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Abstract

Neuronal filters can be thought of as constituent building blocks underlying the ability of neuronal systems to pro-
cess information, generate rhythms and perform computations. How neuronal filters are generated by the concerted
activity of a multiplicity of process and interacting time scales within and across levels of neuronal organization is
poorly understood. In this paper we address these issues in a feedforward network in the presence of synaptic short-
term plasticity (STP, depression and facilitation). The network consists of a presynaptic spike-train, a postsynaptic
passive cell, and an excitatory (AMPA) chemical synapse. The dynamics of each network components is controlled
by one or more time scales. We use mathematical modeling, numerical simulations and analytical approximations of
the network response to presynaptic spike trains. We explain the mechanisms by which the participating time scales
shape the neuronal filters at the (i) synaptic update level (the target of the synaptic variable in response to presynaptic
spikes), which is shaped by STP, (ii) the synaptic variable, and (iii) the postsynaptic membrane potential. We focus
on two metrics giving rise to two types of profiles (curves of the corresponding metrics as a function of the spike-train
input frequency or firing rate): (i) peak profiles and (ii) peak-to-trough amplitude profiles. The effects of STP are
present at the synaptic update level and are communicated to the synaptic level where they interact with the synaptic
decay time. STP band-pass filters (BPFs) are reflected in the synaptic BPFs with some modifications due primarily to
the synaptic decay time. The postsynaptic filters result from the interaction between the synaptic variable and the bio-
physical properties of the postsynaptic cell. Postsynaptic BPFs can be inherited from the synaptic level or generated
across levels of organization due to the interaction between (i) a synaptic low-pass filter and the postsynaptic summa-
tion filter (voltage peak BPF), and (ii) a synaptic high-pass filter and the postsynaptic summation filter (peak-to-trough
amplitude BPF). These type of BPFs persist in response to jitter periodic spike trains and Poisson-distributed spike
trains. The response variability depends on a number of factors including the spike train input frequency and are
controlled by STP in a non-monotonic frequency manner. The lessons learned from the investigation of this relatively
simple feedforward network will serve to construct a framework to analyze the mechanisms of generation of neuronal
filters in networks with more complex architectures and a variety of interacting cellular, synaptic and plasticity time
scales.
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1 Introduction

Neuronal filters allow neuronal systems to select certain information or enhance the communication of specific in-
formation components over others [1–5]. As such, neuronal filters play important roles in neuronal information
processing, rhythm generation and brain computations [3, 4, 6–17]. Band-pass frequency-filters are associated to
the notion of resonance. Neuronal resonance refers to the ability of a neuronal system to exhibit a maximal re-
sponse (e.g., subthreshold membrane potential, postsynaptic potential, firing rate) to periodic inputs at a preferred
(resonant), non-zero frequency band. At the cellular level, frequency-filters reflect the time scales of the partici-
pating currents [1, 18, 19]. At the synaptic level, frequency-filters [20] reflect the synaptic raise and decay times.
The observed postsynaptic responses reflect the combination of these and the time scales of the postsynaptic cell’s
participating currents [21]. The latter may give rise to additional filtering components resulting from the summation
phenomenon [22]. In synaptic pairs with more complex synaptic dynamics, frequency-filters also reflect the time
scales associated with synaptic short-term plasticity (STP) and may give rise to band-pass filters at the synaptic and
postsynaptic levels [2,3,21,23–25]. How does the concerted activity of this multiplicity of time scales shape neurona
filters is poorly understood.

STP refers to the changes of the efficacy of synaptic transmission (synaptic conductance strength) in response
to presynaptic spike trains (as the number spikes increases) with time scales ranging in the order of hundreds of
milliseconds to seconds [23–25]. STP consists of the combination of two opposing processes with characteristic time
scales: synaptic depression (efficacy decrease) and facilitation (efficacy increase). STP has been investigated in both
vertebrates and invertebrates. It has been shown to be involved in a number of brain functions, including information
filtering (temporal and frequency-dependent) [3,8–10,16,22,24,26–43], adaptive filtering [9] and related phenomena
(e.g., burst detection) [3, 33, 44–47], temporal coding and information processing [33, 34, 48–51], information flow
[40,52,53] (given the presynaptic history-dependent nature of STP), gain control [54–56], the modulation of network
responses to external inputs [57, 58], the prolongation of neural responses to transient inputs [15, 59, 60], direction
selectivity [61], vision (e.g., microsacades) [62], sound localization and hearing [63,64], the generation of cortical up
and down states [65], attractor dynamics [55,66], navigation (e.g., place field sensing) [9,37], working memory [60,67],
decision making [68] and neuronal computation [6,53,56,69–71].

Neuronal resonance has been investigated both experimentally and theoretically at various levels of organization
ranging from the cellular to the synaptic to the network levels [3,4,11,17–19,21,46,72–83]. However, the biophysical
and dynamic mechanisms of generation of neuronal resonance beyond the single cell level are poorly understood.
It is unclear how neuronal filters are shaped by the time scales of the participating building blocks at each level of
organization. It is also unclear how the neuronal filtering properties are communicated across levels of organization
and modified by the time scales and other biophysical properties as this communication proceeds.

In this paper we begin to systematically analyze and develop these ideas in a feedforward network (Fig. 1),
which is arguably the elementary neuronal processing unit and involves a multiplicity of interacting time scales. The
building blocks consist of a presynaptic spike-train (characteristic period ∆spk), a postsynaptic passive cell (time
constant τ ), an excitatory (AMPA) chemical synapse (rise and decay time constants τrse and τdec, respectively), and
synaptic short-term plasticity (STP) [23–25] (characteristic time constants τdep and τfac). We focus on the stationary
postsynaptic (subthreshold) membrane potential response to presynaptic spike trains. We use both periodic spike-
trains with frequencies within some range and Poisson-distributed spike-trains with mean frequencies within the same
range. We consider two types of response profiles: (i) peak vs. input frequency, and (ii) peak-to-trough amplitude
versus input frequency. The latter metrics are an analogous to the impedance profile for the computation of the
standard subthreshold filters. The former metrics are relevant for the transition from subthreshold to suprathreshold
responses. We use mathematical modeling, numerical simulations and analytical approximations of the network
response to presynaptic spike trains at the STP, synaptic and postsynaptic levels.
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In spite of its simplicity, the feedforward network we use is dynamically rich. Passive cells produce subthreshold
(membrane potential) low-pass filters in response to sinusoidal inputs currents (the voltage amplitude response as
a function of the input frequency is monotonically decreasing), but they may produce subthreshold high-pass filters
in response to presynaptic periodic spike-train inputs due to the effects of summation. Synaptic depression and
facilitation produce low- and high-pass filters, respectively in response to presynaptic spike inputs [3]. The cellular
filtering properties are primarily the result of feedback effects, while STP filtering properties are primarily a history-
dependent process. Filters may be generated and interact within and across levels of organization [4,44] as the result
of the interplay of the biophysical building blocks that give rise to them. The lessons learned from this study will serve
to construct a framework to analyze the mechanisms of generation of neuronal filters in networks with more complex
cells and architecture.

In previous work [44], we thoroughly investigated the temporal (transient) responses and the associated temporal
filters in the same feedforward network (Fig. 1). One important result of this study was the description of the link
between the STP time constants governing the dynamics of the single events (in response to each presynaptic
spikes; τdep and τfac) and the corresponding global, emergent time scales describing the long-term dynamics of the
(low-, high- and band-pass) temporal filters. A second important result was the discovery of a third global time scale
for temporal band-pass filters involving a combination of both τdep and τfac, highlighting the complexity of the non-
trivial interaction between depression and facilitation. A third important result was the finding that the postsynaptic
temporal filters are not proportional to the synaptic temporal filters as assumed in some simplified models, [46], thus
demonstrating that the synaptic temporal filters are not directly communicated to the postsynaptic cell level, but rather
modified by the postsynaptic intrinsic properties. While temporal filters are not predictive of frequency-filters and
both types of filters are generated by different mechanisms, the type of complexity described above is present in the
frequency-filters and informs our study.

2 Methods

2.1 Models

2.1.1 Postsynaptic cell

The current-balance equation for the post-synaptic cell is given by

C
dV

dt
= −GL (V − EL) + Iapp − Isyn + Inoise, (1)

where t is time (ms), V represents the voltage (mV), C is the specific capacitance (µF/cm2), GL is the leak conduc-
tance (mS/cm2), Iapp is the tonic (DC) current (µA/cm2), Inoise =

√
2Dη(t) represents white noise (delta correlated

with zero mean) with variance D, and Isyn is an excitatory synaptic current of the form

Isyn = Gsyn S (V − Esyn). (2)

In eq. (2), Gsyn is the maximal synaptic conductance (mS/cm2), Esyn is the reversal potential and S is the synaptic
variable.

2.1.2 Synaptic dynamics

The synaptic variables S obey a kinetic equation of the form

dS

dt
= N(Vpre)

(∆S − S)

τrse
− S

τdec
, (3)
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where Vpre is the membrane potential of the presynaptic spike, N(V ) denotes the sigmoid function

N(V ) =
1 + tanh(V/4)

2
(4)

τrse and τdec are the rise and decay time constants respectively (msec), and ∆S is a target value for S. For AMPA
excitation (E-cells, Gsyn = Gex), we used Esyn = Eex = 0, τrse = 0.1 and τdec = 3.0 [84]. In the absence of synaptic
short-term dynamics (depression and facilitation), ∆S = 1. Otherwise, ∆S, interpreted as the magnitude ∆S of the
synaptic release per presynaptic spike, is determined as described below (Sections 2.1.4 and 2.1.6).

We refer the reader to [85–87] for additional details on biophysical (conductance-based) models.

2.1.3 Presynaptic spike-trains

We model the spiking activity of the presynaptic cell as a spike train with presynaptic spike times t1, t2, . . . , tN . We
consider three types of input spike-trains. Periodic inputs are characterized by the interspike interval (ISI) of length
∆spk (msec) or, alternatively, by the spiking frequency (Hz)

fspk =
1000

∆spk
. (5)

Jittered-periodic presynaptic spike trains consist of perturbations of periodic presynaptic spiking patterns of the form

∆spk,n = ∆spk + δspk,n (6)

where ∆spk is constant (n-independent) and δp = {δspk,n}
Nspk

n=1 is a sequence of real numbers. We take δp to be
normally distributed with zero mean and variance σ2. Poisson distributed (homogeneous) presynaptic spike trains
are characterized by the mean spiking rate (and the associated exponential distribution of ISIs).

2.1.4 The DA (Dayan-Abbott) model for short-term dynamics: synaptic depression and facilitation

This phenomenological model is presented in [86] and attributed to Dayan and Abbott (and collaborators). The
magnitude ∆S of the synaptic release per presynaptic spike is assumed to be the product of the depression (x) and
facilitation (z) variables

∆S = x− z+ (7)

where

dx

dt
=
x∞ − x
τdep

− ad x δ(t− tspk), (8)

and

dz

dt
=
z∞ − z
τfac

+ af (1− z) δ(t− tspk). (9)

Each time a presynaptic spike arrives (t = tspk), the depressing variable x is decreased by an amount ad x (the
release probability is reduced) and the facilitating variable z is increased by an amount af (1 − z) (the release
probability is augmented). During the presynaptic ISIs both x and z decay exponentially to their saturation values x∞
and z∞ respectively. The rate at which this occurs is controlled by the parameters τdep and τfac. Following others
we use x∞ = 1 and z∞ = 0. The superscripts “±" in the variables x and z indicate that the update is carried out by
taking the values of these variables prior (−) or after (+) the arrival of the presynaptic spike.

Figs. 2-A1 and -B1 illustrates the x-, z-traces (curves of x and z as a function of time) in response to a periodic
presynaptic input train for representative parameter values. The updated of the variable S at the arrival of presynaptic
spikes is given by ∆S = x−z+. The sequence of peaks for ∆S is defined by ∆Sn = XnZn where Xn and Zn are
the sequence of peaks for the variables x and z, respectively (see also [44]).
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2.1.5 DA model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (8)-(9) during the presynaptic ISIs and appropriately updating the solutions at
t = tn (occurrence of each presynaptic spike), one arrives at the following recurrent formula for the peak sequences
in terms of the model parameters

Xn+1 = x∞ + [ (1− ad)Xn − x∞ ] e−∆spk,n/τdep (10)

and

Zn+1 = af + (1− af ) [ z∞ + (Zn − z∞)e−∆spk,n/τfac ] (11)

where {∆spk,n}Nspkn=1 represents the lengths of the presynaptic ISIs.
The temporal filtering properties of the DA model in response to periodic and Poisson-distributed presynaptic

inputs was studied in [44].

Steady-state frequency-dependent filters in response to periodic presynaptic inputs

For periodic inputs, ∆spk,n = ∆spk, independent of n, eqs. (10)-(11) are linear 1D difference equations. Therefore
both the sequences X and Z obey linear discrete dynamics (e.g., see [88]), decaying to their steady state values

X̄ =
( 1− e−∆spk/τdep )x∞

1− (1− ad) e−∆spk/τdep
(12)

and

Z̄ =
( 1− e−∆spk/τfac ) (1− af ) z∞ + af

1− (1− af ) e−∆spk/τfac
. (13)

For the reminder of this paper we use x∞ = 1 and z∞ = 0.

2.1.6 The MT (Markram-Tsodkys) model for short-term dynamics: synaptic depression and facili-
tation

This phenomenological model was introduced in [46] as a simplification of earlier models [23, 49, 89]. It is slightly
more complex and widely used than the DA model described above [3,90]. As for the DA model, the magnitude ∆S
of the synaptic release per presynaptic spike is assumed to be the product of the depressing and facilitating variables

∆S = R− u+ (14)

where, in its more general formulation,

dR

dt
=

1−R
τdep

−R−u+ δ(t− tspk), (15)

and

du

dt
=
Û − u
τfac

+ U (1− u−) δ(t− tspk). (16)

Each time a presynaptic spike arrives (t = tspk), the depressing variable R is decreased by R−u+ and the facilitating
variable u is increased by U (1 − u−). As before, the superscripts “±" in the variables R and u indicate that the
update is carried out by taking the values of these variables prior (−) or after (+) the arrival of the presynaptic spike.
In contrast to the DA model, the update of the depression variable R is affected by the value of the facilitation variable
u+. Simplified versions of this model include making Û = 0 [2,28,46,47,91,92] and Û = U [3].
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2.1.7 MT model in response to presynaptic inputs

Peak dynamics and temporal filters

By solving the differential equations (15)-(16) during the presynaptic ISIs and appropriately updating the solutions at
t = tn (occurrence of each presynaptic spike), one arrives at the following recurrent formula for the peak sequences
in terms of the model parameters

Rn+1 = Rn(1− un+1)e−∆spk/τdep + 1− e−∆spk,n/τdep (17)

and

un+1 = Û + U − ÛU + un(1− U)e−∆spk,n/τfac − Û(1− U)e−∆spk,n/τfac . (18)

The temporal filtering properties of the DA model in response to periodic presynaptic inputs was studied in [44].

Steady-state frequency-dependent filters

As before, for periodic presynaptic inputs ∆spk,n = ∆spk, independent of n, these equations represent a system of
two 1D difference equations. The steady-state values are given by

R̄ =
1− e−∆spk/τdep

1− (1− ū) e−∆spk/τdep
(19)

and

ū =
Û + U − ÛU − Û (1− U)e−∆spk/τfac

1− (1− U) e−∆spk/τfac
. (20)

For the reminder of this paper we will use Û = 0 and U = 0.1.

2.2 Postsynaptic potential (PSP) peak sequences: Analytical approximation of the mem-
brane potential response of passive cells to presynaptic spikes

In order to analyze the PSP peak and amplitude responses of passive cells to presynaptic spikes we derive an
analytical approximation of the solution to the model (1)-(4). The process consists of creating a hybrid model by
substituting the conductance-based synaptic current in Isyn (2) by a presynaptic ISI-dependent current-based input
where the synaptic input coefficient is updated every cycle to account for the changes in V relative to Esyn across
cycles.

Eq. (1) is linear, but the conductance-based synaptic input in Isyn (2) is multiplicative. Previous work showed
that the subthreshold rhythmic properties of cells in response to conductance- and current-based synaptic inputs may
qualitatively differ [93,94], and therefore the additive, current-based synaptic inputs, which would eliminate the multi-
plicative nature of Isyn by substituting the factor V −Esyn by a constant, will not produce good enough approximations
to the responses of conductance-based synaptic inputs (e.g., Figs. S3 and S4). In the hybrid approach we develop
here, we approximate V −Esyn by a constant, which we update at the end of each presynaptic ISI to account for the
changing value of V −Esyn across cycles. We present here the main ideas and results. The detailed calculations are
provided in the Appendix A. We intend this hybrid model and the resulting approximation to be an analytical tool to
analyze the PSP peak and amplitude filters, which can be thought of as a simplified model that captures the dynamics
of the model (1)-(4), rather than a uniformly accurate approximation to the solution to this model.

We first approximate eq. (1) as follows

τ
dV

dt
= −V + αn Sa(t) (21)
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for n = 1, . . . , N where

τ =
C

GL
, α =

Gsyn (Esyn − V̄ )

GL
and αn = α (1− σn). (22)

The variable V in eq. (21) represents V −EL−Iapp/GL in eq. (1) and V̄ = EL+Iapp/GL. The right hand second
term in eq. (21) is a current input approximation to the conductance input in the synaptic current eq. (1). To account
for this, we introduce a correction factor 1− σn where σn is updated at the beginning of each ISI proportionally to the
distance between the PSP response and Esyn and σ1 = 0. The function Sa(t) is an approximation to the variable
S whose dynamics are described by eq. (3) with S(0) = 0, under the assumption of instantaneous raise to a value
∆Sn (n = 1, . . . , N ) at the arrival of each presynaptic spike. The assumption S(0) = 0 implies that S(t) = 0 for
0 ≤ t ≤ t1. For the duration of each presynaptic spike (tn < t < tn + Tsw), we approximate S(t) by the synaptic
update value ∆Sn (constant). For the remainder of the presynaptic interspike interval (tn + Tsw ≤ t < tn+1), Sa(t)
decreases according to the second term in (3). The approximate solution is given by

Sa(t) =


σs ∆Sn tn < t < tn + Tsw

σs ∆Sn e
−(t−tn−Tsw)/τdec tn + Tsw ≤ t < tn+1

(23)

for n = 1, . . . , N . In our computations we take Tsw = 1 and σs = τdec/(τdec+τrse) (1−exp(−(τdec+τrse)/(τdecτrse))),
which is the solution of eq. (3) computed at t = Tsw = 1. For τrse = 0.1 and τdec = 10, σs = 0.9901, while for
τrse = 0.1 and τdec = 3, σs = 0.9677. The approximation error is τdec/(τdec + τrse) ∆S τrseτdec/(τrse + τdec)− (1 +
τrseτdec/(τrse + τdec)) exp(−(τdec + τrse)/(τdecτrse)). For τdec = 10, the error is equal to 0.0098 (0.098 ∆S) and for
τdec = 3, the error is equal to 0.0094 (0.094 ∆S).

For each input frequency fspk, we compute the PSP peak sequence Vpeak,n (n = 1, 2, . . .) until |Vpeak,n −
Vpeak,n−1 | < δ = 0.0001. This tolerance δ is a conservative number that allows for the transient responses (temporal
filters, see [44]) to wear off. We approximate the stationary value of V̄peak by Vpeak,n (the last value in the resulting
vector), Vtrough by Vtrough,n, tV,peak by the time at which Vpeak,n occurs, and we use the corresponding value of tspk,
tspk,n (immediately preceding Vpeak,n) for the computation of the PSP phase response in eq. (66).

The PSP sequences are given by

PSP peak sequences for τdec 6= τ

Vpeak,n =
αn τdec ∆Sn
τdec − τ

eTsw/τdec e−(tpeak,n−tn)/τdec +

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ e−(tpeak,n−tn)/τ (24)

where

tpeak,n = tn +
τdec τ

τdec − τ
ln

(
−bn τdec

an τ

)
, an =

αn τdec ∆Sn
τdec − τ

eTsw/τdec bn =

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ ,

(25)

αn = α (1− σn), and σn+1 =
η Vpeak,n

(Esyn − EL)
with σ1 = 0, (26)

βn = αn ∆Sn + (Vo,n − αn ∆Sn) e−Tsw/τ , (27)

and

V0,n+1 =
αn τdec ∆Sn
τdec − τ

eTsw/τdec e−∆spk,n/τdec +

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ e−∆spk,n/τ with V0,1 = 0.

(28)
Eq. (24) is obtained from eq. (83) in the Appendix A. Note that Vtrough,n = V0,n+1.
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PSP peak sequences for τdec = τ

Vpeak,n =
αn ∆Sn

τ
e(tn+Tsw)/τdec tpeak,n e

−tpeak,n/τ +

[
βn −

αn ∆Sn
τ

(tn + Tsw)

]
e(tn+Tsw)/τdec e−tpeak,n/τ (29)

where

tpeak,n = tn + τ − bn
an

an =
αn ∆Sn

τ
eTsw/τdec and bn =

[
βn −

αn ∆Sn
τ

Tsw

]
eTsw/τdec . (30)

V0,n+1 =
αn ∆Sn

τ
eTsw/τdec tn+1 e

−∆spk,n/τ +

[
βn −

αn ∆Sn
τ

(tn + Tsw)

]
eTsw/τdec e−∆spk,n/τ . (31)

and αn, σn and βn are given by eqs. (26) and (27). Eq. (90) is obtained from eq. (83) in the Appendix A. In both
cases we use η = 1. Note that Vtrough,n = V0,n+1.

Figs. S1 and S2 compare the numerical solutions to the model (1)-(4) and the analytical approximation using
eqs. (21)-(23) together with eqs. (80) and (83) in the Appendix A for representative parameter values. The analytical
approximation tracks the numerical solution with relatively high accuracy. Figs. S3 and S4 show the error between
the numerical and analytical approximations to the stationary peaks (Vpeak), troughs (Vtrough) and peak times (tpeak)
of the membrane potential responses of passive cells to presynaptic spikes for representative parameter values. For
Vpeak and Vtrough (left and middle columns), the error is significantly higher for η = 0 (green curves) than for values of
η = 1 (blue curves) or around this value (red and light blue curves). Setting η = 0 is equivalent to the current-based
synaptic input approximation, while setting η = 1 (or around this value), corrects for the driving force, which varies as
V varies. In contrast, the error for tpeak (right columns) is largely independent of η.

2.3 Impedance amplitude and phase profiles: cellular membrane potential response to
sinusoidal input currents

2.3.1 General formulation

The impedance of a neuronal system receiving an input current Iin(t) is defined as the ratio of the output (voltage)
Vout(t) and input (current) Fourier transforms

Z(f) =
F [V (t)]

F [I(t)]
(32)

where f is frequency. The impedance Z(f) is a complex quantity with amplitude and phase. For simplicity, here we
used the notation Z(f) for the impedance amplitude and ΦZ for the impedance phase. In practice, for nonlinear cells,
we use the Fast Fourier Transform algorithm (FFT) to compute F [x(t)].

2.3.2 Impedance and phase profiles for the passive cell

The steady-state voltage response of a linear system receiving sinusoidal current inputs of the form

Iin(t) = Ain sin(ω t) with ω =
2πf

1000
, (33)

where f is the input frequency (Hz), is given by

Vout(t) = Aout(f) sin (ω t− φ(f)) (34)
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where φ(f) is the phase offset (time difference between the peaks of the input current and the output voltage normal-
ized by 2π). The impedance amplitude is given by

Z(f) =
Aout
Ain

. (35)

For the passive cell, standard calculations show that

Z(ω) =
τ

C

1√
1 + τ2 ω2

(36)

and

Φ(ω) = tan−1(τ ω). (37)

2.4 Numerical simulations

The numerical solutions were computed using the modified Euler method (Runge-Kutta, order 2) [95] with a time step
∆t = 0.01 ms (or smaller values of ∆t when necessary) in MATLAB (The Mathworks, Natick, MA). The codes are
available at \https://github.com/BioDatanamics-Lab/Frequency_Filters_STP_21_06.

Post Pre 

τdep / τfac

τrse / τdec

Synapse

τ

∆spk 

Post Pre 

τdep / τfac

τrse / τdec

Synapse

τ

<∆spk>< >

Figure 1: Feedforward network diagram in the presence of short-term synaptic plasticity. The presynaptic cell is modeled as a spike

train either periodic (period ∆spk) or Poisson distributed (mean interspike interval < ∆spk >). The postsynaptic cell is modeled as a passive cell

(capacitive and leak currents) with a membrane time constant τ . The excitatory synaptic function S raises and decays with time constants τrse
and τdec, respectively. The synaptic depression and facilitation time constants are τdep and τfac, respectively.

3 Results

The question we ask in this paper is how the postsynaptic cell’s membrane potential frequency-filters (or -profiles),
which are curves of the appropriate metrics (for each level of organization) as a function of the input frequency (fspk;
e.g., Fig. 2-C), depend on the properties of the participating building blocks: the presynaptic spike trains, the synaptic
raise and decay dynamics, the synaptic short-term plasticity (STP) and the intrinsic properties of the postsynaptic
cells (Fig. 1, left).

Specifically, we conduct a systematic study of the steady-state postsynaptic cell response to periodic presynap-
tic inputs over a range of frequencies fspk = 1000/∆spk (Fig. 1, left) that capture the postsynaptic membrane
potential filtering properties. We then extend our study to include jittered periodic inputs with mean frequency
fspk = 1000/∆spk and Poisson-distributed presynaptic inputs with mean rate rspk = 1000/ < ∆spk > (Fig. 1,
right).

We divide our study in three steps: (i) the response profiles of the synaptic update ∆S to the presynaptic spike
trains, (ii) the response profiles of the synaptic variable S to ∆S, and (iii) the response profiles of the postsynaptic
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membrane potential V to S. Synaptic short-term plasticity (STP) operates at the ∆S level. The interactions between
depression and facilitation (time constants τdep and τfac, respectively) create the synaptic update sequences ∆Sn =
XnZn (Fig. 2, left column, blue dots) where Xn and Zn are the sequence of peaks for the depression and facilitation
variables x and z, respectively. These sequences are the target for the synaptic variables S during the raise phase
after the arrival of each presynaptic spike. In the absence of STP, ∆Sn is constant (typically set up to one). The
interplay of ∆Sn and the synaptic dynamics (raise and decay time constants τrse and τdec, respectively) create
the response synaptic (S) patterns (Fig. 2, middle column). The synaptic variable S is the input to the current-
balance equation (1) where the synaptic patterns interact with the postsynaptic biophysical properties (membrane
time constants τm and ionic, resonant time constants τres) to generate the postsynaptic (V ) response patterns (Fig.
2, right column).

Here we focus on the frequency filtering properties of the steady-state responses for ∆Sn, S and V . We charac-
terize them by using the ∆̄S, S̄ and V̄ peak profiles (Fig. 2-C, blue), defined as the curves of the stationary peaks for
the corresponding quantities as a function of the input frequency fspk, and the stationary peak-to-trough amplitude
profiles (Fig. 2-C, light blue), consisting of the peak-to-trough amplitude curves as a function of fspk, for the latter two
quantities. The temporal filtering properties (transient responses to spike-spike trains) of these feedforward networks
were systematically investigated in [44].

3.1 ∆̄S band-pass filters: interplay of low-pass (depression) and high-pass (facilitation)
filters

From eqs. (12), (13) and (5), X̄ is monotonically decreasing (low-pass filter; LPF), transitioning from X̄ = 1 (fspk = 0)
to X̄ = 0 ( fspk →∞), and Z̄ is monotonically increasing (high-pass filter; HPF), transitioning from Z̄ = af (fspk = 0)
to Z̄ = 1 (fspk → ∞). This is illustrated in Fig. 3 (red and green) for representative parameter values. The interplay
of depression and facilitation ∆̄S = X̄Z̄ produces LPFs, BPFs or more complex patterns depending on the relative
values of τdep and τfac (Fig. 3, blue), for fixed values of the remaining parameters.

To simplify the mechanistic analysis, we define

∆̂spk =
∆spk

τdep
and ηstp =

τdep
τfac

. (38)

Substitution into eqs. (12) and (13) (with x∞ = 1 and z∞ = 0) yields

X̂ =
1− e−∆̂spk

1− (1− ad) e−∆̂spk

and Ẑ =
af

1− (1− af ) e−∆̂spk/ηstp
. (39)

Clearly, the rescaling does not affect the shapes of X̄ and Z̄ (X̂ and Ẑ), but it affects the dependence of their
rates of change with ∆spk (∆̂spk). Specifically, X̂ decreases with increasing values of ∆̂spk in a ηstp-independent
manner, while the rate of increase of Ẑ with ∆̂spk depends on the ratio ηstp of τdep and τfac. This rescaling allows
us to investigate the mechanisms of generation of ∆̄S band-pass filters (BPFs) as a function of a single parameter
(ηstp). The shapes of the ∆̄S filters for all values of τdep and τfac unfold from the shapes of the corresponding ∆̂S
filters by reversing the rescaling.

For large enough values of ηstp, the increase of Ẑ with increasing values of fspk is much slower than the decrease
of X̂ (in the limiting case η → ∞, Ẑ ∼ af , a constant). Therefore, ∆̂S is a LPF (e.g., Fig. 3-A and -B, blue). For
small enough values of ηstp, Ẑ increases very fast with increasing values of fspk as compared to X̂ (in the limiting
case ηspk → 0, Ẑ increases instantaneously and is approximately a constant, Ẑ ∼ 1). Therefore, ∆̂S is also a
LPF. The transition between these two LPFs as ηstp changes occurs via the development BPFs (e.g., Fig. 3-D to -F,
blue). Within some range of values of ηstp in between the LPFs and BPFs, the ∆̄S patterns develop a local minimum
preceding the local maximum (e.g., Fig. 3-C, blue).

The shapes of the X̄ LPFs and Z̄ HPFs, and therefore the ∆̄S BPFs, are controlled by the single-event time con-
stants τdep and τfac governing the depression and facilitation dynamics, respectively, in response to each presynaptic
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Figure 2: Representative temporal patterns for the synaptic update ∆S, the synaptic variable S, and the postsynaptic membrane
potential V in the presence of short-term dynamics (STD). We used the model for the postsynaptic cell described by eqs. (1)-(4) with
STD described by the DA model (7)-(9), and periodic presynaptic spike trains with frequency fspk (see schematic Fig. 1, left). Left column.
Short-term dynamics. The peak sequence ∆Sn (n = 1, . . . , Nspk) is the synaptic update to the synaptic variable S upon the arrival of each
presynaptic spike, and results from the combined effect of the depression (x) and facilitation (z) variables. The stationary value of the ∆Sn

sequences is referred to as ∆̄S. Middle column. Synaptic dynamics. The amplitude ΓS = S̄peak,n − S̄trough,n, where S̄ = S̄peak and S̄trough

are the stationary values of the sequenes Speak,n and Strough,n, respectively. Right column. Membrane potential dynamics. The amplitude
ΓV = V̄peak,n − V̄trough,n, where V̄ = V̄peak and V̄trough are the stationary values of the sequenes Vpeak,n and Vtrough,n, respectively. A.
fspk = 20Hz. B. fspk = 40Hz. C. Frequency profiles of the stationary peaks ∆̄S (left, blue), S̄ (middle, blue) and V̄ (right, blue) for the peak
sequences ∆Sn, Sn and Vn, respectively, and stationary peak-to-trough amplitude profiles ΓS (middle, light blue) and ΓV (right, light blue) for
S and V , respectively. The black dots correspond to the presynaptic input frequencies in A and B. We used the following additional parameter
values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0, τdep = 400, τfac = 400, τrse = 0.1, τdec = 10, C = 1, EL = −60, GL = 0.1, Iapp = 0,
Gsyn = 0.025, Esyn = 0.
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Figure 3: ∆̄S filters in response to periodic presynaptic spike inputs (frequency fspk) for the DA model: representative examples.
We used eqs. (12) and (13). A. τfac = 1. B. τfac = 100. C. τfac = 200. D. τfac = 500. E. τfac = 1000. F. τfac = 10000. We used the
following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and τdep = 1000.
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spike. However, the dependencies of these filters with τdep and τfac are non-trivial, similarly to what was found for
temporal filters [44].

We characterize the properties of the X̄ and Z̄ filters in terms of the characteristic frequencies σdep and σfac,
respectively (Fig. 4-A2). These are defined as the frequencies for which the filters reached 63% of the gap between
their values at fspk = 0 and fspk → ∞ (black dots in Figs. 4-A1 and -A2). For the characterization of the ∆̄S BPFs
we use four attributes (Fig. 4-A3): the characteristic frequencies κrse and κdec, the ∆̄S resonant frequency f∆̄S,res

and the peak frequency ∆̄Smax. The characteristic frequencies were computed as the frequency difference between
the peak and the frequency value at which ∆̄S reached 63% of the gap between the peak and the value at fspk = 0
(κrse) and fspk →∞ (κdec).

Fig. 4-B shows the dependence of the characteristic frequencies for the X̄ and Z̄ filters with the parameters defin-
ing the depression and facilitation processes at the single event level, in particular the corresponding time constants
τdep and τfac, respectively. Specifically, σdep and σfac are decreasing functions of τdep and τfac, respectively, and
decreasing functions of ad and af , respectively. In other words, the larger the time constants, the more pronounced
the decrease and increase of the corresponding filters with fspk. The difference ∆κ = κdec − κrse is a measure of
the spread of the BPFs.

Fig. 4-C shows the dependence of the attributes for the ∆̄S BPFs with the time constants of the interacting
depression and facilitation processes. We fixed the value of τdep = 1000 (Fig. 4-C, blue) so the range of resonant
frequencies f∆̄S,res is relatively low. Using this information one can obtain the dependences for other values of τdep by
reversing the rescaling (38). For comparison, we also present the results for τdep = 250 (Fig. 4-C, red). Specifically,
the resonant frequency decreases with increasing values of τfac and τdep, the ∆̄S peak increases with increasing
values of τfac and decreases with increasing values of τdep and the peak becomes sharper (∆κ decreases) as τfac
or τdep increase. Fig. 4-D shows the same results as a function of the characteristic frequency σfac.

3.2 Interplay of ∆̄S and S̄ filters: inherited and cross-level mechanisms of generation of
S̄ BPFs

The dynamics of the synaptic variable S is determined by eq. (3). For the parameter values consistent with AMPA
excitation (and GABAA inhibition), the synaptic raise time τrse is very fast as compared to the synaptic decay time
τdec and other times scales present in the model. Therefore, as a first step, one can approximate the dynamics of S
by

dS

dt
= − S

τdec
[+] ∆Sn δ(t− tspk,n) (40)

where the sign [+] indicates that each presynaptic spike (e.g., at time tn) instantaneously raises S “to" ∆Sn. We refer
to this model as the “to-∆S" model in contrast to the scenario where each presynaptic spike instantaneously raises
S “by" some value ∆Sn, which is discussed in the next section.

For generality, it is instructive to explore how the results obtained for the above models are affected by the presence
of a non-zero synaptic raise time at the arrival of the presynaptic spikes. The extended to-∆S model reads

dS

dt
= Ĥ(tspk,n, tspk,n + Tsw)

∆Sn − S
τrse

− Ĥ(tspk,n + Tsw, tspk,n+1)
S

τdec
, (41)

where Tsw is the spike width, tspk,n+1 = tspk,n + ∆spk,n and Ĥ(t1, t2) is a square pulse defined by the appropriate
product of Heaviside functions H(t), Ĥ(t1, t2) = H(t − t1)H(t2 − t). From the arrival of each spike and for the
duration of this spike, S evolves according the first term in eq. (41). For the remaining of the presynaptic period, S
evolves according to the second term in eq. (41).

We characterize the response of S to periodic presynaptic inputs by considering two attributes: the steady-state
value S̄ (= S̄peak) of the peak sequence Sn (= Speak,n) (Fig. 2, middle column, coral dots) and the peak-to-trough
steady-state amplitude

ΓS = S̄peak,n − S̄trough,n (42)
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Figure 4: ∆̄S filters in response to periodic presynaptic spike inputs (frequency fspk) for the DA model: frequency attributes. A.
The black dots on the X̄, Z̄ and ∆̄S filters indicate the characteristic frequencies (projections on the fspk axis) defined as the change in the
corresponding quantities by 63 % of the gap between their final and initial values (σdep and σfac) and between their maximum and minimum
values (κrse and κdec). The ∆̄S resonant frequency f∆S,res is the peak frequency and ∆Smax is the peak value. B. Dependence of the X̄
and Z̄ attributes (characteristic frequencies σdep and σfac) with the depression and facilitation time constants τdep and τfac, respectively. C.
Dependence of the ∆̄S attributes with τfac for representative values of τdep. D. Dependence of the ∆̄S attributes with σfac for representative
values of τdep. For τdep = 1000, σdep ∼ 17.6, and for τdep = 250, σdep ∼ 70.1.14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.02.547439
http://creativecommons.org/licenses/by-nc-nd/4.0/


where S̄trough is the steady-state value of the trough sequence Strough,n (Fig. 2, middle column, acquamarine dots).
Fig. 2 (middle column) illustrates that both S̄ and ΓS vary with the input frequency fspk. The temporal filtering
properties of these responses were investigated in [44].

3.2.1 The to-∆̄S update model with instantaneous S raise

By solving the differential equation (40) for a constant value of ∆Sspk,n = ∆Sspk during the presynaptic ISIs and
updating the solution at the occurrence of each presynaptic spike at t = tspk,n (n = 1, . . . , Nspk), one arrives to the
following discrete linear difference equation for the peak sequences

Sn+1 = e−∆spk/τdec ∆Sn. (43)

By construction, the steady state value S̄ is given by

S̄ = ∆̄S (44)

for all input frequencies fspk where ∆̄S is the steady-state profile of the sequence ∆Sn. In other words, the peak
envelope profiles S̄ are identical to the ∆̄S profiles.

The peak-to-trough envelope amplitude profile ΓS is given by

ΓS = ∆̄S ( 1− e−∆spk/τdec ). (45)

where the second term is the trough envelope profile for the stationary solution to eq. (43).
This expression is the product of two frequency-dependent processes: ∆̄S and

QA = 1− e−∆spk/τdec , (46)

which is a LPF. As fspk increases, the ΓS profiles transition from ΓS = ∆̄S (fspk → 0) to ΓS = 0 (fspk →∞) (Fig. 5).
For fixed values of fspk, the ΓS profiles transition from ΓS = ∆̄S (τdec → 0) to ΓS = 0 (τdec →∞) as τdec increases.
In other words, for small enough values of τdec, the ΓS profiles reproduce the ∆̄S profiles (Fig. 5-A1 to A3), but for
larger values of τdec, the ΓS and ∆̄S profiles are different. These differences increase as fspk and τdec increase (Fig.
5). For generality, in Fig. 5 we included values of τdec beyond the biophysically plausible regime for AMPA excitation.

When ∆̄S is constant (frequency-independent, no STP) or is an LPF, ΓS is a LPF (Fig. 5-A2 and A3). These
LPFs become more pronounced as τdec increases. When ∆̄S is a BPF, the ΓS BPFs evoked by ∆̄S become sharper
as τdec increases (Fig. 5-A1).

These ΓS filters are inherited from the ∆̄S ones and modulated by τdec. In contrast, when ∆̄S is a HPF, ΓS BPFs
emerge as the product of a HPF and a LPF (Fig. 5-A4). As τdec increases, the QA LPF is more pronounced as a
function of fspk and therefore the ΓS BPF is sharper and peaks at a smaller value (Fig. 5-A5 and -A6).

3.2.2 The to-∆̄S update model with non instantaneous S raise

The solution to the first and second terms in (41) are given by

S = ∆S + [S(tspk,n)−∆S ] e−(t−tspk,n)/τrse (47)

and

S = [ ∆S + (S(tspk,n)−∆S ) e−(Tsw/τrse) ] e−(t−tspk,n−Tsw)/τdec , (48)

respectively. Using this, one can compute the difference equation governing the evolution of the sequence of peaks

Sn+1 = ∆S
(

1− e−Tsw/τrse
)

+ Sn e
−(∆spk,n−Tsw)/τdec e−Tsw/τrse . (49)

By assuming a constant ∆spk,n = ∆spk, one obtains
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S̄ = ∆̄S
1− e−Tsw/τrse

1− e−Tsw/τrse e−(∆spk−Tsw)/τdec
(50)

and

ΓS = S̄
[
1− e−(∆spk−Tsw)/τdec

]
. (51)

Both expressions are the products of frequency-dependent filters and reduce to eqs. (44) and (45) for τrse → 0
and Tsw → 0 with τrse/Tsw � 1.

For τrse → 0, the second factor in eq. (50)

QC =
1− e−Tsw/τrse

1− e−Tsw/τrse e−(∆spk−Tsw)/τdec
(52)

is QC = 1, independent of fspk. For τrse > 0, QC is a HPF, changing from QC,0 = 1 − e−Tsw/τrse < 1 (for
fspk = 0) to QC,∞ = (1− e−Tsw/τrse)/(1− e−Tsw(1/τrse−1/τdec)) > 1 (as fspk →∞). QC = 1 for fspk = 1000/Tsw,
independently of τdec and τrse. As τrse increases (all other parameters fixed), within some bounds, QC,0 decreases
and QC,∞ increases, causing an increase in the HPF amplitude of QC . As τdec increases (all other parameters fixed),
also within some bounds, QC increases for 0 < fspk < 1000/Tsw and decreases for fspk > 1000/Tsw. Therefore,
for fspk < 1000/Tsw, increasing values of τrse cause an attenuation of the S̄ profiles (Fig. 6-A1 to -A3), and this
attenuation is less pronounced the larger τdec (not shown). For fspk > 1000/Tsw, increasing values of τrse cause an
amplification of the S̄ profiles (Fig. 6-A3), which is less pronounced the larger τdec (not shown). However, for Tsw = 1,
the latter range is well beyond the frequencies we are interested in this paper.

The bounds mentioned above are set by the requirement that the denominator of QC is positive, which in turn
requires that ∆spk > Tsw(τrse − τdec)/τrse. This is satisfied for all values of ∆spk if τrse < τdec. (For larger values of
τres, this imposes a bound on ∆spk for which QC > 0.) The realistic values of τrse and τdec we use here satisfy this
condition. Moreover, for these values of τrse and τdec, QC is a HPF, converging asymptotically to QC,∞.

Because QC has HPF properties, the question arises whether a S̄ BPF can be created by the interplay of a ∆̄S
LPF andQC for nonzero values of τrse. This is not possible for the model with instantaneous raise since S̄ = ∆̄S (see
Section 3.2.1). Figs. 6-A4 to -A7 illustrates that this is indeed possible τrse > 0. The generation of a S̄ band-pass
filter requires that the QC(0) is low enough, which is achieved by increasing τrse above some threshold value (Fig.
6-A5). This band-pass filter can be amplified by making the increase of QC sharper for low values of fspk, which can
be achieved by increasing τdec (Fig. 6-A6). The band-pass filter in Fig. 6-A5 is attenuated by further increasing τrse
since this causes the intersection between the constituents low- and high-pass filters to move down (Fig. 6-A7). An
increase in the values of τdep (Fig. 6-A7) causes the ∆̄S low-pass filter to decrease sharper as compared to Fig. 6-
A5, decreasing the intersection between the ∆̄S low-pass filter and the QC high-pass filter. The resulting attenuation
produces a S̄ low-pass filter (Fig. 6-A7).

The second factor in eq. (51),

QD = 1− e−(∆spk−Tsw)/τdec , (53)

is a low-pass filter, provided ∆spk is large enough as compared to Tsw, and is independent of τrse. Therefore, the
effect of τrse on the ΓS filters is inherited from the effect of τrse on S̄ filters. The ΓS filters are further attenuated by
the QD filter. The ΓS BPFs, in addition, become wider and the ΓS resonant frequency is displaced (Fig. S14-A1,
-A3). The attenuation is more pronounced for the larger frequencies as τdec increases, therefore the BPFs become
sharper and the ΓS resonant frequency is displaced as τdec increases (not shown).

3.3 Interplay of ∆̄S and summation PSP filters

The synaptic variable S determined by eq. (3) is the input to the current balance equation (1) for the postsynaptic
voltage response V . In the absence of STP (∆S = 1), summation effects give rise to postsynaptic (PSP) high-pass
filters whose properties depend on the membrane potential properties, particularly the membrane time constant (τm).
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In the presence of STP, the PSP filters reflect the interaction of the ∆̄S filters and the summation filters. For small
enough values of τm, the PSP filters are well approximated by the ∆̄S filters. Previous work has considered PSP
and ∆̄S filters to be proportional (e.g., [28,46,92], but see [21]). However, for larger values of τm, the PSP filters are
expected to depart from the weak modulation of the ∆̄S filters.

As an intermediate step for the investigation of the interaction between ∆̄S and PSP summation filters, we use an
alternative formulation for the reduced synaptic dynamics described above given by

dS

dt
= − S

τdec
+ ∆Sn δ(t− tspk,n), (54)

where S is interpreted as the PSP response. Each presynaptic spike instantaneously raises S “by" some value ∆Sn,
which, as before, varies depending on the properties of the STP (depression and/or facilitation). We refer to this
model as the “by-∆S" model.

The extended by-∆S model (54) including the description of the raise phase reads

dS

dt
= Ĥ(tspk,n, tspk,n + Tsw)

∆̂Sn − S
τrse

− Ĥ(tspk,n + Tsw, tspk,n+1)
S

τdec
, (55)

where ∆̂Sn is the sum of ∆Sn and the value of S preceding the arrival of each presynaptic spike, and the other
components are as for eq. (41) above.

The advantage of this formulation as compared to the conductance-based formulation described in Section 2 is
that is amenable for analytical calculations, which help obtaining a better insight into the interplay of the STP time
constants (τdep and τfac) and the synaptic time constants (τdec and τrse) in controlling the PSP filtering properties.
We investigate the response of conductance-based models to periodic presynaptic inputs in the presence of STP in
the next Section.

3.3.1 The by-∆̄S update model with instantaneous S raise

By solving the differential equation (54) for a constant value of ∆Sn = ∆S during the presynaptic ISIs and updating
the solution at each occurrence of the presynaptic spikes at t = tn, n = 1, . . . , Nspk, one arrives to the following
discrete linear differential equation for the peak sequences in terms of the model parameters

Sn+1 = e−∆spk/τdec Sn + ∆S. (56)

The steady state values of (56) are given by

S̄ =
∆̄S

1− e−∆spk/τdec
. (57)

By construction,

ΓS = ∆̄S. (58)

In other words, the ΓS filtering properties are inherited from the ∆̄S profiles.
Eq. (57) is the product of two frequency-dependent processes. The factor

QB =
1

1− e−∆spk/τdec
(59)

is a HPF transitioning from QB = 1 (for fspk = 0) to QB → ∞ (for fspk → ∞), and increasing faster the larger τdec.
From eq. (57), for small enough values of fspk, S̄ ∼ ∆̄S. In the limit fspk → 0, S̄ = ∆̄S. As fspk increases, QB
increases and therefore the difference between S̄ and ∆̄S also increases.

In the absence of STP, ∆̄S is constant and therefore S̄ increases unboundedly as fspk →∞ (Fig. 5-B3). Similarly
unbounded S̄ profiles are also obtained for ∆̄S HPFs. Under certain circumstances, the presence of STP puts a
bound on the increase of S̄, particularly for large values of τdec and the resulting filters remain bounded. Specifically,
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BPFs (Fig. 5-B1) and LPFs (Fig. 5-B2) may remain so for low enough values of τdec and transition to (bounded) HPFs
for larger values of τdec. However, these HPFs may raise to saturation values that are too high to be realistic. This
together with the presence of unbounded profiles (e.g., Fig. 5-B3) suggests that more complex biophysical models we
investigate below include mechanism that cause the summation effects to be realistically saturated. In some cases
(e.g., Fig. 5-B2), the transition to a HPF involves the generation of a trough in the S̄ profiles for large enough values
of τdec (synaptic antiresonance).

3.3.2 The by-∆̄S update model with non-instantaneous S raise

The solution to the first and second terms in (55) are given by eqs. (47) and (48), respectively, with ∆S substituted
by ∆̂S. Using this, one can compute the difference equation governing the evolution of the sequence of peaks

Sn+1 = ∆S
(

1− e−Tsw/τrse
)

+ Sn e
−(∆spk,n−Tsw)/τdec . (60)

By assuming a constant ∆spk,n = ∆spk, one obtains

S̄ = ∆̄S
1− e−Tsw/τrse

1− e−(∆spk−Tsw)/τdec
(61)

and

ΓS = S̄
(

1− e−(∆spk,n−Tsw)/τdec
)

= ∆̄S
(

1− e−Tsw/τrse
)
. (62)

Eq. (61) is the product of frequency-dependent processes. The second factor

QE =
1− e−Tsw/τrse

1− e−(∆spk−Tsw)/τdec
(63)

reduces to QB in eq. (46) for τrse → 0 and Tsw → 0 with τrse/Tsw � 1. This case was discussed in Section 3.3.1
and serves as a reference here.

The presence of Tsw in QE (for τrse > 0) causes a decrease in the initial values of QE(fspk = 0) and shrinks
the range of values of fspk for which the denominator of QE is positive to finite values: fspk < 1000/Tsw. As
fspk → 1000/Tsw, QE increases unboundedly. This in turn causes S̄ to increase unboundedly. However, this
behavior is not alway monotonic. For low enough frequencies, but large enough to be within the range of realistic
values we consider in this paper, LPFs and BPFs emerge (Fig. 6-B1 and -B2). Within this range of frequencies,
increasing values of τrse cause an attenuation of the S̄ profiles. Away from this range of frequencies, the S̄ profiles
for τrse > 0 increase above the S̄ profile of τrse → 0 as they grow unboundedly. Increasing values of τdec amplify the
grow of the S̄ profiles consistent with the results of τrse → 0.

The second factor in eq. (62) is independent of fspk and therefore increasing values of τrse attenuate the ΓS filters
without affecting their types (Fig. S15).

3.4 Interplay of synaptic STP and PSP summation frequency filters for postsynaptic pas-
sive cells: PSP peak, amplitude and phase profiles

Here we focus on the stationary membrane potential fluctuations of passive postsynaptic cells in response to periodic
presynaptic inputs in the presence of STP (Fig. 1-A) for relatively fast synaptic raise and decay times (see Methods),
consistent with AMPA excitation and GABAA inhibition.

The passive postsynaptic cell is described by

C
dV

dt
= −GL V + Iin(t)− Isyn(t), (64)
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Figure 5: S and ΓS filters in response to periodic presynaptic spike inputs (frequency fspk) for the to- and by-∆S update models
with instantaneous raise: representative examples. We used eqs. (12) and (13) (DA model) for ∆̄S. A. To-∆S model (synaptic update to
∆S). We used eq. (45) for ΓS and eq. (46) for QA. A1. ∆̄S and ΓS are band-pass filters. A2. ∆̄S and ΓS are low-pass filters. A3. No STP. ∆̄S
is constant and ΓS are low-pass filters. A4 to A6. ΓS band-pass filters generated from ∆̄S high-pass filters and QA low-pass filters. B. Synaptic
update by ∆S. We used eq. (57) for S̄. B1. ∆̄S is a band-pass filter, while S̄ transitions form band- to high-pass filters as τdec increases. B2.
∆̄S is primarily a low-pass filter, while S̄ transitions form low- to high-pass filters as τdec increases. B3. No STP. ∆̄S is constant, while S̄ are
high-pass filters. We used the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1 and z∞ = 0.
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Figure 6: S̄ and ΓS filters in response to periodic presynaptic spike inputs (frequency fspk) for the to- and by-∆S update models
with non-instantaneous raise: representative examples. We used eqs. (12) and (13) (DA model) for ∆̄S A. To-∆S model (synaptic update
to ∆S). The S and ΓS filters were computed using eqs. (50) and (51), respectively, with QC and QD given by (52) and (53), respectively. A1
to A3. Effects of τrse. A1. S̄ BPFs attenuated by increasing values of τrse. A2. S̄ LPFs attenuated by increasing values of τrse. A3. S̄ HPFs
filters attenuated (amplified) by increasing values of τrse for lower (higher) values of fspk. A4. S̄ low-pass filters created by the interplay of a ∆̄S
low-pass filter and a QC high-pass filter. A5, A6, A7. S̄ band-pass filters created by the interplay of ∆̄S low-pass filters and QC high-pass filters.
B. By-∆S model (synaptic update by ∆S). The S and ΓS filters were computed using eqs. (61) and (62), respectively, with QE given by (63).
We used the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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where the variable V in eq. (64) represents V − Veq in eq. (1) with Veq = EL − Iapp/GL and Isyn is described by
eqs. (2)-(4) appropriately adapted (to account for the interpretation of V as membrane potential fluctuations around
the equilibrium). We use the analytical approximations described in Section 2.2 (see also Appendix A).

We distinguish between the filtering properties of passive cells in response to direct current injection (Iin) and
presynaptic activation (Isyn). We also distinguish between the cell’s membrane potential (peak-to-trough) amplitude
and peak response profiles.

A cell’s response frequency content can be measured by using the impedance amplitude (Z) and phase (ΦZ )
profiles (see Section 2.3.1; Fig. 8-A, green). For direct sinusoidal current activation of cells with linear subthreshold
dynamics, the cell’s response (peak-to-trough) amplitude and peak profiles coincide and are described by the Z
profiles (Fig. 8-A1, green). (For certain types of cells with nonlinear subthreshold dynamics, the Z profiles provide a
good approximation to these quantities or the Z profiles can be adapted to capture these quantities [77, 78, 96, 97].)
For presynaptic activation of cells, in contrast, the PSP (peak-to-trough) amplitude and peak profiles do not generally
coincide [94] (see discussion in Section 3.3; Fig. 8-A1, blue and light blue).

We therefore consider three metrics for the PSP response to periodic presynaptic inputs : (i) the PSP peak profiles
Vpeak (curves of the stead-state peak values of V as a function of the input frequency fspk) (Fig. 8-A1, blue), (ii) the
peak-to-trough PSP amplitude profiles ΓV , defined as

ΓV (fspk) = Vpeak(fspk)− Vtrough(fspk) (65)

where Vtrough are the PSP trough profile (curves of the steady-state trough values of V as a function of the input
frequency fspk) (Fig. 8-A1, light blue), and (iii) the PSP phase profiles ΦV , defined as

ΦV =
tpeak,V − tspk

∆spk/π
, (66)

expressed in radians, where tpeak,V is Vpeak time and tspk is the presynaptic spike time immediately preceding
the occurrence of this peak (Fig. 8-A2, blue). The Vpeak and ΦV profiles are analogous metrics to the Z and
ΦZ profiles. The Vpeak profiles capture the postsynaptic cell’s ability to preferentially produce spikes within certain
presynaptic frequency ranges, and is therefore relevant for the frequency-dependent communication of information to
the postsynaptic spiking regime.

The PSP filtering properties, captured by the Vpeak, ΓV and ΦV profiles, depend on the filtering properties of the
participating building blocks and are controlled by the time constants operating at each level (Fig. 1): τdep and τfac
(STP), τdec (synaptic) and τ (postsynaptic). From our results in Section 3.2 (see also Section 2.2), the steady-state
S peak profiles Speak (or S̄) depend at most mildly on τrse for the type fast synaptic raise times we consider here.

In the next sections we first discuss the PSP summation HPFs in passive cells (controlled by τ and modulated
by τdec) in the absence of STP, and their link to the passive cells’ LPFs (captured by Z, also controlled by τ ). We
then discuss the PSP filtering properties of passive cells in response to periodic presynaptic inputs in the presence
of either depression (LPF) or facilitation (HPF).

3.5 Digression: PSP response of passive cells to presynaptic spikes for individual input
frequencies

We analyze here the properties of the PSP response of passive cells to presynaptic spikes from the arrival of a presy-
naptic spike (t = tn) to the arrival of the next presynaptic spike (t = tn+1 = ∆spk,n). By construction (see Section 2.2
and Appendix A.2), the analytical approximation to V (t), namely VI(t) (80) for the duration of the presynaptic spike
(tn < t < tn+Tsw) followed by VII(t) (83 or 90) for the reminder of the presynaptic ISI (tn+Tsw < t < tn+ ∆spk,n),
depends on the model parameters both explicitly and implicitly through the initial condition V0,n for each presynaptic
ISI and the update parameter αn. The implicit dependence is inherited from the previous presynaptic ISI. We assume
here the PSP response is in the steady-state regime and therefore we focus our analysis on the explicit dependence
of V (t) on the model parameters.
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From eq. (80) for VI(t) (tn < t < tn + Tsw), the larger τ , the larger βn = VI(tn + Tsw) = VII(tn + Tsw) (81).
This dependence is affected by the presynaptic ISI ∆spk,n through V0,n = VII(tn−1) (from the previous presynaptic
ISI). For the remainder of the presynaptic ISI (tn + Tsw < t < tn+1), from eqs. (83) and (90), respectively,

VII(t) =
αn ∆Sn

1− η
e−(t−tn−Tsw) η/τ +

[
βn −

αn ∆Sn
1− η

]
e−(t−tn−Tsw)/τ if τdec 6= τ (67)

with

η =
τ

τdec
, (68)

and

VII(t) =

[
αn ∆Sn

τ
(t− tn − Tsw) + βn

]
e−(t−tn−Tsw)/τ if τdec = τ. (69)

The PSP response to presynaptic inputs V (t) is shaped by a balance among τdec, τ and ∆spk,n (Fig. 7), and
is modulated by Gsyn (constant) and the STP time constants (τdep and τfac) through ∆Sn (frequency-dependent).
The latter determines the target for the peak of the synaptic function S. In Fig. 7, ∆Sn is independent of fspk. The
properties of the PSP response for frequency-dependent ∆Sn profiles are investigated in the next Sections.

If τdec � τ , η � 1 in eq. (67) and VII(t) is dominated by the second term. In the limiting cases η →∞ (τdec → 0
or τ →∞), VII(t) begins to decrease at tn + Tsw. As η decreases, VII(t) continues to increase passed tn + Tsw in
response to Sa(t) > 0. The larger τdec for fixed values of τ , the larger VII(t) over the presynaptic ISI (Fig. 7-B) and
the larger the peak time tpeak,n. Similarly, the larger τ for fixed values of τdec, the larger VII(t) over the presynaptic
ISI (Fig. 7-A) and the larger the peak time tpeak,n. If τdec � τ , η � 1 in eq. (67) and VII(t) is dominated by the first
term. In the limit η → 0 (τdec → ∞ or τ → 0), VII(t) only increases over the presynaptic ISI. If τdec = τfac, VII(t)
has the form of an alpha function. The larger τ , the larger VII(t) over the presynaptic ISI. Increasing values of Gsyn
also cause an increase in VII(t) over the presynaptic ISI (Fig. 7-C) with at most a mild effect on the peak times. This
suggests that while increasing values of τdec and Gsyn increase the total input current to the postsynaptic cell, their
effect on the properties of the PSP filters may differ.

Comparison between the left (fspk = 10) and right (fspk = 40) columns in Fig. 7 illustrates that effects of
summation. One of them is the increase in the PSP peak response as fspk increases and the other one is the
decrease in the peak-to-trough amplitude as fspk increases.

3.6 Response of passive cells to periodic presynaptic inputs in the absence of STP: sum-
mation (SUM) filters

3.6.1 PSP peak (LPFs), amplitude (LPFs) and phase (delay) profiles in response to direct activation
of oscillatory inputs (revisited)

Passive cells are LPFs in response to direct activation of sinusoidal input currents and always exhibit a delayed
response (see Section 2.3.2). The Z profile (36) is a decreasing function of the input frequency f (Fig. 8-A1, green)
and the ΦZ profile (37) is an increasing function of f , converging to π/2 (Fig. 8-A2, green). These profiles are
affected by the membrane time constant τ = C/GL. Increasing values of τ cause (i) an increase in Zmax = Z(0)
(compare Figs. 8-A1 and B1, green), (ii) a sharper decrease of the Z profile (compare Figs. 8-A1 and B1, green),
and (iii) a sharper increase of the ΦZ profile (compare Figs. 8-A2 and B2, green).

3.6.2 PSP peak (HPFs), amplitude (LPFs) and phase (delay) profiles in response to periodic presy-
naptic inputs

In response to periodic presynaptic inputs (with no STP), passive cells are ΓV LPFs (Fig. 8, left column, light blue),
but Vpeak HPFs (Fig. 8, left column, blue), while always exhibit a delayed response (Fig. 8, right column, blue)
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Figure 7: Properties of the membrane potential response of passive cells to periodic presynaptic spikes for representative parameter
values. For the numerical approximations we used the model for a passive cell receiving presynaptic spike-train input (1)-(4). For STP we used
the DA model (7)-(9). The graphs correspond to the steady-state solutions (translated to t = 0). The summation effect is observed in panels B.
The synaptic function S was normalized by its maximum in the presynaptic interspike interval. A. Gsyn = 0.1 Top row: τdec = 10. Bottom row:
τdec = 3. Left column. fspk = 10. Right column. fspk = 40. Gsyn = 0.1. B. Gsyn = 0.1 and τ = 10 B1. fspk = 10. B2. fspk = 40. C.
τ = 10, τdec = 10 C1. fspk = 10. C2. fspk = 40. We used the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0,
τrse = 0.1, C = 1, EL = −60, Iapp = 0, Esyn = −60, τdep = τfac = 0.1.
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similarly to ΦZ . The Vpeak HPFs result from the summation phenomenon. These profiles are affected by both τ
(membrane time constant) and τdec (synaptic decay time).

Increasing values of τ , amplify and sharpen the Veq and ΓV profiles (Fig. 8-A1 and -B1), and sharpen the ΦV
profiles (peak responses are more delayed) (Fig. 8-A2 and -B2). Increasing values of τdec, also amplify and sharpen
the Veq and ΓV profiles (Fig. 8-C1), and sharpen the ΦV profiles (peak responses are more delayed) (Fig. 8-C2).
More specifically, increasing values of τ cause cause (i) an amplification of the Vpeak profiles (compare Figs. 8-A1 and
B1, blue), (ii) a sharper increase of the Vpeak profile with fspk (compare Figs. 8-A1 and B1, blue), (iii) an amplification
of the ΓV profiles, which is more pronounced for the lower values of fspk (compare Figs. 8-A1 and B1, light blue),
(iv) a sharper decrease in the ΓV profile with increasing values of fspk (compare Figs. 8-A1 and B1, green), and (v)
a sharper increase in the ΦV profile with increasing values of fspk (compare Figs. 8-A2 and B2, blue). Increasing
values of τdec cause (i) an amplification of both the Vpeak and ΓV profiles (Fig. 8-C1, blue and light blue), (ii) a sharper
decrease of the ΓV profiles with increasing values of fspk (Fig. 8-C1, light blue), and (iii) a sharper increase of the
ΦV profiles with increasing values of fspk (Fig. 8-C2, blue).

3.6.3 Summation: heuristic explanation

By approximating S by ∆Sn for the duration of the presynaptic spike (tn ≤ t ≤ tn + Tsw), the passive membrane
equation receiving presynaptic inputs equation is approximated by

τ
dV

dt
= −V + γsyn ∆Sn τ (V − Esyn) (70)

where the variable V has the same interpretation as in eq. (21), V (0) = 0 and

γsyn =
Gsyn
C

. (71)

The solution to eq. (70) is given by

V (t) = V∞ + [V (tn)− V∞ ] e−(1/τ+γsyn ∆Sn) (t−tn) (72)

where

V∞ =
γsyn ∆Sn τ

1 + γsyn ∆Sn τ
Esyn. (73)

V (t) increases and approaches its steady-state value V∞, which increases from V∞ = 0 (τ = 0) to V∞ = Esyn
(τ →∞). V (t) reaches its peak value

Ṽpeak,n = V (tn + Tsw) = V∞ [ 1− e−(1/τ+γsyn ∆Sn)Tsw ] + V (tn) e−(1/τ+γsyn ∆Sn)Tsw < V∞ (74)

during the presynaptic ISI. For the remaining of the presynaptic ISI (tn + Tsw < t < tn+1), V (t) decays exponentially
to some value Ṽtrough,n = V (tn+1) > 0, which depends on the presynaptic ISI ∆spk,n.

The peak value Ṽpeak,n increases from Ṽpeak,n = 0 (τ = 0) to Ṽpeak,n = Esyn + [V (tn) − Esyn ] e−γsyn ∆Sn Tsw

(τ →∞), and is an increasing function of V (tn) whose value is inherited from the previous presynaptic ISI.
For periodic presynaptic inputs and synaptic update values ∆Sn independent of n, the Vpeak and ΓV summation

are originated in the temporal domain (as n increases) and are frequency-dependent. For each value of fspk, V (t2) =
Vtrough,1 > V (t1) = 0 and therefore, Vpeak,2 > Vpeak,1. This causes Vtrough,2 = Vtrough,1. Following this process for
increasing values of n, leads to two monotonically non-decreasing sequences converging to Vpeak and Vtrough. As
fspk increases, Vtroough,n also increase for fixed values of n, since there is less time for V to decay, and therefore
Vpeak,n also increase.

Therefore, Vpeak and Vtrough are increasing functions of fspk. If the Vpeak profile increases slower than Vtrough
profile, then the ΓV profile is a LPF (Fig. 8, column 1). For τ → 0, the Vpeak profile is proportional to Speak and
Vpeak → 0. As τ increases, both the Vpeak and ΓV profiles are amplified.
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Figure 8: Postsynaptic filters in response to periodic presynaptic spike inputs for the passive (postsynaptic) cell in the absence
of STP. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the
equilibrium point. We used eqs. (12) and (13) (DA model) with very values of τdep and τfac in the no STP regime. The impedance amplitude (Z)
and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for the PSP peak sequence response of passive cells
to presynaptic inputs are described in Section 2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed
as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66).
The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V . A. τ = 10 (GL = 0.1), τdec = 10. B. τ = 20
(GL = 0.05), τdec = 10. The dashed curves correspond to panels B (τ = 10) and are presented for comparison purposes. C. τ = 10
(GL = 0.1), τdec = 3. The dashed curves correspond to panels B (τdec = 10) and are presented for comparison purposes. We used the
following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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3.7 PSP Vpeak and ΓV profiles: Inherited and cross level BPFs (resonances)

The Vpeak, ΓV and ΦV profiles are shaped by the feedforward interaction among the participating filters. For small
enough values of τdec and τ , the Vpeak profile is almost proportional to the Speak profile, the Vtrough profile is almost
zero, and therefore the ΓV profile is almost equal to the Vpeak profile. In the limit of τ → 0 and τdec → 0 these
relationships are strictly valid. In this sense, the PSP Vpeak and ΓV profiles (and filtering properties) are inherited
from the synaptic level Speak profile. If τdec increases (τ � 1), then the Vpeak profile remains almost proportional to
Speak profile, but the Vtrough profile increases with fspk and therefore the ΓV profile is lower than the Vpeak profile.
If, on the other hand, τ increases (τdec � 1), the Vpeak profile is no longer proportional to the Speak profile and the
Vtrough profile is an increasing function of fspk, and therefore the ΓV and Vpeak profiles are different. This remains
true when both τ and τdec increase. In these cases, the Vpeak and ΓV profiles are either modulated versions of the
Speak profiles or exhibit a qualitatively different shape from the Speak profiles.

Similarly to the generation of the STP-mediated ∆̄S BPFs discussed above, under certain balance conditions,
synaptic and postsynaptic filters with opposite monotonic dependencies with fspk are expected to produce BPFs,
while synaptic and postsynaptic filters with the same monotonic dependencies with fspk are expected to reinforce
each other.

The interplay of synaptic depression (LPF) and Vpeak summation (HPF) is able to generate Vpeak BPFs (Fig. 9-A1,
solid blue), but not ΓV BPFs (Fig. 9-A, solid light blue) since both the Speak and the ΓV summation profiles are LPFs.
In contrast, the interplay of synaptic facilitation (HPF) and ΓV summation (LPF) is able to generated ΓV BPFs (Fig.
9-B, solid light blue), but not Vpeak BPFs since both the Speak and Vpeak summation profiles are HPFs (Fig. 9-B, solid
blue). In the presence of both synaptic depression (LPF) and facilitation (HPF), the Speak profiles are BPFs (Fig. 9-C,
solid red). These are communicated to the postsynaptic level where they interact with the postsynaptic membrane
potential properties. In certain parameter regimes, these modulations produce PSP Vpeak and ΓV BPFs (Fig. 9-C,
solid blue). We analyzed the various possible scenarios and mechanisms in the next sections.

3.8 Interplay of synaptic depression (LPFs) and PSP summation filters: Vpeak BPFs and
ΓV LPFs

The presence of short-term depression generates Speak LPFs that become sharper and more attenuated as τdep
increases (Fig. 10-A3) and are independent of τ , τdec and Gsyn (Fig. 10-B3 to -D3)

3.8.1 Emergence of Vpeak resonance (BPFs): interplay of a depression LPF and a PSP summation
HPF

The interaction between these filters and the PSP summation HPF (Fig. 8-A1, blue) produces Vpeak BPFs for values
of τdep within some range (Fig. 10-A1, blue and red). We refer to this preferred frequency PSP peak response to
periodic presynaptic inputs as (PSP) Vpeak resonance. This maximal amplification of the Vpeak response is often
preceded by a relatively small trough. Vpeak resonance reflects balances between the two participating filters. As τdep
increases (sharper decrease of the Speak profile), the Vpeak profiles are dominated by depression and therefore they
are attenuated as they transition to LPFs for larger values of τdep (Fig. 10-A1, blue to light blue). This is accompanied
by a decrease in the Vpeak resonant frequency. As τ increases, the Vpeak profiles are dominated by summation
and therefore they are amplified (Fig. 10-A2). This is accompanied by an increase in the Vpeak resonant frequency.
Changes in τdec and Gsyn do not affect the Speak profiles, but they affect the V response to presynaptic spikes in a
frequency-dependent manner (Fig. 7-C). Consistently with that, increasing values of τdec and Gsyn amplify the Vpeak
response with lesser effects on their shapes than changes in τdep and τ (Fig. 10-C1 and -D1). This is more prominent
for Gsyn, which has almost a multiplicative effect on the Vpeak profiles, than for τdec, consistently with the different
ways in which they control the synaptic currents.
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Figure 9: Postsynaptic BPFs filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term
depression (LPF), short-term facilitation (HPF) and postsynaptic summation (HPF). Each panel shows the superimposed Vpeak, Vtrough

and ΓV profiles in response to presynaptic inputs in the presence (solid) and absence (dashed) of STP. The Speak profiles are normalized to
coincide with the Vpeak profiles for the lowest value of fspk (fspk = 0.1 in the simulations). The summation HPFs are generated in response to
presynaptic inputs in the absence of STP (τdep = 0.1, τfac = 0.1 or τdep = τfac = 0.1 in the simulations). The Speak profiles in the absence
of STP are horizontal lines (not shown). A. Vpeak BFPs (solid blue) generated by the interplay of Speak LPFs (red) and Vpeak summation HPFs
(dashed blue) in the presence of synaptic depression only. The interplay of the ΓV summation LPF (dashed light blue) and the Speak LPF (red)
produces a ΓV LPF (solid light blue). B. ΓV BFPs (light blue) generated by the interplay of Speak HPFs (red) and ΓV summation LPFs (dashed
blue) in the presence of synaptic facilitation only. The interplay of of the Vpeak summation HPF (dashed blue) and the Speak HPF (red) produces
a Vpeak HPF (solid blue). C. Vpeak BPFs (solid blue) and ΓV BPFs (solid light blue) generated by the interplay of the inherited Speak BFPs (red)
and modulated by the Vpeak summation HPFs (dashed blue) and the GammaV summation LPFs (dashed light blue). We used eq. (64) for the
PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point, and STP described
by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical
approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A).
The approximation of Vpeak,n and Vtrough,n were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq.
(65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to
these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1,
x∞ = 1, z∞ = 0 and Tsw = 1.
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3.8.2 Modulation of ΓV LPFs: interplay of depression and PSP amplitude LPFs

In the absence of STP, the ΓV LPF is controlled by the membrane time constant τ ( Fig. 8-B1) and the synaptic decay
time constant τdec (Fig. 8-C1). Here we focus on the effects of synaptic depression (τdep) and the interplay between
the three time constants in the modulation of ΓV . Increasing values of τdep sharpen ΓV without affecting ΓV (0) (Fig.
10-A2). The magnitude of the modulation depend on the other parameter values (Fig. S5, column 2). Increasing
values of τ and τdec sharpen ΓV and increase ΓV (0) (Fig. 10-B2 and -C2). This is at most mildly affected by τdep
(Fig. S7, column 2) and τdec (Fig. S8, column 2). Increasing values of Gsyn have a multiplicative effect on ΓV (Fig.
10-D2).

3.8.3 Modulation of the ΦV

In the absence of STP, the ΦV profile is controlled by τ and τdec ( Fig. 8). Changes in τdep do not affect ΦV (Fig.
10-A4 and S5). Changes in τ and τdec affect ΦV in the same direction as in the absence of STP (Figs. 10-B4, -A4,
S6 and S7 ). Consistently with the previous findings, changes in Gsyn do not affect ΦV .

Figs. S5-S7 extend our results for additional parameter combinations. Figs. S5-S7 (left column), in particular,
illustrate how the balances between the depression LPFs and peak summation HPFs shape the Vpeak profiles for
additional parameter regimes.

3.9 Interplay of synaptic facilitation (HPFs) and PSP summation filters: Vpeak LPFs and ΓV

BPFs

The presence of short-term facilitation generates Speak HPFs that become sharper and more amplified as τfac in-
creases (Fig. 11-A3) and are independent of τ , τdec and Gsyn (Fig. 11-B3 to -D3)

3.9.1 Modulation of Vpeak HPFs: interplay of facilitation and PSP summation HPFs

In the absence of STP, the Vpeak HPF is controlled by the membrane time constant τ ( Fig. 8-B1) and the synaptic
decay time constant τdec (Fig. 8-C1). Here we focus on the effects of synaptic facilitation (τfac) and the interplay
between the three time constants in the modulation of Vpeak. Increasing values of τfac cause an amplification of
the Speak profiles (Fig. 11-A3) and therefore an amplification of the Vpeak profiles (Fig. 11-A1). Increasing values
of τdec and Gsyn increase Isyn in a frequency-dependent manner, and therefore they also amplify the Vpeak profiles
(Fig. 11-C1 and -D1). Finally, consistently with our findings in Fig. 7-A, increasing values of τ also amplify the Vpeak
profiles.

3.9.2 Emergence of ΓV resonance (BPFs): interplay of a facilitation HPF and a PSP amplitude LPF

The presence of short-term facilitation generates Speak HPFs that become sharper and more amplified as τfac in-
creases (Fig. 11-A3). The interaction between these filters and the PSP amplitude LPFs (Fig. 8-A1, light-blue)
produces BPFs (Fig. 10-A2). We refer to this preferred frequency PSP amplitude response to periodic presynaptic
inputs as (PSP) ΓV resonance. Similarly to other resonances, ΓV resonance reflects balances between the two par-
ticipating process. As τfac increases, the ΓV profiles are more dominated by facilitation and therefore the ΓV profiles
are amplified as the ΓV resonant frequency decreases (Fig. 11-A2).

As τ increases, the STP-independent ΓV LPFs are amplified and sharpened (Fig. 8-B1). Therefore, increasing
values of τ amplify the ΓV BPFs and shift the resonant frequency to lower values (Fig. 10-B2). Similarly, increasing
values of τdec, which sharpen the STP-independent ΓV LPFs (Fig. 8-C1), shift the facilitation-induced ΓV resonant
frequency to lower values and amplifies the ΓV BPFs within certain range of values of τ (Fig. 11-C2). Increasing
values of Gsyn in contrast amplify the ΓV profile with a much lesser effect on the ΓV resonant frequency (Fig. 11-D2)
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Figure 10: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depression
and postsynaptic summation. A. Superimposed filters for various values of the short-term depression time constant τdep and representative
parameter values: τ = 10, τdec = 10 and τfac = 0.1. Fig. S5 extends these results for additional values of τ . The ΦV profiles are
independent of τdep. B. Superimposed filters for various values of the postsynaptic membrane time constant τ and representative parameter
values: τdec = 10, τdep = 100 and τfac = 0.1. Fig. S6 extends these results for additional values of τdep. The Speak profiles are independent
of τdep. C. Superimposed filters for various values of the synaptic decay time τdec and representative parameter values: τ = 10, τdep = 100
and τfac = 0.1. The Speak profiles are independent of τdep. Fig. S7 extends these results for additional values of τdep. D. Superimposed filters
for representative values of the synaptic decay time constant Gsyn and representative parameer values: τfac = 100, τ = 10, τdec = 10 and
τdep = 0.1. Fig. S10 extends these results for additional values of τfac. The Speak and ΦV profiles are independent of Gsyn. Left column.
V peak profiles. Middle-left column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase
profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the
equilibrium point, and STP described by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using
eqs. (36) and (37). The analytical approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described
in Section2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The
PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and
phase (ΦS) profiles were computed similarly to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0,
Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.02.547439
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.9.3 Modulation of the ΦV

In the absence of STP, the ΦV profile is controlled by τ and τdec ( Fig. 8). Similarly to our findings in the previous
section, changes in τfac do not affect ΦV (Fig. 11-A4 and S8). Changes in τ and τdec affect ΦV in the same direction
as in the absence of STP (Figs. 11-B4, -A4, S9 and S10 ). Consistently with the previous findings, changes in Gsyn
do not affect ΦV (Fig. 11-D4).

Figs. S8-S10 extend our results for additional parameter combinations. Figs. S8-S10 (middle-left column), in
particular, illustrate how the balances between the facilitation HPFs and amplitude LPFs shape the ΓV profiles for
additional parameter regimes.

3.10 Interplay of synaptic depression (LPFs), synaptic facilitation (HPFs) and PSP sum-
mation filters: Vpeak and ΓV BPFs

The presence of short-term depression and facilitation generates Speak BPFs (synaptic resonance) that become
sharper as τdep and τfac increase (Fig. 12-A3). This is accompanied by a decrease in the synaptic resonance
frequency. The Speak BPFs are independent of τ , τdec and Gsyn (Fig. 12-B3 to -D3). As discussed above, for small
enough values of τdec and τ , the Speak profiles are inherited to the postsynaptic level and therefore the PSP Vpeak
and ΓV profiles are almost identical, and are almost proportional to the Speak profiles (not shown). For larger values
of τdec and τ , the PSP Vpeak and ΓV profiles are modulated by the PSP membrane properties and the summation
HPF.

3.10.1 Modulation of Vpeak BPFs

Earlier studies modeled the PSP response of cells to periodic presynaptic spike inputs (Vpeak profiles) in the presence
of STP to be proportional to the Speak profiles [28, 46, 92]. For larger, more realistic values of τ and τdec the Vpeak
profiles are wider than the Speak profiles (compare Figs. 12-A1 and -A3) and the Vpeak resonant frequency is larger
than the Speak resonant frequency. The Vpeak profiles are amplified by decreasing values of τdep and τfac. The
amplification is stronger as τ increases (Fig. S11, column 1). The Vpeak amplification is accompanied by an increase
in the Vpeak resonant frequency as τdep and τfac decrease. The Vpeak profiles are also amplified by increasing values
of τ , τdec and Gsyn (Figs. 12, column 1). Increasing values of τ and τdec cause an increase in the Vpeak resonant
frequency (Figs. 12-B1 and -C1, see also Figs. S12 and S13, column 1), but the Vpeak resonant frequency is at most
slightly affected by increasing values of Gsyn (Figs. 12-D1).

3.10.2 Modulation of ΓV BPFs

The ΓV profiles are amplified and sharpened by increasing values of τdep and τfac (Fig. 12-A2). This is more
pronounced as τ increases (Fig. S11, column 2). This is accompanied by a decrease in the ΓV resonant frequency.
The ΓV profiles are also amplified by increasing values of τ , τdec and Gsyn. In the former two cases they are also
sharpened.

3.10.3 Modulation of the ΦV

In the absence of STP, the ΦV profile is controlled by τ and τdec ( Fig. 8). Consistent with our findings in the previous
two sections, changes in τdep and τfac do not affect ΦV (Fig. 12-A4 and S11). Changes in τ and τdec affect ΦV in
the same direction as in the absence of STP (Figs. 12-B4, -A4, S11 and S12 ). Consistent with the previous findings,
changes in Gsyn do not affect ΦV (Figs. 12-D4)

Figs. S11-S13 extend our results for additional parameter combinations.
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Figure 11: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term facilitation
and postsynaptic summation. A. Superimposed filters for various values of the short-term depression time constant τfac and representative
parameter values: τ = 10, τdec = 10 and τdep = 0.1. Fig. S8 extends these results for additional values of τ . The ΦV profiles are independent
of τfac. B. Superimposed filters for various values of the membrane time constant τ and representative parameter values: τfac = 100, τdec = 10
and τdep = 0.1. Fig. S9 extends these results for additional values of τfac. The Speak profiles are independent of τ . C. Superimposed filters for
representative values of the synaptic decay time constant τdec and representative parameer values: τfac = 100, τ = 10 and τdep = 0.1. Fig.
S10 extends these results for additional values of τfac. The Speak profiles are independent of τdec. D. Superimposed filters for representative
values of the synaptic decay time constant Gsyn and representative parameer values: τfac = 100, τ = 10, τdec = 10 and τdep = 0.1. Fig.
S10 extends these results for additional values of τfac. The Speak and ΦV profiles are independent of Gsyn. Left column. V peak profiles.
Middle-left column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase profiles. We used
eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point,
and STP described by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37).
The analytical approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also
Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was
computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were
computed similarly to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.05, Esyn = 0,
ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure 12: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term de-
pression, facilitation and postsynaptic summation. A. Superimposed filters for representative values of the depression and facilitation time
constants τdep and τfac, respectively, and representative parameter values: τ = 10, τdec = 10 and Gsyn = 0.1. Fig. S11 extends these results
for additional values of τ . The ΦV profiles are independent of τdep and τfac. B. Superimposed filters for representative values of the depression
membrane time constant τ and representative parameter values: τdep = 500, τfac = 500, τdec = 10 and Gsyn = 0.1. Fig. S12 extends these
results for additional values of τ . The Speak profiles are independent of τ . C. Superimposed filters for representative values of the depression
synaptic decay time τdec and representative parameter values: τdep = 500, τfac = 500, τ = 10 and Gsyn = 0.1. Fig. S13 extends these results
for additional values of τ . The Speak profiles are independent of τ . D. Superimposed filters for representative values of the synaptic decay time
constant Gsyn and representative parameer values: τdep = τfac = 500, τ = 10, τdec = 10. Fig. S10 extends these results fo Left column.
V peak profiles. Middle-left column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase
profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the
equilibrium point, and STP described by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using
eqs. (36) and (37). The analytical approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described
in Section 2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The
PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and
phase (ΦS) profiles were computed similarly to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0,
Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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3.11 Persistence and modulation of STP-mediated PSP Vpeak and ΓV BPFs in response to
randomly-distributed spike trains

In the previous sections we used periodic presynaptic inputs over a range of spiking frequencies to describe a number
of mechanisms of generation of STP-mediated PSP Vpeak and ΓV BPFs both inherited from S level of organization
(Speak BPFs) and generated across levels of organization.The question arises whether PSP Vpeak and ΓV filters
emerge in more general scenarios, in response to more realistic presynaptic spike trains having some frequency
content, what are their properties, and how they are affected by the input variability (how they are related to the
classical filters in response to periodic inputs). We address these questions by using two types of presynaptic spike
inputs: jittered-periodic spike trains [44] and Poisson-distributed spike trains [85,98].

3.11.1 PSP Vpeak and ΓV BPFs persist in response to randomly perturbed periodic spike trains

Following [44], we consider perturbations of periodic presynaptic spiking patterns with ISIs of the form 75 for n =

1, . . . , Nspk, where ∆spk is constant (n-independent) and δp = {δspk,n}
Nspk

n=1 is a random variable with zero mean and
variance equal to δ∆spk for a non-negative real number δ.

Fig. 13-A illustrates that PSP Vpeak and ΓV filters discussed above persist in response to the jittered-periodic
presynaptic spike trains. The solid curves correspond to the mean value for each attribute (Vpeak, Vtrough, Speak and
ΓV ) and the dashed-gray curves correspond to the classical, unperturbed filters. Fig. 13-A illustrates that these two
quantities almost coincide. This also occurs for the Xpeak, Zpeak and ∆Speak filters ( Fig. S16). The variability of
the filters is larger for Vpeak and Vtrough than for the other filters, and is frequency-dependent (compare the shadow
regions for each filter across frequencies) and STP-dependent (compare the shadow regions for each input frequency
across values of τdep and τfac).

3.11.2 PSP Vpeak and ΓV BPFs persist in response to Poisson-distributed spike trains and are
modulated by them

We use Poisson-distributed spike trains with stationary mean firing rates (< fspk >) within the same range as the
spiking input frequencies used above. For comparison with the previously discussed cases, we identify the mean
firing rate with the spiking frequency fspk from which it originates.

Fig. 14-A illustrates that PSP Vpeak and ΓV filters persists in response to Poisson-distributed presynaptic inputs,
but the perturbations from the classical filters (in response to periodic inputs) are more prominent than in the case
discussed above (the solid and dashed curves do not coincide and they are significantly further apart). As expected,
the response variability to Poisson inputs is larger than for jittered-periodic inputs (compare the shadow regiones in
Figs. 13-A and 14-A and Figs. S16-A and S17-A). Similarly to the filters discussed above, the variability is larger for
the Vpeak and Vtrough filters than for the other filters, is frequency-dependent (compare the shadow regions for each
filter across frequencies), and STP-dependent (compare the shadow regiones for each input frequency across values
of τdep and τfac.

3.12 STP controls the variability PSP Vpeak and ΓV BPFs in response to randomly-distributed
spike trains

A salient feature of the frequency filters presented in Figs. 13-A and 14-A is the dependence of the response variability
(shadow regions), not only with the mean input frequency (or rate), but also with the time constants controlling the
short-term depression and facilitation processes (for the same input frequencies).

We quantified these dependencies in Figs. 13- and 14-B, -C and D for values of τdep = τfac within a representative
range for the Vpeak and Vtrough profiles. For each value of τdep = τfac we computed the average variance for each
profile (across input frequencies). We obtained similar results by using the maximal variance for each profile.

In all cases, the variability first increases as τdep = τfac increase for relative small values of these parameters, and
then it decreases as τdep = τfac continues to increase. For each set of time constants (τdec and τ ), there is a value
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Figure 13: Postsynaptic filters in response to jittered (randomly perturbed) periodic presynaptic inputs in the presence of STP:
frequency- and STP-dependent variability. For each value of the mean presynaptic input frequency < fspk >, the ISI sequence {∆spk,n}
(n = 1, . . . , Nspk) has the form ∆spk,n = ∆spk + δspk,n where ∆spk is the ISI corresponding to fspk (fspk = 1000/∆spk) and the sequence
{δspk,n} are drawn from a normal distribution with zero mean and variance equal to δ∆spk. A. Superimposed Vpeak, Vtrough, Speak and ΓV

profiles for representative parameter values. We used τdec = 10 and τ = 10 in all panels. Solid curves correspond to the mean values for each
attribute ( Vpeak, Vtrough, Speak and ΓV ). The shadow regions ( Vpeak, Vtrough and Speak correspond to one standard deviation from the mean.
The dashed gray curves, almost coinciding with the solid curves, represent the corresponding deterministic profiles (response to periodic spike
train inputs with frequency fspk). A1. τdep = τfac = 0.1. A2. τdep = τfac = 100. A3. τdep = τfac = 500. A4. τdep = τfac = 1000. B.
Averaged variances for the Vpeak (solid) and Vtrough (dashed) profiles as a function of τdep = τfac for representative parameter values. The
average variance for each profile was computed by averaging the corresponding response variances across all values of< fspk >. B. Increasing
the input variability (δ) increases the response variability. Panels B1 and B2 show two realizations for the same parameter values. We used
τ = 10 and τdec = 10. C. Decreasing the synaptic decay time τdec causes an increase in the response variability. We used τ = 10 and δ = 0.1.
D. Increasing the membrane potential time constant causes an increase in the response variability. We used τdec = 10 and δ = 0.1. We used
the following additional parameter values: C = 1, EL = −60, Iapp = 0, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure 14: Postsynaptic filters in response to Poisson-distributed presynaptic inputs in the presence of STP: frequency- and STP-
dependent variability. The mean rate of the Poisson distributed spike trains corresponds to < fspk >. A. Superimposed Vpeak, Vtrough, Speak

and ΓV profiles for representative parameter values. We used τdec = 10 and τ = 10 in all panels. Solid curves correspond to the mean values
for each attribute ( Vpeak, Vtrough, Speak and ΓV ). The shadow regions ( Vpeak, Vtrough and Speak correspond to one standard deviation from
the mean. The dashed curves represent the corresponding deterministic profiles (response to periodic spike train inputs with frequency fspk).
A1. τdep = τfac = 0.1. A2. τdep = τfac = 100. A3. τdep = τfac = 500. A4. τdep = τfac = 1000. B. Averaged variances for the Vpeak

(solid) and Vtrough (dashed) profiles as a function of τdep = τfac for representative parameter values. The average variance for each profile
was computed by averaging the corresponding response variances across all values of < fspk >. B. Two realizations for the same parameter
values. We used τ = 10 and τdec = 10. C. Decreasing the synaptic decay time τdec causes a decrease in the response variability for large
values of < fspk > and an increase in the response variability for (very) small values of fspk. We used τ = 10 and δ = 0.1. D. Increasing
the membrane potential time constant causes an increase in the response variability. We used τdec = 10 and δ = 0.1. We used the following
additional parameter values: C = 1, EL = −60, Iapp = 0, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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of τdep = τfac for which the variability is maximal. As expected, for the jittered periodic inputs the profiles’ variability
increases as the input variability increases (Figs. 13- B). The profiles’ variability also increases as τdec decreases
(Figs. 13- C) and τ increases (Figs. 13- D). For the Poisson-distributed inputs, in contrast, the profiles’ variability
decreases with decreasing values of τdec (Fig. 14-C), while it increases for increasing values of τ (Fig. 14-D).

Together, these results and the results of the previous section show that STP plays important roles not only in
determining the patterns exhibit by networks, but also their robustness and accuracy of the information transmission.

4 Discussion

We set out to understand the dynamic mechanisms of generation of neuronal PSP filters, particularly how they are
shaped by the time scales associated with the participating building blocks: the synaptic raise and decay dynamics
(τrse and τdec), the synaptic STP time constants (τdep and τfac), and the intrinsic time constant (τ ) of the postsy-
naptic cells (Fig. 1). To this end, we conducted a systematic study of the steady-state PSP response to (i) periodic
presynaptic inputs over a range of frequencies fspk = 1000/∆spk (Fig. 1, left), (ii) jittered periodic inputs with mean
frequency fspk = 1000/∆spk, and (iii) Poisson-distributed presynaptic inputs with mean rate rspk = 1000/ < ∆spk >
(Fig. 1, right). We used mathematical modeling, analytical calculations and numerical simulations. The use of periodic
presynaptic spikes allowed us to systematically understand how frequency-filters are shaped by the time scales of the
participating building blocks and how the filtering properties are communicated across levels of neuronal organization
and modified along the process biophysical properties of the network component. The use of Poisson-distributed
presynaptic spikes trains allowed us to validate some of the ideas developed for periodic presynaptic spike-trains by
using more realistic inputs, to understand the similarities and differences between the more realistic responses and
the responses the “clean" frequency-filters, and to understand how the variability of the filtering properties is con-
trolled by the biophysical properties of the participating building blocks, primarily STP. The jittered inputs were used
as an intermediate step to link between the purely deterministic and stochastic spike-train inputs.

We developed an analytical approximation of the membrane potential response of passive cells to presynaptic
spike trains in the presence of STP. This allowed us to compute the peak (Vpeak) and peak-to-trough amplitude (ΓV )
filters in terms of the participating time constants and other model parameters. The goal of this approach was to
have an analytical expression to better understand the dependence of the PSP filters on the model parameters. This
came at the expense of some simplifying assumptions that transform the multiplicative synaptic input to the passive
membrane equation into an additive input. The resulting expressions make the contribution of the time constants
and other parameters to the PSP filters’s shape apparent. Because the passive membrane equation is linear, it is
analytically solvable by other tools (e.g., Laplace transforms). However, the exact analytical solution provides little
analytical clarity on how the model parameters shape the PSP filters. In fact, eqs. (21)-(23) can stand as a model
of their own [99]. This approach can be extended to more complex scenarios. For example, it can be extended to
networks where the presynaptic or postsynaptic cells are described by more complex linearized models involving
additional ionic currents and weakly nonlinear models [100].

The role of STP on information filtering and related phenomena has been investigated before by many authors
[3, 8–10, 16, 22, 24, 26–43, 46–51]. However, previous studies have not focused on the mechanisms of generation
of postsynaptic frequency-filters and how they are shaped by the participating time scales. Previous work has also
ignored the mechanisms governing the variability of the response to realistic presynaptic spike-train inputs. Because
the synaptic response S is not directly measurable, a common simplifying assumption has been made by some
authors [28,46,47,49]: that the voltage response of the postsynaptic cell is a scaled version of the synaptic response.
While this assumption might be justified in many cases, our results indicate that it is by no mean universally expected,
and there could be significant qualitative differences between the synaptic and postsynaptic frequency-filters. This
was also highlighted in previous work on temporal filters in the presence of STP [44].

To address these issues, we divided our study in three steps, by investigating the response profiles (frequency-
filters) of (i) synaptic update ∆S to the presynaptic spike trains, (ii) the synaptic variable S to ∆S, and (iii) the
postsynaptic membrane potential V to S. We characterized the frequency-filters by using the (stationary) peak
profiles (for ∆̄S, S̄ and V̄ ) and the (stationary) peak-to-trough amplitude profiles (for S̄ and V̄ ). By design, the effects
of STP are present at the ∆S level giving rise to the synaptic update sequences ∆Sn = XnZn, which depend on

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.02.547439
http://creativecommons.org/licenses/by-nc-nd/4.0/


the time constants τdep and τfac. These are the target of the synaptic variables S during the raise phase immediately
after the arrival of each presynaptic spike. The S frequency-filters are shaped by ∆Sn = XnZn and the synaptic time
constantes τrse and τdec. In turn, the synaptic variable S is the input to the current-balance equation describing the
dynamics of the passive cell. The postsynaptic (V -) frequency-filters result from the interaction between S and the
biophysical properties of the postsynaptic passive cell, particularly the time constant τ = C/GL.

Consistently with previous work, [3,21,28,46,47,49], ∆̄S BPFs are generated by the interplay of low-pass (depres-
sion) and high-pass (facilitation) filters for the appropriate balances between the two processes. They are amplified
by increasing values of τfac and the ∆̄S resonant frequency decreases as τfac increases. The X̄, Z̄ and ∆̄S profiles
develop in response to multiple events, each controlled by the time constants τdep and τfac. We described the (global
in time) filter properties in terms of the characteristic frequencies σdep (X̄), σfac (Z̄), and the characteristic frequency
difference ∆kappa = κrse and κdec (∆̄S). These depend on τdep and τfac in a nonlinear manner. Increasing values
of τfac and τdep cause σfac and σdep, respectively, to decrease (sharpen the X̄, Z̄ filters, respectively). Increasing
values of τfac cause the ∆̄S resonant frequency to decrease, the ∆̄S peak to increase and the ∆̄S BPF to be-
come sharper. Increasing values of τdep cause the ∆̄S resonant frequency to decrease and the ∆̄S BPF to become
sharper, but cause the the ∆̄S peak to decrease.

For the to-∆̄S update model with instantaneous S raise, the peak envelope profiles S̄ are identical to the ∆̄S
profiles. The ΓS BPFs can be inherited from ∆̄S ones or can be created by the interplay of a ∆̄S HPF and QA (a
LPF). In all cases, they become sharper and less peakier as τdec increases. For the to-∆̄S update model with non
instantaneous S raise, the S̄ profiles are attenuated as τrse increases and the ΓS profiles are also attenuated as τrse
increases.

For the by-∆̄S update model with instantaneous S raise, in contrast to the to-∆̄S model, the ΓS profiles are
inherited from the ∆̄S profiles. The S̄ profiles transition from LPFs or BPFs to HPFs as τdec increases, which may
be bounded or unbounded (if they are HPFs, they remain so). These models lack a biophysical mechanism that
balances the summation effects and created realistically saturated profiles. For the by-∆̄S update model with non-
instantaneous S raise, the S̄ profiles are attenuated as τrse increases and the ΓS profiles are also attenuated as τrse
increases.

Passive cells generate LPFs in response to sinusoidal input currents. In response to periodic presynaptic inputs,
in the absence of STP, they produce ΓV LPFs , but Vpeak HPFs due to the effects of the summation phenomenon.
These filters are modulated by the synaptic time constant τdec and the postsynaptic time constant τ . In the presence
of STP, Vpeak and ΓV BPFs are possible under certain conditions. We found two qualitatively different mechanisms.
The Vpeak and ΓV BPFs can be either inherited from the synaptic level, subject to the appropriate modifications, or
generated across levels. Specifically, a Vpeak BPF can be either result of an Speak BPF generated as the result of
synaptic depression and facilitation or the result of a Speak LPF generated by the interplay of synaptic depression and
PSP summation. Similarly, a ΓV BPF can be the result of the interplay of synaptic facilitation and PSP summation.
These types of BPFs persist in response to jitter periodic spike trains and Poisson-distributed spike trains with a
frequency-dependent variability. Importantly, the variability properties of these BPFs are controlled by STP in a non-
monotonic manner.

The feedforward network we studied (Fig. 1) is the simplest synaptic processing unit that can produce PSP
BPFs involving STP. This allow us to systematically investigate the qualitatively different types of mechanisms of
generation of PSP BPFs according to whether they are inherited from the synaptic level and generated across levels
of organization. The same class of mechanisms could be present in feedforward networks exhibiting presynaptic
BPFs in the absence of STP. Further research is needed to understand these mechanisms. Additional research is
needed to understand how the various mechanisms interact and what new mechanisms are present in more complex
networks including presynaptic BPFs, postsynaptic BPFs, STP, and possibly feedback connections. Finally, future
work should focus on more complex, biophysically realistic models of STP where STP is determined by the combined
effect of both pre- and post-synaptic factors [101] (see also [45, 46, 102]). As such, our study is the first step in
the systematic understanding of the mechanisms of generation of neuronal filters in networks and contributes to the
systematic understanding of information processing via neuronal filters.
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A Approximate analytical solution to the passive postsynaptic cell receiv-
ing presynaptic spike inputs

Here we compute an analytical approximate solution to the model (1)-(4), describing the dynamics of a postsynaptic
passive cell receiving presynaptic spike inputs at time t1, t2, . . . , tN .

A.1 Approximate solution to the synaptic variable

We first compute the approximate solution to the synaptic variable S whose dynamics are described by eq. (3)
with S(0) = 0, under the assumption of instantaneous raise to a value ∆Sn (n = 1, . . . , N ) at the arrival of each
presynaptic spike. The assumption S(0) = 0 implies that S(t) = 0 for 0 ≤ t ≤ t1. For the duration of a presynaptic
spike (tn < t < tn + Tsw), we approximate S(t) by the synaptic update value ∆Sn (constant). For the remainder of
the presynaptic interspike interval (tn + Tsw ≤ t < tn+1), S(t) decreases according to the second term in (3). The
approximate solution is given by

Sa(t) =


∆Sn tn < t < tn + Tsw

∆Sn e
−(t−tn−Tsw)/τdec tn + Tsw ≤ t < tn+1

(75)

for n = 1, . . . , N .
From eq. (76) for Sa(t), the larger the duration Tsw of the presynaptic spike (Tsw < ∆spk) or the larger the synaptic

decay time τdec, the larger Sa(t) during the presynaptic ISI. In that sense, increasing τdec or Tsw has a similar overall
effect on the PSP response as increasing Gsyn. However, changes in the former two have stronger dynamic effects
(e.g., cause changes in the voltage response peak) than changes in Gsyn (Fig. 7).
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A.2 Approximate solution to the postsynaptic membrane potential: Postsynaptic passive
cell

We first approximate eq. (1) as follows

τ
dV

dt
= −V + αn Sa(t) (76)

for n = 1, . . . , N where

τ =
C

GL
, α =

Gsyn (Esyn − EL)

GL
and αn = α (1− σn). (77)

The variable V in eq. (77) represents V − EL − Iapp/GL in eq. (1). The third term in eq. (77) is a current input
approximation to the conductance input in the synaptic current (1). To account for this, we introduce a correction
factor 1− σn where σn is updated at the beginning of each ISI and σ1 = 0.

Prior to the arrival of the first presynaptic spike (t ≤ t1), V (t) = 0. For the duration of a presynaptic spike
(tn < t < tn + Tsw),

τ
dV

dt
= −V + αn ∆Sn, V (tn) = V0,n, (78)

where V0,n is the value of V at the end of the previous cycle. The solution to (79) is given by

VI(t) = αn ∆Sn + (Vo,n − αn ∆Sn) e−(t−tn)/τ . (79)

We define

βn = VI(tn + Tsw) = αn ∆Sn + (Vo,n − αn ∆Sn) e−Tsw/τ . (80)

For the remainder of the presynaptic interspike interval (tn + Tsw < t < tn+1),

τ
dV

dt
= −V + αn ∆Sn e

−(t−tn−Tsw)/τ V (tn + Tsw) = βn, (81)

For τdec 6= τ , the solution to (82) is given by

VII(t) =
αn τdec ∆Sn
τdec − τ

eTsw/τdec e−(t−tn)/τdec +

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ e−(t−tn)/τ . (82)

We define

V0,n+1 = VII(tn+1) =
αn τdec ∆Sn
τdec − τ

eTsw/τdec e−(tn+1−tn)/τdec +

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ e−(tn+1−tn)/τ =

=
αn τdec ∆Sn
τdec − τ

eTsw/τdec e−∆spk,n/τdec +

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ e−∆spk,n/τ . (83)

For the duration of the presynaptic spike, V (t) = VI(t) is an increasing function. V (t) = VII(t) continues to
be an increasing function after the presynaptic spike is off until the two exponential terms balance out and VII(t)
decreases. Therefore, within some frequency range, V (t) peaks after the presynaptic spike is off. The peak time for
VII(t) in eq. (83) is given

tpeak,n = tn +
τdec τ

τdec − τ
ln

(
−bn τdec

an τ

)
(84)

where
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an =
αn τdec ∆Sn
τdec − τ

eTsw/τdec and bn =

[
βn −

αn τdec ∆Sn
τdec − τ

]
eTsw/τ . (85)

The peak value of V (t) is given by

Vpeak,n = VII(tpeak,n). (86)

We define σn+1 as

σn+1 =
η Vpeak,n + (1− η)V0,n+1

(Esyn − EL)
. (87)

or

σn+1 =
η Vpeak,n

(Esyn − EL)
. (88)

For τdec = τ , the solution to (82) is given by

VII(t) =
αn ∆Sn

τ
eTsw/τ t e−(t−tn)/τ +

[
βn −

αn ∆Sn
τ

(tn + Tsw)

]
eTsw/τ e−(t−tn)/τ . (89)

The peak time for VII(t) in eq. (90) is given

tpeak,n = tn + τ − bn
an

(90)

where

an =
αn ∆Sn

τ
eTsw/τdec and bn =

[
βn −

αn ∆Sn
τ

Tsw

]
eTsw/τdec . (91)

The peak values of V (t) is given by (87) with βn given by (81) and V0,n+1 = VII(tn+1)
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Figure S1: Analytical approximation of the membrane potential response of passive cells to presynaptic spikes: Representative
examples I. For the numerical approximations we used the model for a passive cell receiving presynaptic spike-train input (1)-(4). For STP we
use the DA model (7)-(9). For the analytical approximations we used eqs. (21)-(23) together with eqs. (80) and (83) in the Appendix A. A.
GL = 0.1 (τ = 10), τdec = 10, τdep = τfac = 0.1. B. GL = 0.1 (τ = 10), τdec = 10, τdep = τfac = 1000. C. GL = 0.1 (τ = 10), τdec = 5,
τdep = τfac = 0.1. We used the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0, τrse = 0.1, C = 1, EL = −60,
Iapp = 0, Gsyn = 0.1, Esyn = −60.
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Figure S2: Analytical approximation of the membrane potential response of passive cells to presynaptic spikes: Representative
examples II. For the numerical approximations we used the model for a passive cell receiving presynaptic spike-train input (1)-(4). For STP we
used the DA model (7)-(9). For the analytical approximations we used eqs. (21)-(23) together with eqs. (80) and (83) in the Appendix A. A.
GL = 0.1 (τ = 10), τdec = 3, τdep = τfac = 0.1. B. GL = 0.05 (τ = 20), τdec = 10, τdep = τfac = 1000. C. GL = 0.05 (τ = 20), τdec = 5,
τdep = τfac = 1000. We used the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0, τrse = 0.1, C = 1, EL = −60,
Iapp = 0, Gsyn = 0.1, Esyn = −60.
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Figure S3: Error between the numerical and analytical approximations for the stationary peaks (Vpeak), troughs (Vtrough), and peak
times (tpeak) of the membrane potential responses of passive cells to presynaptic spikes: Representative examples I. For the numerical
(num) approximations we used the model for a passive cell receiving presynaptic spike-train input (1)-(4). For STP we used the DA model (7)-(9).
For the analytical approximations we used eqs. (21)-(23) together with eqs. (80) and (83) in the Appendix A. For the computations of the
analytical (anl) approximations to Vpeak, Vtrough and tpeak we used eqs. (24)-(31). Simulations were carried out until the difference between two
consecutive numerical peaks were below a tolerance value equal to 0.001. The last values of Vpeak, Vtrough and tpeak in the resulting sequences
were taken as an approximation to the corresponding stationary values. Left column. Relative error for Vpeak defined as |Vpeak,num − 60 −
Vpeak,anl |/|Vpeak,num |. Middle column. Relative error for Vtrough defined as |Vtrough,num−60−Vtrough,anl |/|Vtrough,num |. Right column.
Relative error for tpeak defined as | tpeak,num−tpeak,anl |/|∆spk |. A.GL = 0.1 (τ = 10), τdec = 10, τdep = τfac = 0.01. B.GL = 0.1 (τ = 10),
τdec = 5, τdep = τfac = 100. C. GL = 0.1 (τ = 10), τdec = 10, τdep = τfac = 500. We used the following additional parameter values:
ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0, τrse = 0.1, C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = −60, ∆t = 0.01.
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Figure S4: Error between the numerical and analytical approximations for the stationary peaks (Vpeak), troughs (Vtrough), and peak
times (tpeak) of the membrane potential responses of passive cells to presynaptic spikes: Representative examples II. For the numerical
(num) approximations we used the model for a passive cell receiving presynaptic spike-train input (1)-(4). For STP we used the DA model (7)-(9).
For the analytical approximations we used eqs. (21)-(23) together with eqs. (80) and (83) in the Appendix A. For the computations of the
analytical (anl) approximations to Vpeak, Vtrough and tpeak we used eqs. (24)-(31). Simulations were carried out until the difference between two
consecutive numerical peaks were below a tolerance value equal to 0.001. The last values of Vpeak, Vtrough and tpeak in the resulting sequences
were taken as an approximation to the corresponding stationary values. Left column. Relative error for Vpeak defined as |Vpeak,num − 60 −
Vpeak,anl |/|Vpeak,num |. Middle column. Relative error for Vtrough defined as |Vtrough,num−60−Vtrough,anl |/|Vtrough,num |. Right column.
Relative error for tpeak defined as | tpeak,num − tpeak,anl |/|∆spk |. A. GL = 0.1 (τ = 10), τdec = 10, τdep = τfac = 1000. B. GL = 0.1
(τ = 10), τdec = 3, τdep = τfac = 0.01. C. GL = 0.05 (τ = 20), τdec = 10, τdep = τfac = 1000. We used the following additional parameter
values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0, τrse = 0.1, C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = −60, ∆t = 0.01.
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Figure S5: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depression
and postsynaptic summation. Superimposed filters for representative values of the short-term depression time constant τdep. A. τ = 10. B.
τ = 20. C. τ = 40. A, B, C. τdec = 10 and τfac = 0.1. Left column. V peak profiles. Middle-left column. V peak-to-trough amplitude profiles.
Middle-right column. S peak profiles. Right column. V phase profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4)
appropriately adapted to account for the translation of V to the equilibrium point, and STP described by eqs. (12) and (13) (DA model). The
impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for the PSP peak sequence
response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n

and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was
computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V . We used the following
additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S6: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depression
and postsynaptic summation. Superimposed filters for representative values of the membrane time constant τ . A. τdep = 100. B. τdep = 250.
A, B τdec = 10 and τfac = 0.1. Left column. V peak profiles. Middle-left column. V peak-to-trough amplitude profiles. Middle-right column.
S peak profiles. They are independent of τ . Right column. V phase profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4)
appropriately adapted to account for the translation of V to the equilibrium point, and STP described by eqs. (12) and (13) (DA model). The
impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for the PSP peak sequence
response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n

and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was
computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V . We used the following
additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S7: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depression
and postsynaptic summation. Superimposed filters for representative values of the synaptic decay time constant τdec. A. τdep = 100. B.
τdep = 150. A, B. τ = 10 and τfac = 0.1. Left column. V peak profiles. Middle-left column. V peak-to-trough amplitude profiles. Middle-
right column. S peak profiles. They are independent of τdec. Right column. V phase profiles. We used eq. (64) for the PSP V with Isyn
described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point, and STP described by eqs. (12) and
(13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for the
PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A). The approximation of
Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the
PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V .
We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0
and Tsw = 1.
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Figure S8: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term facilitation
and postsynaptic summation. Superimposed filters for representative values of the short-term facilitation time constant τfac. A. τ = 10. B.
τ = 20. C. τ = 40. A, B, C. τdec = 10 and τdep = 0.1. Left column. V peak profiles. Middle-left column. V peak-to-trough amplitude profiles.
Middle-right column. S peak profiles. Right column. V phase profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4)
appropriately adapted to account for the translation of V to the equilibrium point, and STP described by eqs. (12) and (13) (DA model). The
impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for the PSP peak sequence
response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n

and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was
computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V . We used the following
additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.05, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S9: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term facilitation
and postsynaptic summation. Superimposed filters for various values of the membrane time constant τ . A. τfac = 100. B. τfac = 250. A, B,
C. τdec = 10 and τdep = 0.1. Middle-left column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column.
V phase profiles. We used eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to
the equilibrium point, and STP described by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using
eqs. (36) and (37). The analytical approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described
in Section2.2 (see also Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The
PSP amplitude ΓV was computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and
phase (ΦS) profiles were computed similarly to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0,
Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S10: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depres-
sion and postsynaptic summation. Superimposed filters for representative values of the synaptic decay time constant τdec. A. τdep = 100.
B. τdep = 150. A, B. τ = 10 and τfac = 0.1. Left column. V peak profiles. Middle-left column. V peak-to-trough amplitude profiles.
Middle-right column. S peak profiles. They are independent of τdec. Right column. V phase profiles. We used eq. (64) for the PSP V with
Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point, and STP described by eqs. (12)
and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical approximations for
the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A). The approximation
of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using eq. (65) and the
PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly to these for V .
We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.1, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0
and Tsw = 1.
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Figure S11: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depres-
sion, facilitation and postsynaptic summation. Superimposed filters for representative values of the depression and facilitation time constants
τdep and τfac, respectively. A. τ = 10. B. τ = 20. C. τ = 40. A, B, C. τdec = 10 and Gsyn = 0.1. Left column. V peak profiles. Middle-left
column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase profiles. We used eq. (64) for the
PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point, and STP described
by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical
approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A).
The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using
eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly
to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.05, Esyn = 0, ad = 0.1, af = 0.1,
x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S12: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term de-
pression, facilitation and postsynaptic summation. Superimposed filters for representative values of the membrane time constant τ . A.
τdep = τfac = 100. B. τdep = τfac = 500. C. τdep = τfac = 1000. A, B, C. τdec = 10 and Gsyn = 0.1. Left column. V peak profiles.
Middle-left column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase profiles. We used
eq. (64) for the PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point,
and STP described by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37).
The analytical approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also
Appendix A). The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was
computed by using eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were
computed similarly to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.05, Esyn = 0,
ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S13: Postsynaptic filters in response to periodic presynaptic spike inputs emerging from the interplay of short-term depres-
sion, facilitation and postsynaptic summation. Superimposed filters for representative values of the depression synaptic decay time τdec. A.
τdep = τfac = 100. B. τdep = τfac = 500. C. τdep = τfac = 1000. A, B, C. τ = 10 and Gsyn = 0.1. Left column. V peak profiles. Middle-left
column. V peak-to-trough amplitude profiles. Middle-right column. S peak profiles. Right column. V phase profiles. We used eq. (64) for the
PSP V with Isyn described by eqs. (2)-(4) appropriately adapted to account for the translation of V to the equilibrium point, and STP described
by eqs. (12) and (13) (DA model). The impedance amplitude (Z) and phase (ΦZ ) were computed using eqs. (36) and (37). The analytical
approximations for the PSP peak sequence response of passive cells to presynaptic inputs are described in Section2.2 (see also Appendix A).
The approximation of Vpeak,n, Vtrough,n and tV,peak were computed as described in Section 3.4. The PSP amplitude ΓV was computed by using
eq. (65) and the PSP phase ΦV was computed using eq. (66). The synaptic (S) peak (Speak) and phase (ΦS) profiles were computed similarly
to these for V . We used the following additional parameter values: C = 1, EL = −60, Iapp = 0, Gsyn = 0.05, Esyn = 0, ad = 0.1, af = 0.1,
x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S14: ΓS filters in response to periodic presynaptic spike inputs (frequency fspk) for the to-∆S update models with non-
instantaneous update: representative examples. We used eqs. (12) and (13) (DA model) for ∆̄S A. To-∆S model (synaptic update to ∆S).
Effects of τrse. The S and ΓS filters were computed using eqs. (50) and (51), respectively. A1. ΓS band-pass filters attenuated by increasing
values of τrse. A2. ΓS low-pass filters attenuated by increasing values of τrse. A3. The ΓS band-pass filter generated by the interplay of a ∆S
high-pass filter and a QA (a low-pass filter) (Fig. 5-A6) is attenuated by increasing values of τrse and transitions to a high-pass filter. We used
the following additional parameter values: ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S15: ΓS filters in response to periodic presynaptic spike inputs (frequency fspk) for the by-∆S update models with non-
instantaneous update: representative examples. We used eqs. (12) and (13) (DA model) for ∆̄S A. By-∆S model (synaptic update to ∆S).
Effects of τrse. The S and ΓS filters were computed using eqs. (61) and (62), respectively. A1. ΓS band-pass filters attenuated by increasing
values of τrse. A2. ΓS low-pass filters attenuated by increasing values of τrse. We used the following additional parameter values: ad = 0.1,
af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S16: X, Z and ∆S filters in response to jittered (randomly perturbed) periodic presynaptic inputs in the presence of STP:
frequency- and STP-dependent variability. For each value of the mean presynaptic input frequency < fspk >, the ISI sequence {∆spk,n}
(n = 1, . . . , Nspk) has the form ∆spk,n = ∆spk + δspk,n where ∆spk is the ISI corresponding to fspk (fspk = 1000/∆spk) and the sequence
{δspk,n} are drawn from a normal distribution with zero mean and variance equal to δ∆spk. A. Superimposed Xpeak, Zpeak and ∆Speak profiles
for representative parameter values. We used τdec = 10 and τ = 10 in all panels. Solid curves correspond to the mean values for each
attribute (Xpeak, Zpeak and ∆Speak). The shadow regions correspond to one standard deviation from the mean. The dashed gray curves,
almost coinciding with the solid curves, represent the corresponding deterministic profiles (response to periodic spike train inputs with frequency
fspk). A1. τdep = τfac = 0.1. A2. τdep = τfac = 100. A3. τdep = τfac = 500. A4. τdep = τfac = 1000. We used the following additional
parameter values: C = 1, EL = −60, Iapp = 0, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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Figure S17: X, Z and ∆S filters in response to Poisson-distributed presynaptic inputs in the presence of STP: frequency- and
STP-dependent variability. The mean rate of the Poisson distributed spike trains corresponds to < fspk >. Superimposed Xpeak, Zpeak and
∆Speak profiles for representative parameter values. We used τdec = 10 and τ = 10 in all panels. Solid curves correspond to the mean values
for each attribute ( Xpeak, Zpeak and ∆Speak). The shadow regions correspond to one standard deviation from the mean. The dashed curves
represent the corresponding deterministic profiles (response to periodic spike train inputs with frequency fspk). A1. τdep = τfac = 0.1. A2.
τdep = τfac = 100. A3. τdep = τfac = 500. A4. τdep = τfac = 1000. We used the following additional parameter values: C = 1, EL = −60,
Iapp = 0, Esyn = 0, ad = 0.1, af = 0.1, x∞ = 1, z∞ = 0 and Tsw = 1.
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