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Ferroptosis was first coined in 2012 to describe the form of regulated cell death (RCD) characterized by iron-dependent lipid
peroxidation. To date, ferroptosis has been implicated in many diseases, such as carcinogenesis, degenerative diseases (e.g.,
Huntington’s, Alzheimer’s, and Parkinson’s diseases), ischemia-reperfusion injury, and cardiovascular diseases. Previous studies
have identified numerous targets involved in ferroptosis; for example, acyl-CoA synthetase long-chain family member 4
(ACSL4) and p53 induce while glutathione peroxidase 4 (GPX4) and apoptosis-inducing factor mitochondria-associated 2
(AIFM2, also known as FSP1) inhibit ferroptosis. At least three major pathways (the glutathione-GPX4, FSP1-coenzyme Q10

(CoQ10), and GTP cyclohydrolase-1- (GCH1-) tetrahydrobiopterin (BH4) pathways) have been identified to participate in
ferroptosis regulation. Recent advances have also highlighted the crucial roles of posttranslational modifications (PTMs) of
proteins in ferroptosis. Here, we summarize the recently discovered knowledge regarding the mechanisms underlying
ferroptosis, particularly the roles of PTMs in ferroptosis regulation.

1. Introduction

Cell death is critical for the development of multicellular
organisms and participates in degenerative diseases. Over
the past decades, more than ten types of cell death have been
discovered and defined according to their different morpho-
logical characteristics, biomarkers, or regulatory mecha-
nisms, and these include apoptosis, necroptosis, pyroptosis,
and autophagy-dependent cell death [1–4]. Ferroptosis was
first coined in 2012 to describe the form of regulated cell
death (RCD) driven by the iron-dependent accumulation of
lipid hydroperoxides [5]. Numerous metabolic pathways
involving the metabolism of polyunsaturated fatty acids
(PUFAs), iron, and amino acids and the biosynthesis of glu-
tathione, nicotinamide adenine dinucleotide phosphate
(NADPH), coenzyme Q10 (CoQ10), and phospholipids are
tightly linked to the sensitivity of cells to ferroptosis [5–7].
Emerging evidence suggests that ferroptosis is involved in
both normal physiological contexts and pathological diseases

in mammals, including degenerative diseases (e.g., Parkin-
son’s, Huntington’s, and Alzheimer’s diseases), ischemia-
reperfusion injury, and carcinogenesis [6, 7]. Recent studies
have shed light on the mechanisms how posttranslational
modifications (PTMs) of protein regulates ferroptosis. In this
review, we summarize these recent advances in the under-
standing of how protein phosphorylation, ubiquitination,
acetylation, and methylation affect iron metabolism, lipid
oxidation, and ferroptosis.

2. Major Pathways Regulating Ferroptosis

2.1. Glutathione-Glutathione Peroxidase 4 (GPX4) Pathway
in Ferroptosis. The selenoprotein GPX4 was the first identi-
fied central inhibitor of ferroptosis [8] (Figure 1). Glutathi-
one- (GSH-) dependent GPX4 can reduce lipid peroxides
(PL-PUFA-OOH) which serves as the major trigger of fer-
roptosis [9]. It is well known that the constitutive deletion
of GPX4 or the expression of inactive GPX4 causes
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embryonic death [10, 11]. However, Ingold et al. found that
the selenolate-based catalysis of GPX4 is not essential for
normal embryogenesis [12]. Thus, conditional GPX4 knock-
out mice were generated to analyze the cell death mecha-
nisms induced by GPX4 inhibition [13–16]. Unexpectedly,
lipid peroxidation was observed in all these knockout models,
which indicated that the accumulation of lipid peroxides is
an important cause of embryonic death. More importantly,
GPX4 knockout-induced cell death is largely reversed by
the ferroptosis inhibitor liproxstatin-1 in a preclinical model
of ischemia/reperfusion-induced hepatic damage [17]. Yang
et al. revealed that GPX4 overexpression and knockdown
regulate the cell death of 12 ferroptosis inducers (e.g., erastin
and RSL3) but not of 11 compounds with other lethal mech-
anisms [8]. Furthermore, after screening 177 cancer cell lines,
these researchers found that renal cell carcinomas and diffuse
large B cell lymphomas are more sensitive to GPX4-regulated
ferroptosis [8]. Because GPX4 is a selenoprotein, pharmaco-
logical selenium (Se) delivered into the brain augments
GPX4 expression, and this effect inhibits ferroptotic death

as well as cell death induced by excitotoxicity or ER stress
to protect neurons and improve behavior in a hemorrhagic
stroke model [18]. Ingold et al. also demonstrated that
selenocysteine-containing GPX4 is indispensable for the sur-
vival of a specific type of interneuron and thereby protects
against fatal epileptic seizures [12]. These studies indicate
that GPX4 is a vital regulator of ferroptosis. Therefore,
GPX4 is a potential therapeutic target for degenerative dis-
eases (activation of GPX4) and tumors (inactivation of
GPX4).

The activity of GPX4 is not only directly inhibited by
RSL3 but also inhibited by erastin or cystine deprivation
through GSH depletion [19, 20]. Because system Xc- is the
cysteine-glutamate antiporter, its activity is closely associated
with the amount of GSH in the cell, and thus, this complex
plays an important regulatory role in ferroptosis [5, 21].
Although the germline deletion of solute carrier family 7
member 11 (Slc7a11) is well tolerated in unstressed mice
[22], Slc7a11 deficiency induces tumor-selective ferroptosis
and inhibits pancreatic ductal adenocarcinoma (PDAC)
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Figure 1: The major pathways regulate ferroptosis. Three major pathways have been identified in ferroptosis, including the glutathione-
GPX4, NADPH-FSP1-CoQ10, and GCH1-BH4 pathways. Chemical probes regulating these pathways and ferroptosis are shown at the
bottom of this figure. Abbreviations: SLC7A11: solute carrier family 7 member 11; GCL: glutamate cysteine ligase; GSS: glutathione
synthetase; GPX4: glutathione peroxidase 4; GR: glutathione reductase; ME: malic enzyme; PDK4: pyruvate dehydrogenase kinase 4;
LPCAT3: lysophosphatidylcholine acyltransferase 3; ACSL4: acyl-CoA synthetase long-chain family member 4; FSP1: ferroptosis
suppressor protein 1; G6PD: glucose-6-phosphate dehydrogenase; PHGDH: phosphoglycerate dehydrogenase; ME1: malic enzyme 1;
GCH1: GTP cyclohydrolase 1; PTS: 6-pyruvoyltetrahydropterin synthase; SPR: sepiapterin reductase; DHFR: dihydrofolate reductase.
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growth [23]. PDAC cells use cysteine to synthesize glutathi-
one and coenzyme A to suppress ferroptosis, and the deple-
tion of cysteine and cystine by cyst(e)inase induces
ferroptosis in PDAC [23]. Jiang et al. found that p53 inhibits
cystine uptake and sensitizes cells to ferroptosis by repressing
SLC7A11 expression [24]. Furthermore, SLC7A11 directly
interacts with arachidonate (12S)-lipoxygenase (ALOX12)
to inhibit its enzymatic activity [25]. The loss of one Alox12
allele abrogates PUFA peroxidation and p53-mediated fer-
roptosis to accelerate tumorigenesis [25]. Moreover, Wang
et al. found that immunotherapy-activated CD8+ T cells
release interferon gamma (IFNγ), which upregulates inter-
feron regulatory factor 1 (IRF1) and downregulates SLC7A11
and SLC3A2 in cancer cells to promote tumor cell lipid per-
oxidation and sensitize tumors to ferroptosis [26].

2.2. NADPH-FSP1-CoQ10 Pathway in Ferroptosis. GPX4 is
considered the primary regulator inhibiting ferroptosis, but
in some cell types or cell lines, the inhibition of GPX4 fails
to induce ferroptosis, which indicates the existence of alter-
native mechanisms [7, 27, 28]. Therefore, to uncover the
potential factors that inhibit ferroptosis via an independent
GPX4 pathway, Doll et al. generated a cDNA expression
library derived from a ferroptosis-resistant cell line to screen
genes complementing GPX4 loss [27, 29, 30]. These
researchers revealed that apoptosis-inducing factor
mitochondria-associated 2 (AIFM2, also known as FSP1)
overexpression can largely abrogate GPX4 inhibition-
induced ferroptosis [27, 31]. Similarly, using a synthetic
lethal CRISPR/Cas9 screen employing an apoptosis and can-
cer single-guide RNA (sgRNA) sublibrary of cells treated
with RSL3, Bersuker et al. verified that FSP1 acts as a novel
ferroptosis suppressor that induces its effect via a GPX4-
independent mechanism [28]. However, the overexpression
of AIFM1, which is homologous to FSP1, exhibits almost
no activity in suppressing ferroptosis [27, 31, 32]. Because
the N-terminus of FSP1 contains a canonical myristoylation
motif and myristoylation is a lipid modification that pro-
motes target protein binding to cell membranes [27, 33,
34], both research groups demonstrated that myristoylation
at the N-terminus of the FSP1 protein facilitates the localiza-
tion of FSP1 to the plasma membrane, which is critical for its
ferroptosis-inhibitory activity [27, 28]. A previous study
showed that FSP1 functions as an nicotinamide-adenine
dinucleotide phosphate- (NADP-) dependent coenzyme Q
(CoQ) oxidoreductase in vitro [35]. CoQ10 is a mobile lipo-
philic electron carrier that endogenously synthesizes lipid-
soluble antioxidants and acts as a lipophilic free radical-
trapping agents (RTAs) in the plasma membrane [36, 37].
FSP1 overexpression fails to suppress ferroptosis in both 4-
hydroxybenzoate polyprenyltransferase (CoQ2) knockout
cells and in cells treated with the CoQ2 inhibitor 4-
chlorobenzoic acid (4-CBA) [27, 28]. CoQ2 is the enzyme
that catalyzes the first step in CoQ10 biosynthesis, and idebe-
none, a soluble analog of CoQ10, is sufficient for suppressing
ferroptosis and lipid peroxidation [27, 28]. These two latest
studies clearly suggest that FSP1 acts parallel to GPX4 to
inhibit ferroptosis by regulating the nonmitochondrial
CoQ10 antioxidant system (Figure 1). The combined phar-

macological inhibition of FSP1 and GPX4 might be an effec-
tive strategy for sensitizing cancer cells, particularly cancer
cells that are not sensitive to a GPX4 inhibitor alone, to
ferroptosis-inducing chemotherapeutics.

2.3. GCH1-BH4 Pathway in Ferroptosis. Tetrahydrobiopterin
(BH4) is a redox-active cofactor involved in the production
of nitric oxide, neurotransmitters, and aromatic amino
acids [38, 39]. The GTP cyclohydrolase-1- (GCH1-) 6-
pyruvoyltetrahydropterin synthase- (PTS-) sepiapterin
reductase (SPR) pathway catalyzes GTP to BH4, and GCH1
is a rate-limiting enzyme in the synthesis of BH4 [40–42].
BH4 exhibits antioxidant properties in vitro [41]. However,
the role of the GCH1-BH4 pathway in ferroptosis has not
been elucidated until recently, when two independent
research teams identified GCH1-BH4 as a novel pathway that
regulates ferroptosis through the use of metabolism-focused
CRISPR-Cas9 genetic screens and a genome-wide dCas9-
based activation screen (CRISPRa) [39, 42]. Kraft et al. found
that the overexpression of GCH1, MS4A15, and OLFR367-ps
not only abolishes lipid peroxidation but also yields almost
complete protection against ferroptosis [39]. GCH1 overex-
pression exhibits robust protection against RSL3- and IKE-
induced ferroptosis and genetic ablation of GPX4-induced
ferroptosis but does not protect cells against inducers of apo-
ptosis and is only marginally effective against necroptosis,
which indicates that GCH1 selectively counters ferroptotic
cell death [39]. Furthermore, the protective role of GCH1
on ferroptosis is independent of the known ferroptosis
pathway-related proteins or the glutathione system [39].
Soula et al. demonstrated that the deletion of GCH1 or
SPR, as well as the inhibition of SPR with QM385, sensitizes
cells to RSL3 but not erastin treatment in Jurkat cells [42].
The supplementation of ferroptosis inducers-treated cells
with BH2 or BH4 is sufficient to rescue cells from ferroptosis
[39, 42]. Although BH4 serves as a cofactor for several bio-
synthetic enzymes, both research teams found that this
function of BH4 does not play a relevant role in its protec-
tive effect against ferroptosis [39, 42]. Intriguingly, the
accumulation of coenzyme A, NADP, and oxidized GSH
(GSSG) in cells with BH4 loss and the elevation of reduced
CoQ10 in cells with GCH1 overexpression have been
detected [39, 42]. Thus, these results indicate that the
GCH1-BH4 pathway acts as an endogenous antioxidant
pathway to inhibit ferroptosis through a mechanism inde-
pendent of the GPX4/glutathione system (Figure 1).

3. Inducers and Inhibitors of Ferroptosis

3.1. Inducers of Ferroptotic Death

3.1.1. Inhibitors of System Xc-. In 2003, Dolma et al. identified
a small molecule (erastin) from a diverse chemical library
that selectively kills engineered tumor cells through a nona-
poptotic mechanism [43]. Erastin was the first discovered
inducer of ferroptosis, and this molecules induces ferroptosis
by inhibiting the activity of the cysteine-glutamate antipor-
ter, which is a complex composed of SLC7A11 and SLC3A2
and is also known as system Xc- [5, 21]. The inhibition of
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cystine uptake by erastin leads to depletion of the intracellu-
lar reduced and oxidized forms of glutathione (GSH and
GSSG) and subsequent accumulation of peroxidized phos-
pholipids, which triggers ferroptotic cell death [8, 21]. Imid-
azole ketone erastin (IKE) and piperazine erastin (PE) are
derivatives of erastin with better pharmacological properties
for inducing ferroptosis, and both derivatives are suitable
for in vitro and in vivo studies [8, 44, 45]. Some other inhib-
itors, such as sorafenib and sulfasalazine, can also inhibit sys-
tem Xc- but with lower potency and less selectivity than
erastin and its derivatives [21, 46]. The compounds DPI2
and RSL5 have the potential to inhibit system Xc-, but further
validation is needed [8, 47] (Figure 1).

3.1.2. Inhibitors of Glutathione Peroxidase 4 (GPX4). GPX4 is
a glutathione peroxidase that catalyzes the reduction of
hydrogen peroxide, organic hydroperoxides, and lipid hydro-
peroxides and thereby protects cells against oxidative damage
and ferroptosis [48]. RSL3 is a compound that covalently
inhibits GPX4 in an irreversible manner [8, 49]. Although
RLS3 is widely used to induce the ferroptosis of cultured cells
in vitro, its poor solubility and unfavorable absorption, distri-
bution, metabolism, and excretion properties hinder the
in vivo application of RSL3 [19]. In addition to RSL3, several
other chloroacetamide-containing inhibitors of GPX4 have
been identified, and these include DPI6, DPI7/ML162,
DPI8, DPI9, DPI12, DPI13, DPI15 and DPI19 [8]. Three
additional structural classes of GPX4 inhibitors have been
reported: chloromethyltriazines (e.g., DPI17 and altreta-
mine), nitroisoxazoles (e.g., DPI10 and ML210), and steroi-
dal lactones (e.g., withaferin A) [19] (Figure 1).

3.1.3. Inhibitors Regulating the Lipophilic Antioxidant
Ubiquinol/Coenzyme Q10 (CoQ10) Pathway. CoQ10, a key
compound of the mevalonate pathway, is a fat-soluble com-
pound needed for energy generation in the mitochondrial
electron transport chain and in membranes of lysosomes
[50]. Shimada et al. reported that the inhibition of CoQ10

can sensitize cells to ferroptosis in some contexts [51]. For
example, 4-chlorobenzoate can inhibit CoQ10 production in
cells to activate ferroptosis with low potency [28]. Statins
are a class of lipid-lowering drugs that inhibit the enzyme
HMG-CoA reductase, which is a rate-limiting enzyme that
catalyzes the conversion of HMG-CoA to mevalonic acid in
the mevalonate pathway [52]. In addition to statins, these
researchers also reported that FIN56 presumably depletes
CoQ10 by regulating the mevalonate pathway to facilitate fer-
roptosis [51]. Furthermore, two recent studies demonstrated
that ferroptosis suppressor protein 1 (FSP1), which was pre-
viously called AIFM2, functions as a CoQ10 reductase to sup-
press ferroptosis, and iFSP1, a selective inhibitor of FSP1,
induces ferroptosis through a GPX4-independent mecha-
nism [27, 28] (Figure 1).

3.1.4. Other Inducers of Ferroptosis. Cystine deprivation or
cysteine depletion is an effective means for inducing ferrop-
tosis [20, 23]. Cyst(e)inase, an engineered enzyme that
degrades both cystine and cysteine in the circulation effi-
ciently induces lipid oxidation and results in ferroptosis

[23, 26]. FINO2 oxidizes iron to inactivate GPX4 enzymatic
activity but does not directly target GPX4, deplete CoQ10,
or inhibit system Xc- [53, 54]. In addition, several research
groups have indicated that radiation induces ferroptosis
[55–58], and the results indicate that other ferroptosis
inducers could act as radiosensitizers, whereas inhibitors of
ferroptosis might offset the effects of radiation in cancer.

3.2. Inhibitors of Ferroptotic Death. Lipid peroxidation is
one of the major features of ferroptosis, and chemical
probes that interrupt this process could serve as ferroptosis
inhibitors. To date, several small-molecule RTAs, including
ferrostatin-1 (Fer-1), liproxstatin-1, phenoxazine, and α-
tocopherol, have been found to suppress ferroptosis [5, 17,
59]. Although ferrostatin-1 is widely used in in vitro experi-
ments, it should be used with caution when conducting
in vivo studies due to its low metabolic stability [60]. How-
ever, liproxstatin-1 performs better in this regard [17]. More-
over, both ferrostatin-1 and liproxstatin-1 exhibit good
specificity for inhibiting ferroptosis with no obvious off-
target effects [19], whereas α-tocopherol has moderate
potencies as a ferroptosis suppressor [59]. Because CoQ10

suppresses lipid peroxidation and ferroptosis in some con-
texts [27, 28, 51], the CoQ10 analog idebenone has been used
to mimic the antiferroptosis effect of CoQ10 [19, 51]. In addi-
tion, Cu(II)atsm and deuterated PUFAs have been reported
to suppress lipid peroxidation and ferroptosis [61–63]. Iron
chelators, such as deferoxamine and ciclopirox, have also
been used as ferroptosis suppressors [5] (Figure 1).

4. Posttranslational Modifications
(PTMs) in Ferroptosis

PTMs include phosphorylation, acetylation, ubiquitination,
and methylation, SUMOylation, and most PTMs are revers-
ible [64]. These PTMs regulate the activity and stability of
target proteins, protein interactions, and intracellular distri-
bution [65]. PTMs not only make the functions of proteins
more diverse but also act as a switch to enable cells or organ-
isms to rapidly and strictly respond to stress [64]. The role of
PTMs of proteins in ferroptosis has gradually been
highlighted in recent years [66].

4.1. Phosphorylation in Ferroptosis. Phosphorylation is the
most common type of PTM involved in the regulation of
protein stability and enzyme activity, and these PTMs usu-
ally occur on serine, tyrosine, and threonine residues of
the targeted protein [64, 67]. Energy stress induces cell
death, and this effect is associated with reactive oxygen
species (ROS) induction [68]. Because lipid peroxidation
is the main feature of ferroptosis, the relationship between
energy stress and ferroptosis seems predictable, that is,
energy stress facilitates ferroptosis. However, unexpected
results are always observed. Specifically, Lee et al. demon-
strated that glucose starvation unexpectedly suppresses
erastin-induced ferroptosis in mouse embryonic fibroblasts
(MEFs), and this effect has also been observed with cystine
depletion-, RSL3-, and GPX4 deletion-induced ferroptosis
[69]. AMP-activated protein kinase (AMPK) is a critical
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sensor of the cellular energy status, and glucose starvation
results in the phosphorylation of AMPK and its activation
[70]. The inhibitory effect of glucose starvation on ferrop-
tosis was largely abolished by Ampkα1/α2 double knockout
(DKO) both in vitro in MEFs and in vivo in a mouse
model of renal ischemia-reperfusion (I/R) injury [69].
Mechanistically, AMPK accelerates the phosphorylation
of acetyl-CoA carboxylase (ACC) and suppresses PUFA-
containing lipid biosynthesis to mediate the inhibitory
effect of glucose starvation on ferroptosis [69]. Moreover,
cancer cells with high basal AMPK activation are resistant
to ferroptosis and AMPK inactivation sensitizes these cells
to ferroptosis [69]. These results indicate that AMPK is a
negative regulator of ferroptosis (Figure 2).

However, Song et al. demonstrated that the ferroptosis
inducers erastin and sulfasalazine activate AMPK, which
phosphorylates BECN1 at Ser90/93/96 and thereby facilitates
BECN1-SLC7A11 complex formation [71] (Figure 2). The
interaction between BECN1 and SLC7A11 directly blocks
system Xc- to promote ferroptosis. Furthermore, the knock-
down of BECN1 represses system Xc- inhibitor (e.g., erastin
and sulfasalazine)-induced ferroptosis but not that induced
by RSL3, FIN56, or buthionine sulfoximine; conversely, the
overexpression of BECN1 or the administration of the
BECN1 activator peptide Tat-Beclin 1 promotes cancer cell
ferroptosis in vitro and in vivo [71]. Although the autophagy
machinery (e.g., ATG5, ATG7, ATG4B, ATG13, and
NCOA4) is involved in ferroptotic cell death and BECN1 is
a key player in autophagy [72, 73], the knockdown of BECN1
does not affect the formation of lipidated microtubule-
associated protein 1 light chain 3 (MAP1LC3B) and
MAP1LC3B-positive puncta in ferroptosis [71, 74]. These

findings suggest that BECN1 cooperates with different part-
ners to play distinct roles in autophagy (BECN1-PtdIns3K
complex) and ferroptosis (BECN1-SLC7A11 complex) in
the presence of specific stimuli. In addition, the benzopyran
derivative 2-imino-6-methoxy-2H-chromene-3-carbothioa-
mide (IMCA) reportedly accelerate the ferroptosis of colo-
rectal cancer cells by activating AMPK and inhibiting the
SLC7A11 and mTOR-p70S6K signaling pathway [75].

Therefore, the aforementioned studies did not reach a
unified conclusion regarding the effect of AMPK on ferropto-
sis. Because metformin is an AMPK agonist that not only
lowers glycemia but also has great potential to relieve tumors
[76, 77], whether ferroptosis is involved in the antitumor
effect remains unknown. Because the role of AMPK in fer-
roptosis remains controversial [69, 71], clarifying the effect
of metformin on ferroptosis of tumor cells would be of great
significance.

The Toll-like receptor 4- (TLR4-) nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling
pathway activates the expression of several proinflammatory
cytokine genes that play pivotal roles in inflammatory disor-
ders, such as sepsis, ulcerative colitis, myocardial infarction,
and I/R injury [78–80]. The pretreatment of bone marrow-
derived macrophages (BMDMs) with the ferroptosis inducer
erastin significantly attenuates the expression of proinflam-
matory cytokines (e.g., inducible nitric oxide synthase, tumor
necrosis factor- (TNF-) α, and interleukin- (IL-) 1β) induced
by lipopolysaccharide (LPS) treatment, and these effects are
mediated by inhibition of the phosphorylation of IκB kinase
β (IKKβ) and the phosphorylation and degradation of IκBα
and NF-κB and thereby lead to the suppression of sepsis
development [80]. Ferroptosis is detected in intestinal
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epithelial cells from patients with ulcerative colitis and mice
with colitis, and Fer-1 alleviates experimental colitis [79].
Furthermore, phosphorylated-NF-κB directly binds to
eukaryotic initiation factor 2α (eIF2α) to suppress the ER-
stress-mediated ferroptosis of intestinal epithelial cells to
alleviate ulcerative colitis [79] (Figure 2). A recent study
demonstrated that the inhibition of ferroptosis by Fer-1 or
iron chelation mitigates heart failure induced by both acute
and chronic I/R in mice [81]. Li et al. also found that Fer-1
reduces the infarct size and left ventricular remodeling and
improves cardiac function in an I/R mouse model [82].
Moreover, Fer-1 reduces cardiomyocyte cell death and blocks
the adhesion of neutrophils to coronary vascular endothelial
cells by regulating the TLR4/TIR domain-containing adapter
molecule 1 (TRIF)/type I interferon (IFN) signaling pathway
following heart transplantation [82].

In addition, folic acid-induced kidney injury is alleviated
by pretreatment with FG-4592, an inhibitor of prolyl hydrox-
ylase of hypoxia-inducible factor (HIF), which increases the
phosphorylation of protein kinase B (Akt) and glycogen syn-
thase kinase 3β (GSK-3β) and activates NFE2-related factor
2 (Nrf2) to inhibit ferroptosis in mice [83] (Figure 2). Protein
kinase C-mediated heat shock protein beta-1 (HSPB1) phos-
phorylation confers protection against erastin-induced fer-
roptosis by reducing lipid peroxidation [84].

4.2. Ubiquitination in Ferroptosis. Ubiquitination is a well-
known PTM and involves the covalent addition of ubiquitin
to the lysine residues of target protein to regulate its degrada-

tion and turnover [85, 86]. Recent findings demonstrate that
the ubiquitination of proteins plays a critical regulatory role
in ferroptosis [87]. Cancer cells challenged with palladium
pyrithione complex (PdPT), a pan-deubiquitinase (pan-
DUB) inhibitor, undergo apoptosis and ferroptosis with cas-
pase activation and GPX4 protein degradation [87]. How-
ever, the mechanism through which GPX4 is ubiquitinated
and the sites of ubiquitination require more in-depth
research. BRCA1-associated protein 1 (BAP1) is a DUB
enzyme that reduces histone 2A ubiquitination (H2Aub)
[88]. In cancer cells, BAP1 removes monoubiquitin from ubi-
quitinated H2A at lysine 119 (H2Aub) on the SLC7A11 pro-
moter to suppress its expression in cells treated with erastin
but not RSL3, and this effect does not require the transcrip-
tion factors NRF2 and activating transcription factor 4
(ATF4) [89, 90]. Decreased SLC7A11 inhibits cystine uptake,
which leads to elevated lipid peroxidation and ferroptosis
(Figure 3). Moreover, cancer-associated BAP1 mutants lose
its inhibition of SLC7A11 and repress ferroptosis [89].
Intriguingly, polycomb repressive complex 1 (PRC1), a ubiq-
uitin ligase that monoubiquitinates H2A at lysine 119, also
suppresses SLC7A11 expression [90] (Figure 3). Because
the expression levels of components of PRC1 and PRC2
(e.g., BMI1, RNF2, and H3K27me3) are not affected by
BAP1 [90], an in-depth study of why both BAP1 and PRC1
can inhibit the expression of SLC7A11 would yield interest-
ing findings.

In addition to H2Aub, the monoubiquitination of histone
H2B on lysine 120 (H2Bub) has also been shown to be
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involved in the regulation of ferroptosis [91]. Wang et al.
found lower levels of H2Bub in erastin-induced cells com-
pared with control cells. Their further research showed that
the tumor suppressor p53 facilitates the nuclear translocation
of the deubiquitinase ubiquitin-specific peptidase 7 (USP7)
to negatively regulate the H2Bub levels in a transcriptional-
independent manner, and this effect decreases SLC7A11
expression during erastin treatment [91] (Figure 3). Instead,
OTU deubiquitinase ubiquitin aldehyde binding 1 (OTUB1)
directly interacts with SLC7A11 and stabilizes SLC7A11 by
deubiquitinating SLC7A11, and this interaction is tightly reg-
ulated by the cancer stem cell marker CD44 [92] (Figure 3).
Erastin induces ferroptosis partially by binding to and inhi-
biting the voltage-dependent anion channels VDAC2 and
VDCA3 [19], and these effects lead to the degradation of
the channels [93]. Yang et al. demonstrated that erastin
induces Nedd4 expression by inducing FOXM1, which
increases the K48-linked ubiquitination of VDAC2/3 and
then its degradation [93] (Figure 3). Androgen receptor
(AR), a steroid hormone receptor, is a well-recognized bio-
marker for predicting prognosis in prostate cancer [94].
ALZ003, a curcumin analog, extends the survival period of
transplanted mice by promoting glioblastoma cell ferropto-
sis, and this effect is mediated by F-box and the leucine-
rich repeat protein 2- (FBXL2-) dependent ubiquitination
of AR and its degradation [94].

4.3. Acetylation in Ferroptosis. Acetylation usually occurs in
the lysine residues of target proteins, and this reaction is
catalyzed by acetyltransferases and reversed by deacetylases
[95]. Acetyltransferases transfer acetyl groups from acetyl
coenzyme A (acetyl CoA) to lysine residues, leading to
the neutralization of the charge on lysine residues [96].

Acetylation can alter the 3D structure of a protein to affect
its ability to bind other proteins or DNA and also regulate
the subcellular localization, activity and stability of a pro-
tein [96]. The aberrant acetylation of proteins (including
histone and nonhistone proteins) is closely related to
tumorigenesis [97]. A recent study found that acetylation
is involved in the regulation of ferroptosis. Because ferrop-
tosis inducers can induce cancer cell death, these agents
have the potential to be used for chemotherapy; however,
the toxicity of these agents is a major concern. Zille et al.
found that class I histone deacetylase (HDAC) inhibitors
selectively protect neurons but augment ferroptosis in can-
cer cells, which indicates that class I HDAC inhibitors are
ideal drugs that not only exert anticancer effect but also
protect normal cells [98]. However, more experiments,
including studies with other tumors and in vivo studies,
should be performed to validate these results. Because p53
is the critical regulator of ferroptosis and acetylation is cru-
cial for the activity of p53 [50, 64, 91], the regulatory effect
of acetylated p53 on ferroptosis should be clarified. Jiang
et al. demonstrated that p53 inhibits SLC7A11 expression
to reduce cystine uptake and sensitize cells to ferroptosis;
furthermore, p533KR (K117R, K161R, and K162R), an
acetylation-defective mutant, fully retains the ability to sup-
press SLC7A11 expression but fails to induce cell cycle
arrest, senescence, and apoptosis [24]. Further research
has shown that p534KR (K98R+3KR) completely abolishes
its ability to regulate SLC7A11, but p53K98R alone exerts
very modest effects on p53-mediated transactivation [99].
Moreover, the anticancer effects of p53 are severely defec-
tive in mouse xenograft models with p534KR expression
[99]. These results indicate that acetylation is crucial for
p53-induced ferroptosis (Figure 4).
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Sirtuin 3 (SIRT3) is a prototypical NAD+-dependent
mitochondrial protein deacetylase that is involved in ROS
production and cell death [100]. High concentrations of glu-
cose and ferroptosis inducers stimulate SIRT3 overexpres-
sion, which activates the AMPK-mTOR pathway to
enhance autophagy and inhibits GPX4 to induce ferroptosis
[101]. In addition, autophagy inhibition attenuates SIRT3-
enhanced ferroptosis [101] (Figure 4). High-mobility group
box 1 (HMGB1) is a damage-associated molecular pattern
(DAMP) molecule released by ferroptotic cells in an
autophagy-dependent manner, and autophagy-mediated
HDAC inhibition facilitates the acetylation and release of
HMGB1 [102] (Figure 4). The histone acetyltransferase
KAT2B is also involved in ferroptosis by governing the tran-
scription factor hepatocyte nuclear factor 4 alpha (HNF4A)
and hypermethylated in cancer 1 (HIC1) to regulate
ferroptosis-related gene expression [103].

4.4. Methylation in Ferroptosis. Protein methylation usually
occurs on lysine or arginine, and both histones and nonhis-
tone proteins can be methylated [104–106]. A plethora of
studies have demonstrated that protein methylation plays
an important role in cell survival/death and diseases [104,
107–109], but the research on their roles in ferroptosis is in
its infancy. For example, lysine demethylase 3B (KDM3B),
a histone H3K9 demethylase, inhibits erastin-induced fer-
roptosis by cooperating with the transcription factor activat-
ing transcription factor 4 (ATF4) to upregulate SLC7A11
expression [110] (Figure 4). Bromodomain-containing 4
(BRD4) knockdown and (+)-JQ1, an inhibitor of BRD4,
induce ferroptosis via ferritinophagy in breast cancer cell
lines [111]. (+)-JQ1 inhibits euchromatic histone lysine
methyltransferase 2 (EHMT2; also known as G9a) expression
but promotes SIRT1 expression to suppress BRD4, and these
effects negatively regulate GPX4, SLC7A11, and SLC3A2
expressions to regulate ferritinophagy [111] (Figure 4). These
results indicate that protein methylation plays a vital role in
ferroptosis; however, more in-depth studies are needed to
further clarify the role and molecular mechanism of protein
methylation in ferroptosis. For example, does the methyla-
tion of nonhistone proteins (e.g., p53) participate in the reg-
ulation of ferroptosis? How do methylation and other PTMs
coordinate with each other to regulate ferroptosis?

5. Conclusion and Perspectives

Due to the growing number of laboratories devoted to inves-
tigating the mechanisms and functions of ferroptosis, the
research on ferroptosis is unprecedentedly prosperous.
Recent studies have shown that ferroptosis plays a critical
role in many diseases, including tumorigenesis, I/R injury,
neurological disorders, and cardiovascular diseases [6, 72,
112–114]. At least three major pathways, namely, the gluta-
thione-GPX4, FSP1-CoQ10, and GCH1-BH4 pathways, are
involved in ferroptosis regulation [6]. Moreover, a variety
of PTMs of proteins (e.g., phosphorylation, ubiquitination,
acetylation, and methylation) also play an indispensable
regulatory role in ferroptosis. However, many very impor-
tant and interesting issues have not been elucidated. First,

whether ferroptosis plays a role in normal physiological
functions or embryonic development is unclear. Second,
given that the accumulation of oxidized phospholipids
serves as a death signal, the mechanism through which
lipid peroxidation leads to ferroptosis is uncovered. Third,
due to the lack of specific molecular markers and morpho-
logical characteristics, the experimental confirmation of
ferroptotic cell death has mainly relied on detecting cellu-
lar ROS and the application of ferroptosis inhibitors to
reverse cell death, which greatly limits in vivo studies
and elucidation of the physiological functions of ferropto-
sis. Fourth, in addition to the phosphorylation, ubiquitina-
tion, acetylation, and methylation of proteins, whether
other PTMs are involved in regulating ferroptosis remains
unclear. Moreover, the mechanism through which these
PTMs work together in the ferroptosis process has not
been elucidated. Fifth, because ferroptosis can be induced
through many different mechanisms, clarifying the specific
and shared PTMs that play roles under different condi-
tions that induce ferroptosis would be interesting. Sixth,
numerous targets and their PTMs that induce and inhibit
ferroptosis have been identified, and whether drugs target-
ing these targets can be transformed to clinical treatment
for patients and their safety and efficacy need further
investigation.
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