

be zero. An α-sequence of 0–25 deg is used, and for each α, the starting values of

δ1 are set as shown in Fig. 4.46 and the starting values of δ2 are set to zero along

the wing span. The converged wing CL-α using this starting distribution of δ1 and

δ2 is shown in Fig. 4.47. Figure 4.48 shows the final converged spanwise section

Cl for α of 10, 15, 20 and 25 degrees. Using a tolerance of 0.001, the number of

iterations required to converge is 281 for α of 10 deg, 289 for α of 15 deg, 222

for α of 20 deg and 142 for α of 25 deg. As can be seen in Fig. 4.48 there is no

asymmetry in the spanwise section Cl distributions although the starting distri-

bution of δ1 is asymmetric. However, there is asymmetry in the spanwise section

Cl distribution after the first iteration, as shown in Fig. 4.49. The asymmetry is

seen to be considerably diminished after 100 iterations, as shown in Fig. 4.50. The

distribution of δ1 also shows similar behavior. The final converged distribution of

δ1 along wing span does not show any asymmetry as shown in Fig. 4.51. However,
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the distribution of δ1 after the first and 100 iterations is asymmetric as shown in

Figs. 4.52 and 4.53.
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Figure 4.48: Final converged spanwise section Cl with an initial asymmetric dis-
tribution of δ1.

The reason for the marked asymmetry in the spanwise section Cl distributions

after the first and after 100 iterations and symmetry in the final converged solu-

tions can be traced to the distribution of the local-section effective angle of attack

along span. The local-section effective angles of attack are directly related to δ1

and δ2 as shown in eqn. 3.7. The spanwise distributions of the local effective angle

of attack, αeff after 1 iteration, 100 iterations and after convergence are shown

in Figs. 4.54, 4.55 and 4.56 respectively. As with the spanwise distribution of δ1

and Cl, the final converged solution of the αeff also is not asymmetric but the

solutions after the first and 100 iterations show asymmetry.
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Figure 4.49: Spanwise section Cl with an initial asymmetric distribution of δ1

after 1 iteration.
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Figure 4.50: Spanwise section Cl with an initial asymmetric distribution of δ1

after 100 iterations.
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Therefore, using VLM3D no asymmetry in the final converged lift distributions

are observed even when the starting distribution of δ1 is asymmetric. The spanwise

lift distributions, the spanwise δ1 distributions and the spanwise αeff distribution

however, start off showing marked asymmetry but with the increase in the number

of iterations, the asymmetry progressively reduces and the final converged solution

is symmetric.
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Figure 4.51: Final converged spanwise δ1 distributions.
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Figure 4.52: Spanwise δ1 distributions after 1 iteration.
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Figure 4.53: Spanwise δ1 distributions after 100 iterations.
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Figure 4.54: Spanwise distributions of αeff after 1 iteration.
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Figure 4.55: Spanwise distributions of αeff after 100 iterations.
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Figure 4.56: Final converged spanwise distributions of αeff .
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Chapter 5

Conclusions

A decambering approach has been developed for the post-stall prediction of multiple-

lifting-surface configurations using known section data. The approach accounts

for the boundary-layer separation effects on each section of each lifting surface

in an iterative fashion. This approach is implemented using a multi-dimensional

Newton iteration in a vortex-lattice method using two schemes, labeled scheme 1

and scheme 2. The two schemes differ in the procedure for the computation of the

residuals. Scheme 2 is found to be more robust and its predictions more accept-

able. A key feature of scheme 2 is that it takes into consideration the change in

the effective α of a section when a small perturbation is made to the decamber-

ing at that section. As a consequence, the target Cl for computing the residual

is determined using the intersection(s) of a “trajectory line” and the airfoil lift

curve. This trajectory line, which is computed for each section at every step of the

iteration, is the line along which the point represented by the Cl and the effective

α at a section moves due to a perturbation to the decambering at that section.

A key outcome of determining the target Cl using the intersection(s) of the

trajectory line with the airfoil Cl-α curve is that certain sections that are operating

close to stall may end up with multiple intersections at high angles of attack.

Scheme 2, thus, brings to light the existence of multiple solutions right during the

iteration process. Earlier approaches were able to identify the existence of multiple

82



solutions only as a result of obtaining multiple converged solutions with different

initial conditions in the iteration procedure. Scheme 2, therefore, brings new

insight to the iterative solution of wing flows using known airfoil characteristics.

A special logic has been developed for sections with multiple intersections in order

to choose a solution from one of the multiple choices for the target Cl.

The current method has been used for the analysis of several example single

and multiple wings. The first set of examples have been used for comparison with

experimental data of Naik and Ostowari.17 This experimental dataset includes

lift characteristics of the NACA 4415 airfoil at several Reynolds numbers and lift

characteristics of finite wings of several aspect ratios with this airfoil at the same

Reynolds numbers. The two-dimensional Cl-α curves from the experimental data

is used as input to the current method and the predicted finite-wing character-

istics from both the schemes are compared with the corresponding experimental

results. In comparison to the results from scheme 1, the results from scheme 2

are found to be more acceptable. It is found that the wing CL-α for the examples

presented agrees well with the experimental results till 30 degrees. Beyond 30

degrees the comparison with the experimental values is fair. As mentioned by

Naik and Ostowari,17 in the experiments conducted to generate the airfoil data,

the two-dimensional blade model was attached only at one end due to which it

experienced some bending and twisting effects at high Reynolds numbers and high

Cl conditions. However, no attempt was made in Ref. 17 to correct the data for

these effects. Because this two-dimensional data is used as input to the current

method, any errors in the input data will result in errors in the predicted wing

characteristics.

Comparison of the results from scheme 2 with scheme 1 shows that scheme 2

eliminates oscillations in the spanwise section Cl distributions that were found in

the results of Scheme 1 and were caused by the occurrence of regions of unstalled
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flow being sandwiched between regions of stalled flow. As with other methods,

multiple solutions are possible for wings at high angles of attack and the solution is

sensitive to the choice of the initial conditions for the iteration process. However,

for certain angles of attack, sawtooth oscillations in the spanwise Cl distributions

from scheme 2 are observed in the stalled regions of the wing. It is shown that

this sawtooth oscillation, also reported by other investigators, occurs because of

alternate sections in the stalled region having converged to the unstalled portion

of the airfoil Cl-α curve. Although such solutions are numerically converged, they

are not physically realizable. Thus, scheme 2, like many of the earlier ones, is

not guaranteed to converge to physically-realizable solutions for every α of every

geometry and airfoil combination.

In the second set of examples, the current method with scheme 2 is used to

study the stall characteristics of wings with different taper ratios. The method

predicts that rectangular wings stall first at the root, whereas tapered wings start

stalling at the outboard portions. These trends correlate well with well-known

effects of taper on the stall behavior. An example of a part-tapered planform is

used to illustrate the stall behavior for such a planform. The third set of examples

presents the post-stall characteristics for a wing-tail configuration. These exam-

ples shows how the current method is capable of predicting the effects of wing stall

on the aircraft pitching moment behavior. The fourth set of examples presents

the results for a wing-canard configuration to illustrate the stall behavior and the

effect of the canard lift distribution on the wing aerodynamics.

Researchers in the past have reported asymmetry in the lift distributions even

when the starting conditions were perfectly symmetric. The fifth example in this

study was used to examine if such asymmetric behavior was seen with the current

method. The results with scheme 2 did not exhibit any such asymmetries even

when the starting conditions were asymmetric.
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The approach developed in this research uses a novel scheme (scheme 2) for

computing the residuals for the iterative prediction of wing post-stall character-

istics using section data. The examples show that this scheme 2 is more robust

than scheme 1, which is similar to the schemes used by other researchers. An

important new feature of scheme 2 is the determination of multiple target Cl val-

ues during the iterative process for sections that are close to stall. The algorithm

developed for choosing the desired target Cl from among the multiple solutions

enables solution of the equations for post-stall angles of attack. Good compari-

son with experimental data for pre-stall conditions and fair comparison with the

experimental data for post-stall conditions indicates that the method can be used

with reasonable confidence for the difficult task of rapid post-stall prediction of

wing characteristics. Such rapid prediction method can be valuable in the design

of new multiple-lifting-surface configurations. While significant progress has been

made with the development of the new scheme in this research, some convergence

problems still remain for certain airfoil lift curves and some angles of attack. Such

problems have also been reported with other methods.7 Further research is needed

to sort such problems before rapid post-stall predictions can be used routinely in

aircraft design.
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Chapter 6

Future Work

This research was undertaken with the objective of developing a numerical predic-

tion method that can rapidly provide post-stall data for multiple-lifting-surface

configurations, where each lifting surface may have different planform shapes and

different camber. In doing so, the only experimental data for both airfoil and

finite wings for post-stall conditions found for comparison and validation was that

of Naik and Ostowari.17 Even then, only the wing CL could be compared since no

experimental data for the spanwise section Cl distributions were found. Therefore,

this work calls for experimental pressure measurements along the surface of a wing

so that the experimental spanwise section-Cl distributions can be calculated.

An important extension of this work will be to perform the unsteady analysis of

a lifting surface. For this the wake behind the wing will also have to be discretized.

The strength of the trailing vortices will be time-dependent and also depend on

the vorticity shed by the wing.

Future work will involve improving upon the modeling technique used to get a

measure of the effective decambering due to separated flow in the present VLM3D.

This can be done by defining the separated flow using a cubic camberline instead

of two linear functions.

In this work, the two-valued decambering function is evaluated using a New-

tons’s method. The Newton’s method is a standard root polishing algorithm.
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The convergence of such an algorithm depends on the starting guess for the lo-

cation of the root. Such a method is fast but less robust. When the behaviour

of the function is compatible with the algorithm and a good initial guess is avail-

able, the Newton’s method can provide rapid convergence. The Newton’s method

worked well for the airfoil data used in this work and convergence in all cases

was obtained within a tolerance of 0.001. However, using scheme 2, possibilities

of multiple solutions arise and the Newton’s method fails to converge for a few

cases, and follows an undamped periodic motion. In other words, the Newton’s

method has problems finding the appropriate root in the multiple solution zone

in some cases. This can be avoided by using a root bracketing method like the

bisection method or the regula falsi method. Such methods are guaranteed to

converge since these algorithms begin with a bounded region known to contain a

root. The size of the bounded region is reduced, iteratively, until it finds a root

within the allowable tolerance. This provides rigorous error estimation for the

location of the root.

Therefore, the Newton’s method can be replaced by the bisection method and

the behaviour of the solution in the multiple solution zone can be studied. The

bisection method will look for a root (αsec) within the minimum and maximum α

of the Cl-α curve provided as input.

The bisection method is less efficient than the Newton’s method but it is

guaranteed to converge and less prone to odd behaviour. It is thus believed that

using the bisection method, the problem of a few angles of attack not converging

as explained in detail in sec. 4.1 can be removed.
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Appendix A

VLM3D

The code VLM3D is developed to implement the methodology explained in Chap-

ter 3. The following sections describe in detail the various components of VLM3D.

In order to calculate the velocity induced at an arbitrary point P (xp, yp, zp) due

to a ring vortex, two subroutines “vortexring” and “horse-shoe-vortex” are de-

veloped. Subroutine “vortexring” calculates the induced velocity by adding the

contributions of the four sides of the vortex ring, each of which is a finite vor-

tex segment. Subroutine “horse-shoe-vortex” calculates the induced velocity of a

horse-shoe vortex by adding the contributions of a finite vortex segment and two

semi-infinite trailing vortices. When the ring vortex is at the trailing edge, both

subroutines are used to calculate the induced velocity. The horse-shoe vortex is

formed by the trailing segment of the vortex ring and two trailing vortices at its

two ends.

A.0.1 Subroutine readgeom

This subroutine reads in the geometry parameters of a wing and/or its configura-

tions. The airfoil geometry can be generated or can also be provided as an input.

Both symmetric and cambered airfoils can be used.
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Figure A.1: Unit normal to a lattice.

A.0.2 Subroutine geomgen

This subroutine generates the geometry of the wing and/or its configurations

for a given airfoil geometry. Rectangular and tapered wings can be generated. It

divides the lifting surfaces into quadrilateral lattices for a given number of sections

along span and along chord. For each lattice, its four vertices, the control point,

vertices of the vortex ring and the unit normals are generated. The unit normals

are generated by calling the subroutine panel-unitnormal. If a wing(s) has an

incidence, geometric twist or aerodynamic twist, the effect is simulated by rotating

the normals. The normals are rotated by calling the subroutine rotate-normal-

single-flap. A brief description of panel-unitnormal and rotate-normal-single-flap

follow:

panel-unitnormal: This subroutine generates the unit normal to the panel

by taking the vector cross product of the two vectors �AC and �DB as shown in

Fig. A.1.
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rotate-normal-single-flap: This subroutine rotates the unit normal to a lattice.

It is to be remembered that for all cases considered in this research work the

component of the unit normal in the y-axis does not get affected. Therefore, only

the components of the unit normal in the x and z axes are rotated. The following

relations are used to rotate the normals:

Unx
new = Unx

oldcosθ + Unz
oldsinθ (A.1)

Unz
new = −Unx

oldsinθ + Unz
oldcosθ (A.2)

where θ is the angle of rotation, Un denotes the unit normal and x and z denote

the axis.

A.0.3 Subroutine influence

This subroutine calculates the influence coefficients of the wing and/or its config-

uration under consideration. Essentially, the influence coefficient at a particular

point is the total induced velocity due to all vortices in its vicinity. In this case,

the total induced velocity due to all the ring vortices and the horse-shoe vortices

at the trailing edge at the control point of a lattice is the influence coefficient of

that particular lattice. The influence coeficients depend only on the geometry.

To calculate the induced velocity due to a ring vortex, the subroutine vortexring

is called and to calculate the induced velocity due to a horse-shoe vortex at the

trailing edge the subroutine horse-shoe-vortex is called. A brief description of

vortexring and horse-shoe-vortex follow:

vortexring: This subroutine calculates the velocity induced due to a vortex

ring. It calls the subroutine vortex four times for the four segements of the vortex

ring and sums up the contribution of all four segments to get the net contribution
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Figure A.2: Horse-shoe vortex at the trailing edge.

of the vortex ring. The subroutine vortex calculates the velocity induced by a

finite vortex segment at a point [xp, yp, zp] using the following relation:

�Vind =
(|�r1| + |�r2|)(1 − �r1 �r2

|�r1||�r2|)

4π|�r1X �r2|2
(�r1X �r2) (A.3)

horse-shoe-vortex: This subroutine calcultes the induced velocity due to a

horse-shoe vortex. It calls the subroutines vortex and trailing-vortex to calculate

the net velocity due to a horse-shoe vortex. The subroutine trailing-vortex calcu-

lates the induced velocity due to the two trailing vortices of a horse-shoe vortex

using the following relation:

�Vind =
1 − �r1

�Un

|�r1|

4π
∣∣∣�r1X �Un

∣∣∣2
(�r1X �Un) +

1 − �r2
�Un

|�r2|

4π
∣∣∣�r2X �Un

∣∣∣2
(�r2X �Un) (A.4)

where the first part of the right hand side is the induced velocity due to the

semi-infinite vortex AB at the point [xp,yp,zp] and the second part of the right

hand side is the induced velocity due to the semi-infinite vortex CD at the point

[xp,yp,zp] as shown in Fig. A.2.
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A.0.4 Subroutine readoper

This subroutine reads in the operating conditions of the wing and/or its configu-

rations. Some of its salient features can be briefly described as follows:

Based on the inputs as per readoper, VLM3D can operate in the linear or

non-linear mode and at a single α or at an α-sequence. When operating at an

α-sequence, it has an added option to calculate the influence coefficients only once

for the entire operation. When operating in non-linear mode, it can implement

scheme 1 or 2 and initialise δ1 and δ2 at the first α of an α-sequence or at each α

of an α-sequence.

A.0.5 Subroutine dorhs

This subroutine calculates the right hand side of the eqn. 3.1 based on the oper-

ating angle of attack and the free-stream vector.

A.0.6 Subroutine iteration

The entire non-linear analysis is executed by this subroutine. It calculates the

jacobian matrix explained in section 3.2 and executes scheme 1 or scheme 2 as

per requirement. To calculate the experimental Cl and Cm corresponding to the

local section angle of attack, αeff , subroutine data is called for scheme 1 and

subroutine locate-alfa-intersect is called for scheme 2. Subroutine rotate-normals

is used to rotate the normals of each lattice to account for the flap deflections, δ1

and δ2. Using scheme 2, this subroutine identifies unstalled sections with multiple

solutions sandwiched between stalled sections and resets them as stalled sections.

This removes the oscillations in the spanwise section Cl distributions considerably.

It solves the matrix eqn. 3.2 to yield new values of the flap deflections. For each

angle of attack this subroutine performs the entire iteration process described in
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section 3.2. A brief description of subroutines data and locate-alfa-intersect follow:

data: For a given δ1 and δ2 and the potential Cl and Cm, the local section angle

of attack, αeff is calculated using eqn. 3.7 in this subroutine. Corresponding to

this angle of attack the experimental values of Cl and Cm are calculated. These

are the target values for scheme 1.

locate-alfa-intersect: In this subroutine, for a given δ1 and δ2 and the slope

of the trajectory line, the local section angle of attack, αeff is calculated by

scanning the entire input airfoil Cl data. Corresponding to this angle of attack

the experimental values of Cl and Cm are calculated. These are the target values

for scheme 2.
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Figure A.3: Flow chart of VLM3D.
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