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Recent analyses indicate that differences in protein concentrations are only 20%–40% attributable to variable mRNA
levels, underlining the importance of posttranscriptional regulation. Generally, protein concentrations depend on the
translation rate (which is proportional to the translational activity, TA) and the degradation rate. By integrating 12
publicly available large-scale datasets and additional database information of the yeast Saccharomyces cerevisiae, we
systematically analyzed five factors contributing to TA: mRNA concentration, ribosome density, ribosome occupancy,
the codon adaptation index, and a newly developed ‘‘tRNA adaptation index.’’ Our analysis of the functional
relationship between the TA and measured protein concentrations suggests that the TA follows Michaelis–Menten
kinetics. The calculated TA, together with measured protein concentrations, allowed us to estimate degradation rates
for 4,125 proteins under standard conditions. A significant correlation to recently published degradation rates
supports our approach. Moreover, based on a newly developed scoring system, we identified and analyzed genes
subjected to the posttranscriptional regulation mechanism, translation on demand. Next we applied these findings to
publicly available data of protein and mRNA concentrations under four stress conditions. The integration of these
measurements allowed us to compare the condition-specific responses at the posttranscriptional level. Our analysis of
all 62 proteins that have been measured under all four conditions revealed proteins with very specific posttranscrip-
tional stress response, in contrast to more generic responders, which were nonspecifically regulated under several
conditions. The concept of specific and generic responders is known for transcriptional regulation. Here we show that it
also holds true at the posttranscriptional level.
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Introduction

Although mRNA concentrations are widely used as a
surrogate for protein abundances, studies comparing mRNA
and protein expression on a global scale indicate that mRNA
levels only partly correlate with the corresponding protein
concentrations [1–12]. It has been estimated that protein
concentrations are determined by the corresponding mRNA
concentrations by only 20%–40% [11,13]. Thus, for a better
interpretation of results obtained from mRNA measure-
ments, a deeper understanding of translational regulation is
urgently required [14–16].

To study the fundamental role of posttranscriptional
regulation, we focused on S. cerevisiae as one of the most
thoroughly investigated model organisms, where mRNA
concentrations and even protein concentrations are available
for most genes. More specifically, we were interested in (i)
identifying the most important factors regulating translation
rates and (ii) specific translational regulation under different
conditions. The translation rate is proportional to the
translational activity (TA) [9,10,17], which we previously
calculated as the product of mRNA abundance, ribosome
occupancy, and ribosome density [10]. Ribosome occupancy
(ribocc) is the fraction of mRNA molecules with at least one
ribosome, and the ribosome density (ribden) is the number of
ribosomes on active mRNAs divided by the transcript length
[18]. Hence, ribden takes into account that longer transcripts
take longer to be translated, and require a larger number of
bound ribosomes to achieve the same synthesis rate (number
of new proteins per time).

Here, we additionally account for ORF–specific translation
elongation velocity. It depends on the amino acid composi-
tion of the corresponding protein and the availability of the
needed tRNAs. We discuss different measures for the
elongation velocity based on tRNA concentrations. Interest-
ingly, we found that the codon adaptation index (CAI) was the
best measure for the speed of translation elongation, because
it improved the correlation between TA and protein
concentrations more than any of the other measures tested.
The CAI was initially introduced as a measure for selection of
optimal codons in ORFs based on highly abundant mRNAs
[19]. It is defined as the geometric mean of the relative
synonymous codon usage (RSCU) values for all codons of a
given ORF, normalized by the maximum possible mean RSCU
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value (the RCSU value for a codon is the observed codon
frequency divided by the expected frequency for equal codon
usage). The CAI has also been used to predict protein
concentrations [1,2].

Whereas up to now linear kinetics have been assumed for
the TA [8,10,20], here we demonstrate that accounting for
nonlinear saturation improves the protein concentration
prediction: the TA–protein correlation is improved assuming
Michaelis–Menten kinetics for the three factors influencing
the translation initiation. Using our newly calculated TAs and
our newly composed reference dataset for protein concen-
trations, we were able to deduce degradation rates for 4,125
proteins. Comparison of our predicted values with measured
protein half-lives [21] shows that including the CAI and
accounting for saturation significantly improved our pre-
dictions.

Previous studies on posttranscriptional regulation that
included protein concentration measurements in yeast
focused either on standard conditions [1,5,8,10] or dealt with
just one stress condition [3,4,6,9]. Other studies only
measured ribden changes without considering the respective
protein concentration changes [22]. Here, we present the first
comprehensive analysis of different stress conditions by
combining existing experimental data. For this purpose we
used all four published large-scale datasets that tested the
relative change of both mRNA and protein abundances upon
exposure to different stress conditions [3,4,6,9]; two other
studies were published after completion of this work and
could therefore not be analyzed in detail here [15,16].

Our analyses of the stress data support the finding that
considering saturation kinetics improves the quantification
of posttranscriptional regulation. We also confirmed the
previously introduced concept of translation on demand,
concerning proteins that are quickly needed in response to a
(stress) stimulus [10]. In such situations the usual order of
events, with transcription and subsequent translation, may be
too slow for an appropriate physiological reaction. Instead,
the cell might keep a constant level of reservoir mRNA, which

is blocked for translation. Processing bodies (P-bodies) may
play a role in mRNA storage. It has been shown that
processing bodies accumulate mRNAs for subsequent degra-
dation [23], but they may also store mRNA for later
translation [24]. Translation initiation might also be blocked
by 59 binding proteins or alternative 59 leaders [25]. If the
corresponding protein is rapidly needed (for instance, after
cell exposure to perilous conditions), the cell can then
immediately start with translation. The detailed analysis of 62
proteins that were measured under all four conditions
confirmed the existence of translation on demand and
identified additional candidates. Another means for fast
stress response is the continuous synthesis and destruction of
proteins under normal conditions. Upon stress the protein
turnover can be stopped to quickly elevate protein concen-
tration [26]. Since this mechanism does not change the
translation rate, it is not considered to be translation on
demand.
Based on the available experimental data, it is possible to

separate proteins with distinct posttranscriptional regulation
under one specific condition from others that are regulated
in a more generic way. This extends the previous notion of
generic and specific stress response from the level of
transcriptional to posttranscriptional expression regulation
[27].

Results

Our first goal was to establish a reliable set of experimental
data to investigate the correlation between mRNA abundance
and observed protein concentrations. We integrated various
published datasets for S. cerevisiae [1,2,7,28] and obtained
protein and mRNA concentrations under standard condi-
tions for 4,152 ORFs, representing the largest corresponding
dataset so far. Correlations between protein concentrations
and other properties were computed using the Spearman
rank correlation coefficient rs. The rs was preferred over the
Pearson correlation coefficient, because the former makes no
assumptions about the underlying distributions of the
variables. It has previously been shown to perform better
for the analysis of this kind of data [2]. The global rs between
mRNA and protein abundance was 0.63, which is the best
large-scale correlation reported for yeast so far [8,10,16]. This
high correlation also underlines the quality of the integrated
dataset. After completing the computational part of this
study, another large-scale protein concentration dataset was
published [15]. This new dataset could not be included in this
study. However, we computed the correlation of our
integrated dataset to those independent measurements. Our
integrated protein concentrations were more strongly corre-
lated to those measurements (rs ¼ 0.65) than any of the
individual input datasets alone (rs ranging from 0.39 to 0.62).
We thus conclude that our protein dataset is comparably
robust and that our conclusions are unlikely to change
significantly if the new data were included. However, the
remaining deviations between those measurements reenforce
the finding of Newmann and co-authors that biological noise
in protein concentrations can be considerable [15].

Factors Influencing Translational Activity
We quantified the relative importance of various factors

for the determination of TAs (Figure 1). Considering addi-
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Author Summary

Large-scale mRNA concentration measurements are a hallmark of
our post-genomic era. Usually they are taken as a surrogate for the
corresponding protein concentrations. For most genes, proteins are
the actual cellular players, but up to now it has been much more
difficult to measure protein concentrations than mRNA concen-
trations. However, due to numerous posttranscriptional regulation
mechanisms, mRNA levels only partly correlate with protein
concentrations. Based on thoroughly composed reference datasets
for protein and mRNA concentrations in yeast under standard
growth conditions, we report the best corresponding correlation so
far. We took into account additional factors, beyond mRNA
concentrations, that influence protein levels in order to improve
protein level predictions. Extending our previous approach, where
ribosome occupancy and ribosome density were considered, we
now also consider ORF-specific translation elongation rates. Differ-
ent measures for elongation velocity were examined, and the codon
adaptation index was found to be most appropriate. Moreover,
saturation kinetics were introduced to better describe the trans-
lation process. The general findings were also applied to four stress
conditions. Three new concepts, translation on demand, just-in-time
translation, and general and specific posttranscriptional stress
responders, are discussed.
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tional factors always improved the correlation compared with
using mRNA levels alone (rs increases from 0.63 to 0.70;
Figure 1). In addition to mRNA concentration, ribocc, and
ribden, we also took into account sequence-based aspects of
elongation efficiency. In Escherichia coli, translation of major
codons occurs 3-fold to 6-fold faster [29,30] and 10-fold more
accurately [31] than translation of minor codons, which also
reduces the cost of GTP-dependent proofreading [32]. We
thus used the CAI as an indirect measure of elongation
velocity, because it is easily accessible for all yeast ORFs.
Figure 1 shows that accounting for the CAI further improved
the correlation to protein concentrations (rs¼ 0.68). Most of
the factors contributing to TA are correlated with each other,
e.g., CAI correlates with mRNA levels. To demonstrate that
each factor independently contributes to the TA, we
computed partial correlation coefficients for all relevant
combinations of factors (Table 1). This analysis shows that (i)
every factor independently carries significant information
about the translation rates and (ii) the CAI and the ribosome-
related factors (ribocc 3 ribden) contributed about equally to
the overall TA. Further, we determined the significance of
regression improvements by randomly subsampling the
datasets. Figure 1 shows the standard error of the regression
coefficients obtained by randomly subsampling the datasets
(two-thirds of the proteins were randomly sampled). To
determine if the regression improvements were caused by
only few proteins (outliers), we checked if the improvements
also hold for the subsamples (see Methods). We tested 1,000
random subsamples and always observed relative improve-
ments when considering more factors for TA prediction.

Influence of the tRNA Adaptation Index
The CAI is exclusively based on the frequency of codons in

highly expressed genes. Thus, it only indirectly accounts for
tRNA availability. A direct quantification of tRNA concen-
trations for the respective codons might give an improved
descriptor for an ORF’s tuning for fast elongation. To directly
account for tRNA availability, we introduce the tRNA
adaptation index (tRNA–AI) ([33]; for calculation, see
Methods). However, problems for the calculation of tRNA–
AIs are the lack of measured tRNA concentrations and the
ambiguous assignment of the 42 yeast tRNAs to the 64
codons. We tested two different tRNA–AIs (see Methods). The
correlations to the CAI are rs¼ 0.91 for tRNA–AI_p and rs¼
0.55 for the tRNA–AI_c. Next, we replaced the CAI in TA2
(Equation 2) by either of the tRNA–AIs to test if the tRNA–
AIs are equally or more predictive than the CAI. Figure 1
shows that the strict assignment (tRNA–AI_p) yielded a
protein–TA correlation slightly better than the correlation
with TA1 (rs ¼ 0.66 versus 0.65), whereas using tRNA–AI_c
yielded no improvement compared with TA1 (rs ¼ 0.65).
Hence, accounting for tRNA–AI_p improved the predicted
translational activity, while tRNA–AI_c was not predictive
for TA. Thus, (i) the tRNA concentration is indeed an
important factor for translation, and (ii) the speed of
elongation seems to be mainly determined by the availability
of tRNAs with perfectly matching anticodons. This observa-
tion was supported by the findings of Rocha [34], who showed
that the perfect match model is more likely to mimic in vivo
conditions than the frequency model. Yet, the protein–TA
correlation based on the CAI was still better than the one
based on the tRNA–AI_p. This suggests that the CAI
contains information beyond the tRNA gene copy number.
For instance, the codon–anticodon interaction strength
might also affect the efficiency of elongation [34,35]. There-
fore, all following estimations of TA are based on CAI, and
the tRNA–AIs were not used any further.

Saturation Effects in the Translation Rate and Calculation
of Protein Half-Lives
So far we assumed a linear relationship between the TA

and the factors defining it. However, because energy, as well
as the numbers of tRNAs, amino acids, and ribosomes
available in a cell, are limited, actual TA may saturate for
high mRNA concentrations. To test this hypothesis, we
computed TAs using different possible kinetic relationships,

Figure 1. Correlation of Protein Abundance and Different Translation

Rates

Shows Spearman rank correlation (rs) of TA versus reference protein
abundance; error bars indicate 6 one standard deviation based on
random subsamples. TA1¼mRNA 3 ribocc 3 ribden; TA2¼TA1 3 CAI; TA3
assumes Michaelis–Menten kinetics for the TA (Equation 3). The tRNA–AIs
were calculated as described in Methods; tRNA–AI_p indicates the
codon–tRNA assignment according to [42] and tRNA–AI _c the assign-
ment according to Crick’s wobble rules [43]. All correlations are based on
4,123 ORFs. Accounting for tRNA–AI_p slightly improves correlations
compared with TA1 alone. However, TA2 (with CAI) performs better.
Overall, considering saturation, (TA3) gave the best results.
doi:10.1371/journal.pcbi.0030057.g001

Table 1. Contribution of Each Factor to the Translational Activity

Factorsa Partial Correlationb Correlationc

CAI (mRNA) 0.42 0.62

ribocc 3 ribden (mRNA) 0.40 0.46

ribocc 3 ribden 3 CAI (mRNA) 0.43 0.63

mRNA 3 ribocc 3 ribden (CAI) 0.50 0.65

mRNA 3 CAI (ribocc 3 ribden) 0.64 0.66

aFirst parameter: independent variable; second parameter (in parenthesis): dependent
variable. Spearman rank correlation versus protein concentration used throughout.
bPartial correlation coefficient of first factor and protein concentration, while fixing the
factor in parenthesis.
cSimple correlation coefficient of first factor and protein concentration.
doi:10.1371/journal.pcbi.0030057.t001

PLoS Computational Biology | www.ploscompbiol.org March 2007 | Volume 3 | Issue 3 | e570533

Posttranscriptional Expression Regulation



which were all based on Michaelis–Menten kinetics (Figure 2).
Ribosome density was the only single factor that showed a
slight saturation effect. However, by combining mRNA
concentration, ribocc, and ribden in one saturation term
(named TA3, see Equation 3), we significantly enhanced the
protein–TA correlation (see Methods and Figure 2). This
combined term quantifies the number of initiation events for
the given ORF.

Several lines of evidence indicate that the small improve-
ment obtained by accounting for saturation is of true

biological relevance: first, we wanted to know if the saturation
may be biased by a specific experimental technique. To test
for such bias, we divided the dataset into a training set and a
test set based on different measurement techniques (Figure
S1 in Protocol S1). This analysis showed that, even if we train
the Michaelis constant, Km, on protein concentrations
obtained with one experimental method, it also improved
the correlation for protein concentrations from other
experimental methods. Thus, the type of kinetics suggested
by Equation 3 is independent of the experimental techniques
employed. Second, we randomly split the data into training
(two-thirds) and test (one-third) sets. We determined Km

based on the training data and applied it to the test data. We
repeated this test 50 times, and the resulting correlations of
TA3 in the test data were consistently high (Table 2). The Km

values determined for TA3 were remarkably stable (coeffi-
cient of variation CV¼ 0.18, Table 2). As opposed to that, the
Km values for the alternative models were more sensitive,
which additionally supports that our model better fits the
observed data. Finally, we analyzed the respective correla-
tions for different functional groups of proteins (Figure S2 in
Protocol S1). We observed at least a slight improvement when
using TA3 for 17 out of 18 functional groups. The final TAs
predicted for 6,063 ORFs, as well as respective protein half-
life descriptors (PHD, see Methods) for 4,125 ORFs, are
provided in Table S1. The PHD is only a relative descriptor of
protein half-life [10], but we expect that the predicted PHDs
correlate with measured protein half-lives. We compared our
PHDs with recently published protein half-lives for yeast [21].
PHDs determined with TA1 or TA2 were not significantly
correlated with the measured protein half-lives (jrsj, 0.1, p .

0.01), whereas PHDs based on TA3 exhibited a weak but
significant correlation (rs ¼ 0.24, p , 10�40). The predicted
PHDs are based on five values, most of which are noisy
(except for CAI); the measured protein half-lives are also
subject to biological noise. Nevertheless, the above significant
correlation provides confidence that protein stability pre-
diction via PHD is possible—at least within certain limits. We
expect that future PHDs will improve further as more and
more precise data become available.

Figure 2. Saturation of the Transactional Activity

Shows Spearman rank correlation (rs) of different models for TA
prediction as a function of the Michaelis constant, Km. All four factors
(F) contributing to TA (mRNA, ribocc, ribden, CAI) were tested for
saturation individually and in combination. The different colors indicate
the models for TA prediction:

TA ¼ F1

Km þ F1
� F2 � F3 � F4:

The product of mRNA 3 ribocc 3 ribden in the saturation term (i.e., TA3)
yielded the best correlation with reference protein concentrations. The
value without any saturation (rs ¼ 0.68) is approached for Km ! ‘.
doi:10.1371/journal.pcbi.0030057.g002

Table 2. Comparison of Different Saturation Models (Cross-Validation)

Model for TAa Km (Full

Dataset)b
Km (Cross-

Validationc
CV of

Km
d

rs (Full

Dataset)e
rs (Cross-

Validation)f
Standard

Deviation of rs
g

CAI 3 M 3 R 3 O / (M þ Km) 6.27 24.20 3.61 0.680 0.678 0.014

CAI 3 M 3 R 3 O / (R þ Km) 0.33 0.34 0.21 0.685 0.687 0.015

CAI 3 M 3 R 3 O / (O þ Km) 8.61E þ 06 2.56E þ 13 4.22 0.679 0.680 0.014

CAI 3 M 3 R 3 O / (CAI þ Km) 3.98E þ 06 6.71E þ 12 0.87 0.679 0.683 0.013

CAI 3 M 3 R 3 O / (M 3 R 3 O þ Km) ¼ TA3 0.06 0.07 0.12 0.698 0.697 0.010

CAI 3 M 3 R 3 O / (M 3 CAI þ Km) 3.06E þ 12 1.32E þ 18 3.17 0.679 0.284 0.337

CAI 3 M 3 R 3 O / (M 3 R 3 O 3 CAI þ Km) 0.04 6.73E þ 06 7.06 0.679 0.681 0.013

aM, mRNA abundance, R, ribden, O, ribocc, Km, Michaelis constant (fitted to training data).
bOptimal Km based on full dataset.
cAverage optimal Km for 50 random subsets of proteins (using training sets).
dCoefficient of variation of Km in random subsamples.
eSpearman rank correlation coefficient (rs) of TA versus protein concentrations (full dataset).
fAverage rs of TA versus protein concentrations for 50 random subsets (using test sets).
gStandard deviation of rs based on random subsets (using 50 test sets).
doi:10.1371/journal.pcbi.0030057.t002
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Translation on Demand
To systematically identify candidates for translation on

demand, we developed an integrated score. Translation on
demand is indicated under normal conditions by (i) a small
number of ribosomes translating a given ORF, and (ii) by a
small number of proteins produced per transcript. Thus,
ribocc 3 ribden serves as a first indicator, and the ratio of
proteins per mRNA (PRR) is used as the second predictor. A
low value for both, ribocc 3 ribden and PRR, indicates strong
evidence for translation on demand. Next, we computed an
integrated score to rank genes with respect to their potential
for translation on demand on a single scale. This score is
defined as the weighted sum of ribocc 3 ribden and PRR (both
normalized by the median values). A low value of this score is
indicative for translation on demand. We also tested other
scores, but they performed significantly worse than this
scoring scheme. For instance, the (weighted) product of ribocc
3 ribden and PRR may yield low scores even if one of the two
descriptors is high. This is particularly problematic for
proteins with short half-lives, because they might exhibit
low PRRs without actually being translated on demand.

Due to the necessity for relatively fast responses, compo-
nents of signal transduction chains are probable candidates
for regulation at the translational level (in addition to
covalent modifications governing their activities). To test this
hypothesis, we assessed the overlap of the top 100 and the top
500 genes according to our score with gene categories from
the Munich Information Center for Protein Sequences (MIPS)
(http://mips.gsf.de) and the Saccharomyces Genome Database
(SGD) (http://www.yeastgenome.org). As shown in Tables S3
and S4, these top-scoring candidates were indeed significantly
enriched for genes with functions related to signal trans-
duction and, interestingly, to transcriptional regulation. This
suggests that transcription factors are among the first
proteins that are rapidly synthesized upon detection of stress
signals. We also analyzed the correlation of protein and
mRNA concentrations within groups of genes with similar
functions (functional modules [10]). Figure S2 in Protocol S1
shows that modules related to signal transduction (i.e., those
likely to contain many proteins that are subject to translation
on demand) exhibit particularly weak protein–mRNA corre-
lations. However, after accounting for posttranscriptional
regulation, those correlations improved. Hence, the protein–
mRNA correlation in regulatory modules gets distorted by
posttranscriptional processes.

Posttranscriptional Regulation under Stress Conditions
Next we asked whether our results, obtained under stand-

ard conditions, also hold under stress conditions. We
considered all four available datasets with measured mRNA
and protein concentrations under standard and stress
conditions (see Methods). Unfortunately, most studies did
not provide ribosome densities and occupancies, so we only
considered changes in protein and mRNA concentrations
under stress.

Both mRNA and protein concentration changes were
measured for 1,216 ORFs in response to at least one of the
four stimuli. When a given ORF is translated on demand
under one of the tested conditions, one expects to see a
greater change in its protein concentration than in its mRNA
level. Therefore, the ratio of protein to mRNA concentration
changes was computed for all available genes and conditions.

These ratios served as additional evidence for translation on
demand, and may help identify targets for future research.
Accordingly, we took a closer look at high-ranking genes
(rank , 500) exhibiting strongly elevated protein concen-
tration changes under at least one of the four tested stress
conditions. Concentrations of 20 proteins were elevated at
least two times more than their corresponding mRNA (Table
S5). It would be most interesting to analyze the posttranscrip-
tional regulation of these genes more in detail in the light of
these results.
Figure 3 shows the protein change (PC) and change of

translation rate (TC) for different stimuli and functional
groups. Viewing the data this way emphasizes the high
specificity of transcriptional and posttranscriptional re-
sponses under different conditions. Whereas a lack of amino
acids (Figure 3C) induces dramatic posttranscriptional
changes, the mating pheromone induces stronger transcrip-
tional changes (Figure 3D). The figure also highlights the
functional difference in protein concentration regulation.
For instance, proteins involved in signal transduction (group
ST) are clearly strongly upregulated at the posttranscrip-
tional level in the minimal medium. This once more under-
lines the importance of fast posttranscriptional changes of
protein concentrations (e.g., translation on demand) espe-
cially for signaling proteins. Proteins involved in protein
synthesis, on the other hand (group PS), were downregulated,
presumably because the overall protein synthesis was reduced
in minimal media. When switching the energy source (Figure
3A), changes in protein synthesis were less drastic, while
energy-related proteins (group EG) changed most at both the
transcriptional and posttranscriptional levels.
The experimental datasets contain 62 ORFs with mRNA

and protein ratios measured under all four stress conditions.
By combining these data, we were able to analyze the
differential regulation of these proteins under several
conditions. One noteworthy candidate for translation on
demand is YPL028w (also known as ERG10, LPB3, or
TSM0115), which codes for an acetyl-CoA C-acetyltransferase.
This enzyme is involved in the first step of mevalonate
biosynthesis [36]. Accordingly, it was substantially upregu-
lated in the galactose experiment (6.7-fold change) without
significantly changing its mRNA concentration (0.7-fold
change). Another protein catalyzing the first step of a
pathway (serine and glycine biosynthesis) is Ser3p [37].
Although the mRNA concentration was also upregulated
(4.2-fold change) upon exposure to minimal medium [4], the
increase in protein concentration was much higher (18.2-fold
change). Whereas it is well-established that genes are tran-
scribed in the order of the appearance of their products in
metabolic pathways (just-in-time transcription [38,39]),
YPL028w and Ser3p represent the first hints for a similar
regulation at the translational level (just-in-time translation).
Thus, enzymes catalyzing important first steps in metabolic
pathways might also be regulated at the translational and
post-translational level (e.g., allosteric control or covalent
modifications) to ensure a fast cellular response.
Table 3 shows the PC/TC ratio for selected proteins. The

complete table, with all 62 proteins measured under all four
conditions, is shown in Table S6. On the top of the table are
all proteins whose maximum PC/TC is at least 2.5 times higher
than for any of the other conditions—these are specific
posttranscriptional responders. At the bottom of Table 3 are
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Figure 3. Change of Translation Rate and Protein Change in Response to Different Stimuli

Median protein and translation rate ratios are shown for the conditions 6 galactose (A), ethanol/galactose (B), minimal medium/normal medium (C), 6
mating pheromone (D). Translation rates were calculated according to Equation 3, assuming constant ribden and ribocc (because those changes were
unavailable for all but one condition). Proteins were functionally grouped based on MIPS annotation.
AR, protein activity regulation; BG, biogenesis; CC, cell cycle/DNA processing; CF, cell fate; CR, cell rescue/defense/virulence; DF, differentiation; IE,
interaction with cellular environment; MB, metabolism; PB, protein with binding function; PF, protein fate; ST, cellular communication/signal
transduction; TC, transcription; TP, cellular transport.
doi:10.1371/journal.pcbi.0030057.g003

Table 3. Selected Examples of Proteins with Clear Patterns of Specific Stress Response (First Seven Rows) or Generic Stress Response
(Last Eight Rows) after Accounting for Saturation of the Translational Activitya

Gene Function 6 Galactoseb 6 Ethanolc Minimal Mediad Pheromonee

YOR375c GDH1 Amino acid metabolism, energy 0.53 1.00 7.47 1.03

YPL028w ERG10 Ergosterol biosynthesis 6.68 1.15 0.68 1.18

YPR191w QCR2 Protein fate, energy 0.60 1.08 3.08 0.73

YKL148c SDH1 Aerobic respiration, electron transport 0.87 0.64 3.24 1.14

YNL055c POR1 Aerobic respiration, ion channel 0.79 0.66 2.65 0.94

YNR050c LYS9 Amino acid metabolism 1.25 0.96 3.08 1.16

YJR016c ILV3 Amino acid metabolism 1.00 0.50 2.57 1.11

YLR216c CPR6 Transcription factor, protein folding 1.24 0.52 0.66 0.84

YFL045c SEC53 Sugar metabolism, protein transport 1.26 0.76 0.73 0.76

YBL072c RPS8a Ribosomal protein 0.92 0.42 0.57 0.86

YFL039c ACT1 Actin 0.83 0.47 1.01 1.16

YBR143c SUP45 Translation termination 1.15 0.41 0.77 1.05

YKL035w UGP1 Sugar and phosphate metabolism, protein modification 1.31 1.17 1.41 1.11

YBR121c GRS1 tRNA synthesis, transcription factor 0.90 0.45 0.79 0.96

YBL076c ILS1 tRNA metabolism 1.20 0.53 1.22 1.28

aShows ratio of PC versus TA change (TC, cf. Figure 3) under given conditions. Maximum ratio is bolded for each protein.
bRatio in response to 6 galactose conditions [3].
cRatio in response to 6 ethanol conditions [6].
dRatio in response to amino acid starvation (minimal media) [4].
eRatio in response to pheromone [9].
doi:10.1371/journal.pcbi.0030057.t003
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general responders, i.e., proteins without a distinct posttran-
scriptional upregulation under one specific condition.
Hence, there are two classes of proteins: the first class
contains proteins that are strongly posttranscriptionally
upregulated under just one of the four tested conditions.
These proteins are likely to be stress specific. The second class
contains proteins that are either not distinctly regulated at
the posttranscriptional level (i.e., the protein and mRNA
changes were similar) or that are upregulated under several
stress conditions. We found that proteins involved in amino
acid metabolism or protein fate exhibit condition-specific
posttranscriptional regulation, in contrast to proteins with
more generic cellular functions (those at the bottom of Table
3, e.g., proteins involved in translation). Importantly, this
pattern only emerged after accounting for the saturation of
translational activity (Equation 3, Table S6).

Discussion

It is increasingly recognized that mRNA abundances are
only a weak surrogate for the corresponding protein
concentrations [13], and it has been proposed that posttran-
scriptional control of gene expression is at least as important
as the better-studied transcriptional regulation [14]. Our
work contributes to a better understanding of posttranscrip-
tional regulation by taking into account as much information
as possible in addition to mRNA concentrations. In our
previous work [10], we did not consider any data describing
the translation elongation velocity. Here we introduced the
CAI as an additional factor and we demonstrated that it is
currently the best corresponding measure. A systematic
analysis of all TA factors reveals that the CAI contributes
additional independent information for understanding trans-
lation rates, and it is at least as important as ribocc and ribden
together. Moreover, for the first time we tackled the problem
of the functional relationship between the TA and the
contributing factors. The proposed Michaelis–Menten ki-
netics implies that the concentrations of highly abundant
mRNAs have to change much more drastically to achieve a
significant change of protein concentrations. The transcripts
of many signalling proteins, like transcription factors, are
often expressed at comparably low concentrations, facilitat-
ing sensitive and significant changes in response to stress.
These findings are also in line with the previous observation
that protein concentrations tend to be less noisy if transcript
levels are high [20]. We found that only the initiation-related
factors (mRNA concentration, ribocc, and ribden) were subject
to saturation, whereas the CAI contributed linearly to TA. In
other words, once translation started, it progressed as quickly
as permitted by the sequence [18]. Importantly, our results
imply a protein-specific saturation, as opposed to a global
reduction in translation (e.g., due to energy exhaustion). First,
each protein requires a distinct set of amino acids, and hence
also a distinct set of tRNAs, for its synthesis. Hence, these
resources could be exhausted if certain mRNAs were
excessively translated. Second, translation is often conducted
in a site-specific manner, i.e., transcripts are transported to
specific cytoplasmic sites where the protein products are
needed [40,41]. Excessive translation can therefore exhaust
resources in those cellular regions, whereas translation may
remain unaffected at other sites. In this context it is also
important to remember that log-growth conditions are not

the normal environmental conditions to which yeast cells
have been adapted. Natural conditions are much more
characterized by nutrient limitations. Hence, it is likely that
several proteins are synthesised beyond their optimal limits
in fast-growing cells under ideal lab conditions.
It is well-established that the input data used for this study

are noisy [5,8,10]. General conclusions would be affected by a
systematic bias caused by the noise in the data. Newman et al.
[15] found a correlation between protein abundance and
biological variability. However, such bias does not affect
average concentrations for populations of cells. In fact,
Newman et al. report a good correlation of their protein
concentrations with previous population-based measure-
ments. It should be noted that our main results are robust
to noise in the data: an additional ORF-specific factor
accounting for the speed of translation always improves the
TA–protein correlation, regardless of whether we use the
tRNA–AI or the CAI (Figure 1). Also, there is an improvement
of TA–protein correlations by using saturation kinetics for a
range of about two orders of magnitude for the Km value
(Figure 2).
Based on our newly calculated TAs, we propose degrada-

tion rates for 4,125 proteins. Comparison with the recently
published study of the first large-scale measurement of
protein turnover [21] reveals that our calculation outper-
formed previous approaches [10]. Deviations between our
predicted values and the measurements were partly due to
noise in the data, but they might also pinpoint potential
additional posttranscriptional control steps, which should
trigger more detailed investigations of these ORFs.
The consideration of all available large-scale data on stress

response in S. cerevisiae enabled us to confirm the previously
introduced concept of translation on demand [10]. Addition-
ally, based on the analysis of all 62 genes with measured
protein concentrations under all four conditions, we dem-
onstrated the first evidence to our knowledge for generic and
specific posttranscriptional stress responders. Several pro-
teins that were posttranscriptionally upregulated under only
one of the tested conditions might, of course, also respond
under other, yet-untested conditions. However, the distinct
patterns that already emerged based on the available data
indicate that cells use similar regulatory schemes of generic
and specific responses to tackle threats at the transcriptional
and posttranscriptional level. Many of the translation-on-
demand candidates did not show any significant upregulation
under any of the tested conditions. The majority of them
were not even measured under all four conditions. Also, these
conditions only represented a small subset of the possible
threats that yeast has adapted to. Clearly, the investigation of
the posttranscriptional stress response is lagging behind the
corresponding analysis at the transcriptional level. By
combining all available information, it might be possible to
nail down those conditions under which the translation-on-
demand candidates respond at the posttranscriptional level
and to experimentally verify the predictions. The in silico
analyses presented here will help to streamline those
experimental efforts.

Materials and Methods

Data used. A complete list of all data used is presented in Table S1.
Only genes occurring in MIPS and/or SGD were considered. The
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mRNA concentrations for standard conditions were taken from our
previous work [10], which were derived from a pool of 36
independent mRNA abundance measurements from different re-
search groups. Protein concentrations for standard conditions of
four measurements [1,2,7,28] were normalized by nonlinear regres-
sion, and the median was taken as the reference value for each ORF
(Table S1). The following equations were used to map the reported
measurement value (meas) onto a common scale:

Ghaemmaghami et al. [7]: selected value ¼ original data
Prot Futcher et al. [2] [103 copies/cell]: selected value ¼ 9,710.7 �

meas0.4293

Prot Gygi et al. [1] [103 copies/cell]: selected value ¼ 10,977 �
meas0.2662

Prot Liu et al. [28] [relative abundance]: selected value¼ 2,108.2 �
meas0.516

The four stress datasets were taken from [3] (shift from glucose to
galactose), [6] (ethanol), [4] (minimal medium), and [9] (exposure to
pheromone). Genes were grouped according to the functional
protein classification in MIPS, http://mips.gsf.de/genre/proj/yeast/,
where one gene can be assigned to several groups.

Translational activities and protein half-life descriptor. The TA is a
measure for the ORF-specific translation rate. The true translation
rate is the product kp 3 TA [10], where we assume an ORF-
independent rate constant, kp. We tested different variants of
estimating the TA from measured data. The first (TA1) has been
suggested previously [9,10]:

TA1 ¼ rMRNA3 ribden3 ribocc; ð1Þ

where mRNA is the mRNA concentration of that gene [9,18]. Next, we
included the CAI:

TA2 ¼ mRNA3 ribden3 ribocc3CAI : ð2Þ

Finally, we assumed Michaelis–Menten kinetics:

TA3 ¼ mRNA � ribden � ribocc
Km þ ðmRNA � ribden � riboccÞ � CAI : ð3Þ

The Km for the Michaelis–Menten kinetics (Km ¼ 0.06) was
determined by maximizing the correlation between TA3 and protein
abundance (Figure 2).

The protein half-life descriptor, PHD, was calculated according to
[10], but using TA3 as an improved measure of translational activity:

PHD ¼ prot
TA3

; ð4Þ

where prot is the reference protein concentration of the correspond-
ing gene (see the section Data used).

When comparing the predicted PHDs with measured protein
degradation rates from [21], we used two different datasets: the first
set contained all proteins with the half-lives as reported by [21], and
the second set contained only proteins with half-lives shorter than
300 min. The second dataset was used because short half-lives are
more reliable [21]. Correlations with both datasets were very similar,
especially the significant correlations (rs ¼ 0.2427 and 0.2425,
respectively).

Correlation of protein concentrations with mRNA abundance and
TA. Correlations were quantified using the Spearman rank correla-
tion coefficient, which is in agreement with previous studies [5,10]. All
reported correlations were based on at least ten data points.
Although some of the correlations in Figure 1 can be computed for
more proteins than others, all correlations reported were performed
on the same set of proteins to avoid biases due to different sample
sizes.

Significance of correlations. All correlations reported in Figure 1
were significantly different from zero (p , 10�16). Variability of the
correlation coefficients was tested by randomly subsampling two-
thirds of the proteins. The rs was computed for each subsample, and
its standard error was computed (Figure 1). To test the significance of
correlation improvements, the correlations (rsjmRNA, rsjTA1, rsjTA2,

rsjTA3) were compared for each subsample individually. In all 1,000
subsamples, rsjTA1 . rsjmRNA, rsjTA2 . rsjTA1, and rsjTA3 . rsjTA2.
This test demonstrated that the respective improvements were not
dependent on some specific outliers. We also tested for the
significance of individual factors by computing partial correlation
coefficients (see main text and Table 1).

Calculation of the tRNA adaptation index. The definition of the
tRNA–AI is similar to the CAI [19], whereby the RSCU value was
replaced by the gene copy number (GCN) of the corresponding tRNA.
Under normal growth conditions, the GCN can be used as a measure
of tRNA concentrations [42]. The relative adaptation value wk of a
codon k is the GCN of that tRNA compared with the maximal GCN
for that amino acid:

wk ¼
GCNk

maxfGCNkg
: ð5Þ

Two assignments of tRNAs to codons were tested. According to
[42], each codon gets assigned only one tRNA (the perfectly matching
tRNA according to Watson–Crick base pairing, w_p). The wobble
rule introduced by Crick [43] assumes that some codons can be
recognized by several tRNAs. In the corresponding second model, the
GCNs were added up (w_c) [33].

In accordance with the definition of the CAI, we defined the
tRNA–AI of a gene with L amino acids as the geometric mean of wk:

tRNA� AI ¼ ðP
k
wkÞ1=L: ð6Þ
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