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Abstract

Cancer-related gene expression programs are strongly influenced by post-transcriptional

mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-

regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections

of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits.

By interacting with specific mRNA subsets, HuR enhances the levels of proteins that 1) promote

cell proliferation, 2) increase cell survival, 3) elevate local angiogenesis, 4) help the cancer cell

evade immune recognition, and 5) facilitate cancer cell invasion and metastasis. We propose that

HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that

links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis,

prognosis, and therapy.

INTRODUCTION

The expression of distinct collections of proteins allows cancer cells to develop, survive,

proliferate, and colonize other tissues (1). Although some changes in the expression of

cancer-related proteins arise through gene mutation, most cancer-specific protein expression

patterns involve genes that are not mutated, but are expressed aberrantly (2). Besides

modified transcription, protein production can change through altered post-transcriptional

mechanisms such as mRNA splicing, transport, storage, translation, and degradation (3–5).

These processes are governed by two types of RNA-binding factors, RNA-binding proteins

(RBPs) and noncoding RNAs, particularly microRNAs (6, 7).

The impact of RBPs on the expression of cancer-associated genes is well recognized. Many

oncoproteins, tumor suppressor proteins, and other cancer-related proteins are encoded by

mRNAs whose half-lives and/or translation are tightly regulated. The sequences that confer

differential turnover or translation typically reside in the 5′- and 3′-untranslated regions

(UTRs) of the mRNA. Accordingly, several RBPs that associate with these regions and

modulate mRNA turnover and translation (e.g., tristetraprolin, AUF1, and Sam68) have

been found to influence cancer-associated protein expression (3, 4, 8, 9). Among the earliest

RBPs that were identified as being associated with tumorigenesis (10) are the members of

the Hu/elav (embryonic lethal abnormal vision) protein family, which comprises three

primarily neuronal proteins (HuB, HuC, and HuD), and one ubiquitous protein, HuR

[ELAVL1, also known as HuA (11, 12)].

HuR FUNCTION

HuR has three RNA recognition motifs (RRMs) through which it interacts with target

mRNAs, preferentially those bearing U- or AU-rich sequences in their 5′UTRs and 3′UTRs

(11, 13). The association of HuR and target transcripts is modulated following
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phosphorylation by protein kinase C (PKC), the mitogen-activated protein kinase (MAPK)

p38, and the checkpoint kinase Chk2, which also modulates HuR levels by influencing its

ubiquitination (14–18). HuR is primarily nuclear and has been implicated in mRNA splicing

(19), but its nuclear functions remain obscure. By contrast, HuR’s ability to stabilize and/or

modulate the translation of many of its target mRNAs is closely linked to its translocation to

the cytoplasm (11). The transport of HuR across the nuclear envelope involves a specific

HuR domain (the HuR nucleocytoplasmic shuttling sequence or HNS) and several transport

machinery components, including CRM1, transportins 1 and 2, and importin-1α (20–23).

HuR nucleocytoplasmic transport is also influenced by kinases [cyclin-dependent kinase

(Cdk)1, AMP-activated protein kinase (AMPK), PKC, and p38] that phosphorylate HuR and

HuR transport components (15, 16, 24–27). These and other post-translational modifications

(28, 29) of HuR that affect HuR abundance, subcellular localization, and mRNA binding are

summarized in Fig. 1.

HuR-stabilized target mRNAs include those that encode p21, c-fos, vascular endothelial

growth factor (VEGF), the MAPK phosphatase (MKP)-1, inducible nitric oxide synthase

(iNOS), granulocyte/macrophage-colony-stimulating factor (GM-CSF), sirtuin 1, tumor

necrosis factor (TNF)-α, Bcl-2, Mcl-1, COX-2, γ-glutamylcysteine synthetase heavy subunit

(γ-GCSh), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), p53,

interleukin (IL)-3, and cyclins A2, B1, E, and D1 (14, 30–41). The exact mechanisms by

which HuR stabilizes these mRNAs are not fully understood, but HuR likely competes with

other RBPs whose interaction with the same labile mRNAs might lead to their recruitment

to cellular structures for mRNA degradation, such as the exosome and processing (P) bodies

(42–49).

HuR can repress the translation of many target mRNAs, like those encoding p27, the type-I

insulin-like growth factor receptor (IGF-IR), Wnt5a, and c-Myc (41, 50–53). Additionally,

HuR can promote the translation of many other target transcripts, such as those that encode

the hypoxia-inducible factor (HIF)-1α, p53, prothymosin α (ProTα), MKP-1, cytochrome c,

heme oxygenase-1, and CAT-1 (54–59). The molecular mechanisms whereby HuR

modulates translation are also poorly characterized. In some cases, HuR was proposed to

interfere with internal ribosome entry sites (IRESs) in the 5′UTRs of target mRNAs (50,

52); in other cases, its effects on translation were due to competition or cooperation with

microRNAs (53, 56).

Through its influence on collections of expressed proteins, HuR has been implicated in

many cellular processes, including differentiation, the cellular response to damaging stimuli,

and the immune and inflammatory responses (reviewed in 11, 41). In addition, HuR is

increasingly recognized as a pivotal factor in cancer-related gene expression. This function

is based on HuR’s ability to promote the expression of proteins that enhance proliferation,

inhibit apoptosis, increase angiogenesis, reduce immune recognition, and facilitate invasion

and metastasis (Table 1). Accordingly, a direct role for HuR in tumorigenesis is beginning to

emerge (11, 60, 61). In this review, we will first describe the subsets of HuR target

transcripts that promote each of these traits of cancer cells. We will then describe the

evidence linking HuR to specific malignancies and its growing recognition as a diagnostic,

prognostic, and therapeutic target in human cancer.

HuR-REGULATED mRNAs ENCODING PROTEINS IMPLICATED IN CANCER

TRAITS

As proposed by Hanahan and Weinberg, normal cells evolve into cancer cells through the

acquisition of specific phenotypes, including enhanced abilities to proliferate, survive

apoptotic stimuli, develop local angiogenesis, and colonize other tissues (1). Over the past
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decade, numerous HuR-regulated mRNAs have been identified that contribute directly to the

acquisition of each of these cancer traits (11, 61, 62). In this section, we will review these

hallmark features of cancer cells and identify the HuR target mRNAs through which HuR

can elicit cancer-related phenotypes (Fig. 2).

Promotion of cell proliferation

Cancer cells must divide actively in order for the tumor mass to grow. This trait is usually

accompanied by altered abundance of cell cycle regulators, leading to shortened cell division

times and to expansion of the tumor population. By associating with the mRNAs that encode

them, HuR increases the levels of many cell cycle regulators, particularly cyclins, which

activate cdks during different cell cycle phases; cyclins and cdks have been directly

implicated in cancer progression (63). Additionally, the process of cellular senescence,

widely considered to be a tumor suppressive mechanism linked to the cessation of cell

division (64, 65), is suppressed by HuR overexpression (66). HuR inhibits cellular

replicative senescence at least in part by enhancing the expression of several cyclins (66).

Cyclin D1—This cyclin is an essential activator of Cdk4 and Cdk6, which participate in the

progression through the G1 phase of the cell division cycle. Elevated Cyclin D1 expression

has been reported in tumor cells, associated with a shortened G1 phase (67, 68). HuR

associates with the 3′UTR of Cyclin D1 mRNA and stabilizes it, at least partly by competing

with decay-promoting RBPs, as observed in human cervical carcinoma cells (37).

Cyclin E—An activator of Cdk2, Cyclin E is critical for progression through the G1/S

transition. Cyclin E is highly expressed in several malignancies, including gastric, ovarian,

breast and colorectal cancers, and plays an important role in oncogenic transformation (70–

73). HuR was recently found to bind to the Cyclin E 3′UTR and promoted Cyclin E

expression in the breast cancer cells (74, 75). Downregulation of HuR significantly lowered

Cyclin E mRNA stability and protein levels, while HuR overexpression elevated Cyclin E1

production, in turn accelerating cell proliferation (74, 75).

Cyclin A2—Also a Cdk2 cofactor, Cyclin A2 promotes progression through the S phase.

Cyclin A2 levels increase in tumors, associated with elevated proliferation (76, 77). HuR

was shown to interact with the Cyclin A2 3′UTR and stabilized the Cyclin A2 mRNA in a

cell cycle-dependent manner in colon cancer cells (31). In cervical carcinoma cells, HuR

phosphorylation at serine 202 (S202) by the G2 kinase Cdk1 caused the nuclear retention of

HuR, leading to marked reductions in both Cyclin A2 mRNA stability and Cyclin A2

translation (25). Conversely, the nonphosphorylatable mutants HuR(S202A) and

HuR(S242A) accumulated in the cytoplasm, enhancing Cyclin A2 expression and increasing

cell proliferation (25–27).

Cyclin B1—A major activator of Cdk1 and hence a key factor for progression through the

G2 phase, cyclin B1 abundance is elevated in tumors (78, 79). HuR associated with the

3′UTR of the cyclin B1 mRNA and stabilized it during the S and G2 phases in colon cancer

cells (31, 66). As described for Cyclin A2 mRNA, the cytoplasmic accumulation of the

nonphosphorylatable mutant HuR(S242A) also led to the stabilization of Cyclin B1 mRNA

(26).

p27—By inhibiting Cdk2, p27 prevents cell proliferation (80). Reductions in p27 levels are

associated with cancer, both because low p27 levels enhance cell division and because p27

is strongly pro-apoptotic (81). HuR interacts with the 5′UTR of p27 mRNA and represses

p27 translation (50); the precise mechanisms of repression is unclear, but HuR may disrupt

the activity of an IRES in the p27 5′UTR (50).
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Epidermal growth factor (EGF)—Besides acting on cell cycle regulatory factors, HuR

can promote the expression of factors that promote proliferation. EGF is a key signaling

molecule that stimulates cell growth and proliferation. It functions by interacting with the

EGF receptor (EGFR), which triggers proliferative signaling pathways and promotes

tumorigenesis (82). HuR associates with the EGF 3′UTR, although its exact influence upon

EGF expression awaits further study (83).

Eukaryotic translation initiation factor (eIF4E)—Eukaryotic mRNAs possess a 7-

methyl-guanosine (m7G) cap structure at their 5′ end. The protein eIF4E binds the m7G cap

and brings mRNAs to the ribosome for translation (84). eIF4E is found elevated in human

cancers, is considered to be oncogenic, since its overexpression leads to transformation and

enhances tumorigenesis, and is a therapeutic target (85). HuR was recently found to interact

with the 3′UTR of the eIF4E mRNA, stabilizing the eIF4E mRNA and increasing eIF4E

expression (86). As postulated by Topisirovic and co-workers, eIF4E and HuR could jointly

upregulate the expression of proliferative proteins encoded by shared target mRNAs (86).

Enhancement of cell survival

Tumor cells develop under stress conditions, including reduced access to nutrients and

growth factors and increased exposure to oxidative damage. In order to thrive, they must

overcome death-causing signals, particularly those leading to apoptosis (programmed cell

death). Apoptosis resistance is engendered by the expression of specific anti-apoptotic

genes. As discussed below and elsewhere (39, 55, 87), HuR stabilizes and modulates the

translation of numerous mRNAs and thereby promotes the expression of anti-apoptotic

proteins and represses the expression of pro-apoptotic proteins. In addition, HuR was

recently reported to regulate the splicing of the apoptosis-promoting receptor Fas; the

resulting exclusion of an exon rendered a soluble Fas isoform that prevented cell death (19).

It is important to note that under conditions of prolonged or severe stress, HuR can exert a

pro-apoptotic influence instead (reviewed in 87).

Prothymosin α (ProTα)—ProTα protects against apoptosis by inhibiting the formation of

the apoptosome, a cytosolic macromolecular complex that assembles in cells committed to

apoptotic death. The apoptosome activates caspase-9, which in turn activates effector

caspases culminating in apoptotic cell death (88). In this capacity, ProTα plays a key role in

cell survival and is highly expressed in several cancers (88, 89). HuR was shown to promote

ProTα expression by interacting with the 3′UTR of ProTα mRNA and enhancing its

translation (55). In turn, the HuR-mediated increase in ProTα expression protected cervical

carcinoma cells against irradiation with short-wavelength ultraviolet light (UVC) (55).

B-cell lymphoma 2 (Bcl-2)—The proto-oncogene Bcl-2 is expressed in many cancers

and is a major anti-apoptotic protein, inhibiting the release of cytochrome c from the

mitochondria (90). In leukemia and carcinoma lines, HuR was shown to bind the Bcl-2

mRNA, stabilized it, and promoted Bcl-2 translation, leading to a significant increase in

Bcl-2 abundance (39, 91).

Myeloid cell leukemia-1 (Mcl-1)—Mcl-1 is highly similar to Bcl-2, both structurally and

functionally, and is also highly expressed in several cancer cells (92). Although molecular

details of the influence of HuR on Mcl-1 expression are unknown, in cervical carcinoma

cells HuR interacts with the Mcl-1 mRNA and HuR downregulation lowers Mcl-1 mRNA

and protein abundance (39).

Sirtuin 1 (SIRT1)—SIRT1 promotes cell survival by deacetylating and thereby

suppressing the activities of pro-apoptotic proteins such as p53, Foxo-3a and Ku70
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(reviewed in 93). SIRT1 is highly expressed in different cancers including colon, prostate,

and cervical cancers and has been ascribed a number of pro-tumor functions (94). HuR was

found to interact with the SIRT1 3′UTR, enhanced SIRT1 mRNA stability, and thereby

increased SIRT1 levels (14). In turn, cells expressing high SIRT1 showed heightened

resistance to apoptosis triggered by various damaging agents (14, 95).

p21WAF1—A universal inhibitor of cdks, p21 reduces cell cycle progression and

proliferation (96). p21 has been proposed to be pro-oncogenic by its ability to inhibit

apoptosis in response to stress signals, through both p53-dependent and p53-independent

mechanisms (97, 98). Accordingly, decreased p21 expression following preoperative

chemoradiotherapy for rectal cancer was associated with improved disease-free survival

(99). HuR interacts with the 3′UTR of the p21 mRNA (32); after exposure to UVC or

ionizing irradiation, HuR increased the stability of p21 mRNA and elevated p21 expression

(17, 32). These findings suggest that HuR could enhance p21 expression during the course

of radiotherapy, conferring increased resistance to the cancer cell.

Mdm2—The Mdm2 p53-binding protein promotes cell survival. It inactivates p53 function

by binding to its transactivation domain and targeting it for proteasome-mediated

proteolysis. Recently, HuR was reported to interact with the Mdm-2 mRNA, although the

specific region of binding was not determined (100). In inducible HuR-null mice, Mdm-2

mRNA stability was markedly reduced, leading to the reduced expression of Mdm-2, which

the authors linked to widespread apoptosis in the intestinal epithelium, loss of intestinal villi,

and lethality by 10 days after induction of the HuR-null phenotype (100).

c-Myc—Among many complex cellular functions, the c-Myc transcription factor is potently

pro-apoptotic (101, 102). Aknown HuR target (103), the c-Myc mRNA was recently shown

to be subject to translational repression by HuR; this process required the recruitment of the

microRNA let-7 to a site adjacent to the HuR-binding region on the c-Myc 3′UTR (53).

Together with the enhanced expression of the anti-apoptotic proteins listed above, the

repression of the pro-apoptotic c-Myc solidifies a role of HuR as a strong anti-apoptotic

factor.

Elevation of local angiogenesis

In order to expand, tumor cells need to develop local vasculature. This process, termed

angiogenesis, permits the delivery of nutrients and oxygen and allows tumors to thrive

(104). Numerous signals can promote or inhibit angiogenesis. Below we include examples

of HuR promoting the expression of pro-angiogenic factors and halting the production of

anti-angiogenic factors.

Hypoxia-inducible factor alpha (HIF-1α)—The transcription factor HIF-1α is robustly

expressed in cells growing in the presence of low oxygen concentrations (hypoxia). Under

these conditions, HIF-1α plays a key role in the transcriptional activation of several genes

that are essential for the cell’s adaptation to hypoxia (105, 106). Several studies have

reported increased HIF-1α abundance in tumors, a correlation between HIF-1α levels and

aggressive cancer phenotypes, and a role for HIF-1α as a potential target for cancer therapy

(107, 108). Among the many factors that associate with HIF-1α mRNA and modulate its

expression, HuR interacts with the HIF-1α 5′UTR and promotes HIF-1α translation, and

with the HIF-1α 3′UTR and stabilizes it (83,109–111). Among other cancer-related

functions, HIF-1α is potently cytoprotective (112).

Vascular endothelial growth factor (VEGF)—VEGF enhances cancer development by

promoting cell growth, angiogenesis, proliferation, and migration (113–116). VEGF is
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highly expressed in tumor cells growing in hypoxic conditions. The VEGF mRNA was one

of the first HuR targets identified (30); binding of HuR to the VEGF 3′UTR increased

VEGF mRNA stability and VEGF production in cultured cells and in tumors (30, 117). As

the VEGF gene is also a transcriptional target of HIF-1α, increases in HuR both enhance the

transcription of VEGF mRNA (via the heightened abundance of HIF-1α) and stabilize the

VEGF mRNA, potently elevating VEGF production.

Cyclooxygenase-2 (COX-2)—COX-2 is highly expressed in many cancers, associated

with increased VEGF levels and angiogenesis (118, 119). Although COX-2 plays a major

role in mediating inflammation, its inhibitors are also effective anticancer drugs which

function by blocking angiogenesis and tumor proliferation (119, 120). HuR binds to an AU-

rich sequence in the COX-2 3′UTR, stabilizes the COX-2 mRNA, and increases COX-2

biosynthesis (121). Colon, ovarian, and prostate cancer cells with elevated cytoplasmic HuR

levels also expressed higher levels of COX-2 and in one recent report, HuR was shown to

regulate COX-2 levels during colon carcinogenesis (122–125). The same correlation

between HuR and COX-2 levels was seen in human mesothelioma, where it was further

established that overall survival was strongly influenced by the subcellular localization of

HuR (126).

Thrombospondin—Expression of the oncogene and inhibitor of angiogenesis

thrombospondin (TSP1) is often lost in tumors (127, 128). HuR associates with the TSP1

3′UTR and enhances its translation (62). Interestingly, in a model of breast cancer

progression, the association of HuR with TSP1 mRNA was progressively reduced as the

cells displayed increasingly tumorigenic phenotypes. In highly malignant cells, this reduced

interaction resulted in the diminished expression of TSP1; in turn, reduced TSP1 levels

enhanced the pro-angiogenic phenotype of the cancer cells (62). Considering that HuR

increases pro-angiogenic factors (VEGF, HIF-1α, and COX-2), the inhibition of TSP1

synthesis by HuR’s dissociation from TSP1 mRNA underscores HuR’s efficient

coordination of an angiogenic program in cancer cells.

Reduced immune recognition

Surveillance by the immune system leads to the elimination of tumor cells. Therefore,

cancer cells have adopted mechanisms to avoid recognition by immune cells. Despite the

scarcity of examples to-date of HuR regulating proteins to escape immune surveillance, it is

worth mentioning that HuR-mediated increase in MKP-1 levels in immune cells could help

to accomplish the same phenotype, as MKP-1 potently suppresses immune function (129,

130). As reported in cervical carcinoma cells, HuR was interacted with the MKP-1 mRNA,

stabilized it, and enhanced its translation following exposure to oxidative stress (58).

Transforming growth factor β (TGF-β)—The cytokine TGF-β is involved in cell

proliferation, differentiation, and apoptosis (131). Although TGF-β can suppress the

development of early-stage tumors, it promotes late-stage tumor growth by stimulating

proliferation, invasiveness, and metastasis (132, 133). Some studies have linked the

tumorigenic influence of TGF-β to the fact that it enables tumor cells to escape immune

recognition (134, 135). HuR binds with high affinity the 3′UTR of TGF-β mRNA and was

shown to regulate its expression post-transcriptionally in malignant brain tumors (136); this

function could be important to evade immune recognition and allow cancer development.

Invasion and metastasis

Eventually, tumor cells will invade adjacent tissues and colonize distant tissues. These

complex processes implicate changes in the interaction of the cancer cell with its local

environment and the increased function of extracellular proteases.
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Snail—Overexpression of the transcription factor snail is responsible for the induction of

the epithelial-to-mesenchymal transition (EMT), through the repression of epithelial factors

such as E-cadherin and cytokeratins, and the induction of mesenchymal proteins like

fibronectin and metalloproteases (137). HuR was found to interact with the 3′UTR of snail

mRNA and stabilized it following oxidative stress (138).

Matrix metalloproteinase 9 (MMP-9)—MMPs are metallopeptidases capable of

cleaving most extracellular matrix (ECM) substrates, including collagens, laminin,

fibronectin, vitronectin and proteoglycans in both physiological and pathological conditions

(139, 140). MMP-9 is highly expressed in different cancers and is normally associated with

high levels of invasion and/or metastasis of cervical, colorectal, gastric, pancreatic, breast,

and oral cancers, as well as in glioma and skin tumors (141–144). In MMP-9-null mice,

tumors that mimic human recurrent primary tumors did not grow; likewise, inhibition of

MMP-9 limited or inhibited local tumor invasion and metastasis (144, 145). HuR was

reported to bind to the 3′UTR of MMP-9 mRNA and stabilized it, an effect that was

enhanced by extracellular ATP and was suppressed by nitric oxide-triggered reduction in

HuR levels (146, 147).

Urokinase A (uPA) and uPA-receptor (uPAR)—The urokinase-type plasminogen

activator (uPA) and uPA receptor (uPAR) are members of a serine proteinase system that

participates in ECM degradation, thereby affecting cell adhesion, invasion, and metastasis

(148). uPA and uPAR are overexpressed in several malignant tumors, associated with poor

disease outcome (148, 149). In an interesting example of coordinate regulation of

functionally related proteins, HuR interacted with the 3′UTRs of both uPA and uPAR

mRNAs, increased their stabilities, and enhanced expression of the encoded proteins (36). In

this manner, HuR stimulates the uPA/uPAR signaling pathway leading to ECM degradation

and facilitating tumor invasion and metastasis (150).

HuR EXPRESSION IN CANCER

The discovery that HuR was broadly elevated in cancer tissues compared with the

corresponding non-cancer tissues (60) has been complemented by the analysis of HuR levels

in specific cancers. To-date, the bulk of the studies on HuR in cancer have examined

correlations between HuR abundance in cancer tissues and the stage and grade of the cancer.

Recent studies have begun to assess the possible diagnostic, prognostic, and therapeutic

value of HuR in cancer.

Breast cancer

Increased cytoplasmic HuR levels were found to be associated with high-grade, invasive

ductal breast carcinoma, as well as with poor outcome, large tumor size, and poor survival

rates (151). In breast cancer cells, HuR increased expression of Cyclin E1, IL-8, estrogen

receptor, TSP1, and c-fms (62, 74, 152–154). HuR was found to be more abundant in the

cytoplasm after treatment with tamoxifen, suggesting that HuR could modulate the

sensitivity to tamoxifen (155). Interestingly, in human breast epithelial cells, HuR was found

to interact with the Wnt5a 3′UTR and repressed the translation of Wnt5a, a protein that

inhibits tumor growth (52). HuR also associated with the BRCA1 3′UTR and reduced

BRCA1 expression, although the molecular details of this influence were not studied (156).

HuR was identified as an important prognostic factor in a subset of breast cancers, where it

constituted an independent marker of reduced patient survival (157).
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Colon cancer

Increased expression of HuR in colon cancer tissues promoted the expression of COX-2 and

VEGF (121, 123), while the cytoplasmic abundance of HuR was associated with COX-2

expression levels and with high tumor stage (158). Importantly, overexpression of HuR

increased the growth of colon cancer cells in a nude mouse xenograft model (60).

Ovarian cancer

HuR was found in the cytoplasm of ~50% of serous-type ovarian carcinoma, associated with

elevated COX-2 expression, high grade, and poor patient prognosis (125). HuR was also

found to interact with the 3′UTR of the ARHI/DRAS3 mRNA, which encodes a tumor

suppressor protein, and likely increases ARHI expression (159). However, in ovarian cancer

cells, HuR showed diminished interaction with ARHI mRNA, associated with the reduced

expression of AHRI (159). One study examining the distribution of HuR in ~100 ovarian

carcinomas revealed that HuR was primarily nuclear, but was found in the cytoplasm of

45% of ovarian carcinomas; this localization was associated with increased COX-2

expression, tumor grade, and mitotic activity, and with reduced overall patient survival

(160). On the other hand, a large screen of ovarian carcinomas revealed an association

between nuclear HuR and invasive cancer, high tumor grade, and decreased disease-free

survival, indicating that nuclear HuR may also play a key role in ovarian tumorigenesis

(161).

Prostate cancer

The analysis of HuR in over 100 primary prostate carcinoma samples revealed that HuR was

predominantly nuclear in normal prostate glands but showed an elevated cytoplasmic

presence in prostate carcinoma; the shift in localization that was linked to the levels of

prostate-specific antigen (PSA) (162). Patients whose tumors showed elevated cytoplasmic

HuR expressed higher COX-2, had shorter disease-free survival times, and had adverse

prognosis, supporting the view that cytoplasmic HuR promotes prostate tumor development

and relapse (124, 162).

Pancreatic cancer

In a recent study, elevated abundance of cytoplasmic HuR in pancreatic ductal

adenocarcinoma (PDA) was associated with a 7-fold lower risk of patient mortality (163).

The authors linked the cytoplasmic levels of HuR with binding of HuR to the deoxycytidine

kinase (dCK) mRNA leading to its stabilization and the enhanced expression of dCK. This

observation was significant because dCK metabolizes, and thereby activates, gemcitabine, a

major component of a common chemotherapeutic regimen for PDA. Accordingly,

Costantino and colleagues proposed that the presence of elevated HuR enhances the efficacy

of gemcitabine in PDA and improves patient outcome (163).

Oral cancer

HuR expression levels were determined in salivary pleomorphic adenoma and salivary

mucoepidermoid carcinoma. One third of pleomorphic adenomas and most mucoepidermoid

carcinomas exhibited high cytoplasmic HuR levels; in the latter group, COX-2 expression

was also elevated. This study suggests that in salivary carcinoma, cytoplasmic HuR levels

correlate with COX-2 expression and that COX-2 and cytoplasmic HuR immunoreactivity

could be used to evaluate malignancy in the salivary glands (164). A comparison between

oral cancer and normal cells in culture revealed that HuR was nuclear in normal cells, but it

was abundantly cytoplasmic in the oral cancer lines (165). Moreover, while inhibition of

CRM1 reportedly blocked HuR export to the cytoplasm, in oral cancer cells HuR was

readily exported to the cytoplasm despite CRM1 inhibition. These findings suggest that the
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cytoplasmic export of HuR is different in oral carcinoma cells compared with normal cells

(165). Whether HuR nuclear export is also aberrant in other tumor types awaits further

study.

Other cancers

In gastric cancer, HuR concentration also correlated with COX-2 expression and with poor

survival rates, suggesting that HuR may also enhance gastric carcinogenesis (166, 167).

Similarly, a comparison of primary Merkel cell carcinoma (MCC) and non-neoplastic skin

showed that cytoplasmic HuR was higher in a subset of MMC tumors than in non-neoplastic

skin, supporting a role for HuR in MMC carcinogenesis (168). In tumors of the central

nervous system (CNS), HuR overexpression was linked to the enhanced expression of

COX-2, VEGF, TGF-β and other factors involved in CNS tumor proliferation and

angiogenesis (136).

CONCLUDING REMARKS

HuR interacts with and regulates many mRNAs encoding cancer-related proteins (11, 12,

41, 60). By modulating their expression in a coordinated manner, HuR can have a profound

impact on multiple phenotypic traits central to tumorigenesis. The heightened expression of

HuR, particularly cytoplasmic HuR, in virtually all cancers examined suggests that HuR

could be a useful diagnostic marker. However, it is important to measure HuR protein levels

instead of HuR mRNA levels, as the latter do not change markedly between normal and

cancer tissues (9, 169). Why HuR protein levels change with cancer without changes in HuR

mRNA levels is not fully understood, but may be linked to the stability of the protein itself

(18) or to the translational repression of HuR by microRNAs such as miR-519 and

miR-125a, which inhibit HuR translation without affecting HuR mRNA levels (169, 170).

Similarly, the subcellular localization of HuR and its ability to bind mRNAs strongly

influences the expression of target mRNAs. These facets of HuR are modulated by several

post-translational modifications and transport machineries; virtually all of the HuR-

modifying enzymes (Chk2, PKC, CARM1, Cdk1, p38, caspases) have been implicated in

cancer-related processes (Fig. 1). Further studies to understand the complex mechanisms

that regulate HuR abundance, localization, and binding to target transcripts in cancer cells

are warranted.

Given the extensive catalog of genes that HuR controls, and HuR’s positive influence on

angiogenesis, proliferation, survival, invasion, etc, strategies to reduce HuR expression or

inhibit its function could be successful in reducing tumor progression. Silencing approaches

using small interfering (si)iRNA or microRNAs appear to be effective in cultured cells and

might be attempted in tumors. In addition, small chemical inhibitors of HuR have been

reported, but their usefulness in organisms also remain untested (171). However, it is

important to note that most studies on HuR and cancer have not examined how HuR might

affect anti-cancer therapy. In the Costantino report mentioned above, the elevated presence

of cytoplasmic HuR in pancreatic cancer cells paradoxically correlated with better prognosis

in patients treated with the standard drug of choice, gemcitabine; that HuR increased the

expression of deoxycytidine kinase, which metabolizes and thus activates gemcitabine,

helped to explain why elevated HuR was associated with positive response to therapy.

Similarly, low HuR levels were associated with high risk of breast cancer recurrence,

although the specific mediators of this effect were not identified (172). Therefore,

interventions to reduce HuR function should be devised carefully. In some cases, the

elevated presence of HuR may be advantageous for therapy and could be exploited to that

end.
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While the use of cultured cells has advanced greatly our understanding of HuR function and

influence on cancer-associated proteins, major efforts must now focus on mammalian

models of carcinogenesis (173). Mouse HuR-null thymocytes showed aberrant cell division

cycle, activation, selection, and survival (174). A role for HuR in the establishment of a

physiologic thymocyte pool was confirmed in another mouse model with inducible global

HuR-null phenotype, which showed widespread death of progenitor cells in hematopoietic

organs and in the intestinal epithelium (100). While the mouse phenotypes agree with HuR’s

roles in proliferation and survival, more studies are needed to elucidate if an HuR-null status

affects tumorigenesis. Transgenic mice overexpressing HuR will also be highly informative

in providing insight into the role of HuR in cancer. With the knowledge gained thus far of

HuR-regulated gene expression programs, the stage is ready for direct assessment of HuR’s

diagnostic, prognostic, and therapeutic potential in human cancer.
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Abbreviations

AMPK AMP-activated protein kinase

Bcl-2 B-cell lymphoma 2

Cdk1 cyclin-dependent kinase 1

Chk2 checkpoint kinase 2

CNS central nervous system

COX-2 cyclooxygenase-2

CR coding region

dCK deoxycytidine kinase

eIF4E eukaryotic translation initiation factor 4E

Elav embryonic lethal abnormal vision

GM-CSF granulocyte/macrophage-colony-stimulating factor

HIF hypoxia-inducible factor

HNS HuR nucleocytoplasmic shuttling sequence

IGF-IR type-I insulin-like growth factor receptor

IL interleukin

iNOS inducible nitric oxide synthase

IRES internal ribosome entry site

MAPK mitogen-activated protein kinase

Mcl-1 myeloid cell leukemia-1

MKP-1 MAPK phosphatase-1

MMP-9 matrix metalloproteinase 9

PKC protein kinase C

PSA prostate-specific antigen
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RBP RNA-binding protein

RRM RNA recognition motif

SIRT1 sirtuin 1

TGF-β transforming growth factor β

TNF tumor necrosis factor

TSP1 thrombospondin

uPA urokinase-type plasminogen activator

uPAR uPA receptor

UTR untranslated region

VEGF vascular endothelial growth factor
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Figure 1. HuR protein and post-translational modification by cancer-related enzymes
The HuR three RNA recognition motifs (RRMs) and hinge region (amino acids 186-244),

containing the HuR nucleocytoplasmic shuttling (HNS) domain, are indicated. The specific

residues (Amino Acid Positions, first column) implicated in different post-translational

modifications (second column) and the cancer-related enzymes that carry out the

modifications (third column) are listed. The consequences of modification at each residue

are listed under ‘Impact on HuR Function’. n.d., not determined.
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Figure 2. HuR-target mRNAs implicated in establishing cancer traits
The subsets of HuR target mRNAs involved in five major cancer-acquired phenotypes are

listed. * denotes transcripts whose expression decreases in the presence of HuR, either

because HuR represses their translation (c-Myc, p27) or because its association with HuR is

reduced in cancer (TSP1).
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