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Abstract

Many plants exude allelochemicals – compounds that affect the growth of neighbouring plants. This study reports

further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in
Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls

and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition

for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls

and shorter, thicker roots – effects previously attributed to lepidimoide. The active principle was more abundant in

cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-

killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active

principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical.

Crude seed exudate affected hypocotyl and root growth at ;25 and ;450 mg ml21 respectively. The exudate slightly
(28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl

elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number

counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed

primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous

substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

Key words: Allelopathy, Amaranthus, cell division, cell expansion, 4-deoxy-b-L-threo-hex-4-enopyranuronosyl-

(1/2)-L-rhamnose, growth regulator, lepidimoide, Lepidium sativum, oligosaccharins, seed mucilage.

Introduction

Plants are sources of diverse natural products, some of

which have biological activity such as phytotoxins, antimi-

crobial agents, phytoalexins, and signalling agents (Fry

et al., 1993; Deng et al., 2004; Muscolo et al., 2005; Hegab

et al., 2008) and some of which provide nutrition to soil
microbes (Braga and Dietrich, 1998; Braga et al., 1998;

Brigham et al., 1999; Beninger et al., 2004; Meepagala et al.,

2005; Isfahan and Shariati, 2007). The exudates from

various plant organs contain low-molecular-weight com-

pounds (such as sugars, inorganic ions, vitamins, nucleo-

tides, amino acids, and phenolics), high-molecular-weight

substances (polysaccharides and enzymes, and other pro-

teins), and root border cells (Campbell et al., 1995; Dakora

and Phillips, 2002; Macario et al., 2003; Prakash et al.,

2003; Muscolo et al., 2005; Bais et al., 2006). For example,

the polysaccharides of cress root epidermal mucilage were
found to be rich in uronic acid, galactose, rhamnose, and

arabinose residues (Ray et al., 1988). Thus plant exudates

consist of complex mixtures of large and small molecules,

and cells, any of which might be of biological significance.

The secondary metabolites that are released into the

rhizosphere by plant organs, such as roots, rhizomes, leaves,
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stems, and seeds, and that affect neighbouring plants are

known as allelochemicals. They enter the environment

through various routes such as leaching, volatilization, root

exudation, seed-coat exudation after imbibition, and de-

composition of diverse parts of the plant (Rice, 1984;

Higashinakasu et al., 2004). When seeds of susceptible

(receiver) plant species are exposed to allelochemicals,

germination may be inhibited. If germination does occur,
the seedlings may show abnormal growth, development,

and metabolism. The most visible effects observed are

retarded germination, short or no roots, lack of root-hairs,

abnormally long or short shoots, swollen seeds, and low

reproductive ability (Rice, 1979).

Hasegawa et al. (1992) reported that cress seedlings

significantly affect the elongation of hypocotyls and roots

in neighbouring Amaranthus seedlings. Exudates of 2-d-old
cress seedlings have a similar effect on Amaranthus in the

absence of living cress, and Hasegawa et al. (1992) initially

suggested that the roots of cress seedlings exude a potent

allelopathic substance that overstimulates shoot growth and

inhibits root growth of potentially competing neighbouring

plants. An active principle in cress seedling exudate was

identified as lepidimoide [the sodium salt of 4-deoxy-b-L-
threo-hex-4-enopyranuronosyl-(1/2)-L-rhamnose], an un-
saturated disaccharide (Hasegawa et al., 1992) conveniently

represented as DUA/Rha. Based on its structure, lepidi-

moide was suggested to be derived from a pectic cell-wall

component, rhamnogalacturonan-I (RG-I) (Fry et al., 1993).

Later, it was indeed successfully synthesized by digestion of

RG-I-rich okra mucilage (Tanaka et al., 2002). Lepidimoide

has sometimes been inaccurately called 2-O-rhamnopyranosyl-

4-deoxy-a-L-threo-hex-4-enopyranosiduronate, a name which
wrongly implies Rha/DUA rather than DUA/Rha; this

distinction is important because the rhamnose moiety is the

reducing terminus of the disaccharide and the bio-activity of

lepidimoide is lost if this position is converted to a methyl

rhamnoside group (Hirose et al., 2003). The 2-epimer of

lepidimoide, DUA-(1/2)-6-deoxy-L-glucose, does possess

activity (Hirose et al., 2004), as does DUA-(1/2)-D-glucose

(Yamada et al., 1996).
Purified lepidimoide promoted hypocotyl elongation at

concentrations above 3 lM and inhibited root elongation

above 100 lM (Hasegawa et al., 1992). Above about

300 lM, lepidimoide increased the whole-seedling concen-

tration of fructose 2,6-bisphosphate, a potent endogenous

regulator of central metabolism which might possibly mediate

changes in growth rate (Kato-Noguchi et al., 2001); however,

no significant effect on fructose 2,6-bisphosphate was
detected at 3–100 lM lepidimoide, concentrations sufficient

for growth effects. Lepidimoide also enhanced the light-

induced accumulation of chlorophyll and its precursor

5-aminolaevulinic acid in sunflower seedlings (Yamada et al.,

1998), delayed the loss of chlorophyll during senescence in

oat leaf segments (Miyamoto et al., 1997a), and mimicked

auxin in inhibiting the abscission of bean petiole explants

(Miyamoto et al., 1997b).
Lepidimoide is not confined to cress seeds. It was exuded

by surface-sterilized seeds of 24 species, including 17 dicots,

asparagus, leek, and five members of the Poaceae, when

each was soaked in water at 25 �C for 2 d (Yamada et al.,

1995). Its high abundance in maize and oat is interesting

because RG-I is relatively scarce in these plants. Arabidopsis

thaliana (seeds soaked at 5 �C for 1 d) was later added to

the list; its lepidimoide was isolated as the free acid rather

than as the Na+ salt and given a different name, ‘lepidimoic

acid’ (Yokotani-Tomita et al., 1998). However, in vivo the
ionic form applied is immaterial; therefore this report uses

the name ‘lepidimoide’ for the free acid and any of its salts.

There are numerous reports of oligosaccharins (oligosac-

charides exhibiting hormone-like biological effects) derived

from plant and fungal cell-wall polysaccharides (Darvill

et al., 1992; Aldington and Fry, 1993). Examples include

xyloglucan oligosaccharides (York et al., 1984; McDougall

and Fry, 1991; Kaida et al., 2010), oligogalacturonides (Aziz
et al., 2004), galactoglucomannan oligosaccharides (Auxtová

et al., 1995; Benová-Kákosová et al., 2006), gentiobiose

(Dumville and Fry, 2003), and fungal oligo-b-glucans (Sharp
et al., 1984; Jamois et al., 2005). Lepidimoide is of particular

interest as it is one of the few postulated examples of an

oligosaccharide with allelochemical activity (thus an interspe-

cific oligosaccharin). Therefore, the physiology of the cress–

Amaranthus interaction needed to be explored in more depth.
Several aspects of the cress–Amaranthus interaction re-

mained poorly understood. For example, it was not certain

whether cress tissues themselves directly manufacture lepidi-

moide by plant-genome-encoded activities or if lepidimoide is

formed by the partial digestion of cress RG-I by microbial

lyases, e.g. those from fungi (Saranpuetti et al., 2006),

including endophytic strains (Tanaka et al., 2002), or bacteria

(Ochiai et al., 2007). Some previous studies (Yamada et al.,
1995, 1997) but not others (Yokotani-Tomita et al., 1998) had

used surface-sterilized seeds as a source of lepidimoide. The

current study therefore directly compared aseptic and non-

aseptic cress. Also, although lepidimoide was first described

as originating from 2-d-old cress roots (Hasegawa et al., 1992)

and from 2-d-old seedlings of numerous species (Yamada

et al., 1995), later work on sunflower and buckwheat

suggested that much of it actually exudes from the seed-coat
and embryo prior to germination (Yamada et al., 1997); the

current study therefore compared seed exudates with seedling

(root) exudates. Another question was whether a heat-stable

allelochemical agent was solely responsible for the effect of

cress seedlings on Amaranthus growth or whether inter-

specific competition also plays a role. An additional possibil-

ity was that the effect on hypocotyl and root elongation was

due to seed-treatment chemicals present on commercially
available cress seed and not due to natural cress exudates.

Finally, this study investigated whether the cress allelochem-

icals influence Amaranthus seedling growth by regulating cell

expansion alone or also cell division.

Materials and methods

Surface sterilization of seeds

Where specified in the Results, seeds were sterilized by shaking in
sodium hypochlorite (containing 0.13%, w/v, active chlorine) at
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room temperature for 10 min, then washed with 0.01 M HCl
followed by sterile water. Seed sterility was verified by incubation
in sterile water followed by nutrient broth (each 23 �C for 2 d). No
microbial colonies were observed.

Germination of seeds in Petri dishes

In all experiments, unless otherwise stated, seeds were placed
in 15 ml water or aqueous solution of exudates (with no filter-
paper disc) in a 9-cm Petri dish, which was sealed with Parafilm
and maintained at 23 �C for 5 d in the dark without shaking. In
some experiments, 0.9 ml aqueous solution per 3-cm Petri dish
was used. The seedlings were then surface-dried with paper
towels, gently flattened between a sheet of glass and a piece of
card, and photographed. The length of each seedling’s hypocotyl
and root was measured on the digital image by use of LabWorks
software.

Growing cress seedlings with other species

Twenty seeds of Amaranthus caudatus (Love-lies-bleeding) plus
20 cress seeds were randomly placed in a Petri dish; 40 seeds of
A. caudatus alone were used as a control. Similar experiments were
repeated with lettuce (Lactuca sativa) in place of Amaranthus.

Growing Amaranthus seedlings in cress seedling exudates

Forty cress seeds were incubated as normal but for only 3 d; the
seedlings were then removed and the water+exudate was left in the
Petri dish. Amaranthus seeds (20) were then added and incubated
for the next 5 d.

Growing Amaranthus seedlings in cress seed-coat exudates

Cress seeds (40) were imbibed in 15 ml water (for 24 h unless
otherwise stated) at 4 �C, which allows imbibition but not ger-
mination and minimizes any contamination from micro-organisms.
The seeds were then removed and Amaranthus seeds were placed in
the same water and incubated for the next 5 d. Similar experiments
were performed with so-called ‘organic’ cress seeds (free of
pesticides) and with cress seeds collected from plants grown in
a private garden in Edinburgh (receiving only rainwater). In other

experiments, the 24-h cress seed exudate was collected and
centrifuged and the supernatant was freeze-dried; the dried exudate
was then diluted in water at various concentration prior to a
standard 5-d bioassay on Amaranthus. Finally, in a test of whether
seeds needed to be viable in order to release a biologically active
exudate, 1 g dry cress seeds was plunged into 200 ml boiling water,
maintained at 100 �C for 15 min, and then incubated at 4 �C for
24 h in the same water, and then the effect of the exudate on
Amaranthus seeds was bioassayed.

Measurements of epidermal cells

A 1-cm segment of hypocotyl from the middle of the hypocotyl
was placed on a slide with a scale, and then the epidermal cells
were examined under a transmitted light compound microscope
(340 objective). The photomicrographs were analysed by use of
LabWorks software.

Results and discussion

Cress seedlings affect the elongation of receiver
seedlings

Hasegawa et al. (1992) reported that cress root exudate has
an allelopathic effect on Amaranthus seedlings. To extend

this observation, the current study initially tested the effect

of cress seedlings on the germination and seedling elongation

of two receiver species in the same Petri dish. Twenty seeds

of either Amaranthus or lettuce were incubated with 20 cress

seeds. As a control, 40 seeds of each receiver species were

incubated without cress seeds. Germination was unaffected

(data now shown). However, seedlings of both receiver
species that had been incubated with cress had significantly

longer hypocotyls and shorter roots than the controls

(Fig. 1). These results are in close agreement with the findings

of Hasegawa et al. (1992).

Fig. 1. Effect of cress (donor) seedlings on growth of Amaranthus or lettuce (receiver) seedlings. Amaranthus or cress seedlings were

grown alone (–) or mixed with cress seedlings (+). After 5 d at 25 �C in the dark, representative receiver seedlings were photographed (A)

and their hypocotyl and root lengths were measured (B). Data represent means from triplicate 9-cm Petri dishes 6 inter-dish SE.

Significant differences from the relevant ‘–’ seedlings are indicated: * P < 0.05; *** P < 0.01.

Control of cell expansion by cress seed exudate | 2597



Cress seedlings also affect radial swelling of receiver
seedlings and the effect persists under aseptic
conditions

Live cress seedlings affected not only Amaranthus seedlings’

growth in length (Fig. 2A) but also their growth in girth,

inhibiting and promoting the swelling of hypocotyls and

roots, respectively (Fig. 2B). Consequently, there was a large
effect on the length:width ratio (Fig. 2C).

The effects of cress seedlings on the receiver species could

in principle be due either purely to the cress seedlings

themselves or to cress tissue plus associated micro-organisms,

which might for example generate lepidimoide by partially

digesting RG-I (Tanaka et al., 2002; Saranpuetti et al., 2006;

Ochiai et al., 2007). In a test of this, cress and Amaranthus

seeds, or Amaranthus seeds alone, were incubated in both
aseptic and non-aseptic conditions. After 5 d of incubation,

Amaranthus seedlings from both aseptic and non-aseptic

treatments had longer hypocotyls and shorter roots when

grown with cress than when grown alone (Fig. 2A). Thus the

effect of cress on Amaranthus seedlings was not due to

surface micro-organisms.

The effect of cress seedlings on Amaranthus seedling
growth is not due to competition for resources

Aseptic cress seedlings might exude allelopathic compound(s)
and/or might compete with Amaranthus for dissolved oxygen

in the medium (there were no other nutrients present in the

medium, de-ionized water, for potential competition). In an

experiment designed to distinguish allelopathy from competi-

tion, 20 Amaranthus seedlings were grown in the root exudates

of 20 cress seedlings after removal of the latter. After 5 d,

Amaranthus seedlings incubated with cress root exudates had

longer and thinner hypocotyls and shorter and thicker roots

even though no living cress tissue was present (Fig. 3; root

exudate data). This evidence shows that the effect of cress on

a receiver species is not due to competition but must be an

effect of substance(s) released from the cress seedlings.

Exudate from ungerminated cress seeds has a potent
effect on Amaranthus seedling growth

Hasegawa et al. (1992) assumed that an allelopathic

substance was exuded from the roots of cress seedlings.

However, they used whole seedlings, and the same labora-

tory later reported that much of the allelopathic material
actually originated from the seed-coat and embryo prior to

germination (Yamada et al., 1997). To distinguish these

possibilities, the current study imbibed cress seeds for only

24 h at 4 �C, thus allowing imbibition but preventing

germination, and applied the resulting seed exudate to

Amaranthus seedlings at 25 �C. The seed exudate promoted

Amaranthus hypocotyl elongation more strongly than the

root exudate, while the effect on receiver roots was no
different from that of the root exudate (Fig. 3; seed exudate

data). This finding suggests that either the seed exudate

contained new bioactive compound(s) different from the

one (lepidimoide) found by Hasegawa et al. (1992) in cress

seedling exudate or that the amount of lepidimoide was

higher in seed exudate.

Exudate from ‘organic’ cress seeds also has potent
allelopathic effects

Commercial seed may have come into contact with artificial

plant growth regulators, fungicides, herbicides, or insecti-

cides, which could theoretically have been responsible for

Fig. 2. Effect of cress seedlings on the growth of Amaranthus in aseptic and non-aseptic conditions. Amaranthus seedlings were grown

alone (control) or mixed with cress seedlings under aseptic or non-aseptic conditions. After 5 d, the receiver (Amaranthus) seedlings’

hypocotyls and roots were measured for length (A), width (B), and length:width ratio (C). Data represent means from triplicate 9-cm Petri

dishes 6 inter-dish SE. Significant differences from the relevant control are indicated: * P < 0.05; ** P < 0.02; *** P < 0.01; **** P < 0.001.
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the observed effects of seed exudate on the growth of

receiver seedlings. Therefore, seed exudate from commercial

‘organic’ cress seed (stated to be free of synthetic chemicals)

was collected. Amaranthus seedlings grown in its presence

were affected in the usual way (Fig. 3).
Although the commercial ‘organic’ seed was stated to be

free from synthetic chemicals, there was still the possibility

that it had been in contact with ‘organic’ preparations

containing natural growth regulators (e.g. auxins and

gibberellins). Cress plants were therefore grown in an

unfertilized garden in Edinburgh supplied only with rainwa-

ter and the next generation of seed was collected after

flowering. Exudate from this seed again affected Amaranthus

seedling growth in the usual way (Fig. 3). It is deduced that

seed-treatment chemicals are not responsible for the apparent

allelopathic effect. Therefore, the effect on Amaranthus

seedlings was due to the compound(s) which are naturally

exuded from cress seeds.

Release of allelochemical(s) from cress seed is very
rapid

In an experiment designed to identify when maximally

bioactive material is exuded from seed, cress seeds were
imbibed for various times and applied the exudates to

Amaranthus (Fig. 4). Within the first few minutes, cress seeds

released soluble bioactive compound(s) into their surround-

ings. Hypocotyl and root length and width were all affected

by the 10-min exudate. The bioactivity towards receiver

hypocotyls reached its maximum at 24 h and thereafter

started losing activity, while the activity towards Amaranthus

roots reached its maximum at 6 h and then remained

constant until at least 48 h. Thus, the bioactive compound(s)

were released into aqueous solution as soon as the seeds were
imbibed. This quick release of bioactivity suggests that the

allelochemical(s) might be stored in or on the seed-coat and

released into the environment, possibly as a defence mecha-

nism, as soon as the seeds are imbibed; nevertheless,

additional activity was gradually released given more time.

Yamada et al. (1997) had shown that dry sunflower and

buckwheat seeds contain phenol-extractable lepidimoide, espe-

cially in the seed-coat. They also showed that a large amount
of additional lepidimoide is released by moistened seeds

during 2-d imbibition, the great majority arising from the

embryos rather than the seed-coats (Yamada et al., 1997).

The allelopathic material is heat-stable and already
present in dry cress seeds

In a test of whether the release of the bioactive principle was

dependent on the cress seeds’ metabolism, dry cress seeds

were placed in boiling water for 15 min and then incubated

in cold water for 24 h. The collected exudate from
denatured seeds again resulted in Amaranthus hypocotyls

with significantly longer hypocotyls and shorter roots than

the control (Table 1). The results show that the bioactive

compound(s) were heat-stable and were formed and stored

by the embryo or seed-coat during seed maturation.

Fig. 3. Effect of root and seed exudates on Amaranthus seedlings in the absence of competition. Amaranthus seeds were incubated for

5 d in water (control), root exudate collected by the method of Hasegawa et al. (1992) from cress seedlings, or seed exudate from

imbibed but ungerminated cress seeds. Where indicated, the exudates were from commercial ‘organic’ cress seed or from seed

collected from ‘home-grown’ cress plants maintained in unfertilized garden soil with only rainwater. The 5-d-old Amaranthus seedlings

were then measured for length (A), width (B), and length:width ratio (C). Data represent means from triplicate 9-cm Petri dishes 6 inter-

dish SE. Significant differences from the relevant control are indicated: * P < 0.05; ** P < 0.02; *** P < 0.01; **** P < 0.001.
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Potency of cress seed exudate

In a test of the minimal effective concentration cress seed ex-

udate, a sample was dried, redissolved in water at various

concentrations, and bioassayed on Amaranthus as the re-

ceiver species. The effect on both hypocotyl and root

elongation was concentration-dependent (Fig. 5). The mini-

mum effective concentrations on hypocotyl and root growth
were ;25 and ;450 lg ml�1 respectively. This ;18-fold

difference is comparable to the ;33-fold difference between

hypocotyl- and root-sensitivity to lepidimoide reported by

Hasegawa et al. (1992).

Effect of cress seed exudate on epidermal cell
expansion and division

The promotion of hypocotyl elongation by seed exudate

axiomatically involves a promotion of side-wall elongation.

Fig. 4. Effect of cress seed exudate collected at various times of

imbibition on Amaranthus seedling organ lengths (A) and widths

(B). Cress seeds were imbibed at 4 �C for various times.

Amaranthus seeds were then incubated in the collected exudates

or in water as a control (plotted at 0 h) for 5 d. Other details are as

given for Fig. 3.

Fig. 5. Concentration-dependence of effect of cress seed exu-

date on Amaranthus seedling hypocotyl (A) and root (B) length.

Dried cress seed exudate was redissolved water to give the

concentrations indicated. Amaranthus seeds were incubated in

0.9 ml of each solution or water (control; dashed line), for 5 d in

3-cm Petri dishes and the lengths were then measured. Data are

single measurements from duplicate Petri dishes. Other details are

as given from in Fig. 3. Dotted arrows indicate the approximate

minimum effective concentration.

Table 1. Heat-stable active principle is present in dry cress seeds

Dry cress seeds (1 g) were plunged into 200 ml boiling water and

kept at 100 �C for 15 min; the seeds were removed from the hot

water and incubated in 200 ml fresh water at 4 �C for 24 h.

Exudate from the denatured seeds was freeze dried and redis-

solved in water at 0.5% (w/v). Amaranthus seeds were incubated

in 0.9 ml of the solution or in water as a control, in 3-cm Petri

dishes for 5 d, and then measured. Data are means from triplicate

9-cm Petri dishes 6 inter-dish SE.

Treatment Hypocotyl length
(mm)

Root length
(mm)

Control 15.860.6 29.760.5

Exudate from heat-killed cress

seeds

29.061.0a 16.560.9a

a Effect of treatment significant (P < 0.001).
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In principle, this could be accompanied or unaccompanied

by a matching promotion of cell division. Likewise, the

inhibition of growth in hypocotyl girth by seed exudate

could be accompanied or unaccompanied by a matching

inhibition of cell division. In an experiment designed to

distinguish these possibilities in the case of the epidermis,

which is usually the growth-limiting tissue in aerial plant

organs (Kutschera, 2008), the final cell dimensions were

measured (Fig. 6). Epidermal cells of Amaranthus hypocotyls

that had been incubated with cress seed exudate were

narrower and longer than water-treated controls (Fig. 6;
Table 2). These cell patterns were consistent along the

lengths of the hypocotyls with and without exudate.

Epidermal cells of exudate-treated hypocotyls were 1.78

times the length and 0.49 times the width (and thus

circumference) of controls (Table 2). In the same experiment,

the whole hypocotyls were 2.29 times the length and 0.74

times the width of controls (Table 2). The effects on

hypocotyl dimensions in this experiment were thus similar
to those in all comparable experiments [mean6SE 2.3060.14

times the length (n¼7) and 0.7160.01 times the width (n¼5)].

Thus, treatment with exudate increased epidermal cell

division in both planes of the epidermal sheet (Table 2).

However, although causing a 129% increase in hypocotyl

elongation, it caused only a 28% increase in epidermal cell

number along the long axis of the organ (Table 2). Thus the

principal effect of exudate on processes involved in hypo-
cotyl elongation is to promote cell elongation and the effect

on cell division in this dimension is inadequate to explain

the observed growth. In the lateral dimension, the exudate

resulted in a final hypocotyl circumference 26% less than in

the controls, but a 55% greater cell number counted round

the circumference (Table 2). This is therefore another clear

case of organ growth being determined by cell expansion,

not division.

Conclusion

These observations support the findings of Hasegawa’s group

(e.g. Hasegawa et al., 1992; Yamada et al., 1997). The results

show that the bioactive material is released as soon as the

cress seed is imbibed, without the need for metabolism or

Fig. 6. Effects of cress seed exudate on epidermal cells of

Amaranthus hypocotyls. Amaranthus seeds were incubated for 5 d

in the dark at 25 �C in water (A) or cress seed-coat exudate (B).

A 1-cm segment from the middle of each hypocotyl was placed on

a slide and the epidermal cells were photographed under the 340

objective. The pictures are representative of the respective cell

populations. Bars, 25 lm.

Table 2. Effect of cress seed exudate on epidermal cell size, shape and number in Amaranthus hypocotyls

Amaranthus seeds were incubated in water (control) or in a solution of cress seed exudate for 5 d. From images such as those shown in

Fig. 6, the length and width of the epidermal cells were estimated. In addition, the hypocotyls’ lengths and widths were measured and

their circumferences estimated (p 3 width). The number of epidermal cells along the long axis of the hypocotyl was approximated

(hypocotyl length:cell length), as was the number of epidermal cells around a circumference of the hypocotyl (hypocotyl circumference:

cell width). The total epidermal number per hypocotyl was then approximated (n along length 3 n around circumference). Data are

means from triplicate 9-cm Petri dishes 6 inter-dish SE. ****Effect of treatment significant (P < 0.001); ***Effect of treatment significant

(P < 0.01). Ratio is calculated as treated:untreated.

Treatment Hypocotyl
length
(mm)

Epidermal
cell length
(mm)

Hypocotyl
circumference
(mm)

Epidermal
cell width
(mm)

Estimated epidermal cell number per:

Hypocotyl
length

Hypocotyl
circumference

Whole
hypocotyl
(103)

Control 15.160.2 11163 2.1760.05 21.360.6 13664 10364 14.060.7

Exudate 34.660.1**** 19866**** 1.6060.08*** 10.460.4**** 17565*** 160610*** 28.061.9***

Ratio 2.2960.02 1.7860.07 0.7460.04 0.4960.02 1.2860.05 1.5560.11 1.9960.17
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active secretion. The biological potency of the seed exudate

is very high, measurably promoting hypocotyl growth at

25 lg ml�1 despite the crude nature of this exudate prepara-

tion, which is likely to contain numerous inert carbohydrates,

etc. besides the bioactive principle(s).

Any agent that promotes the longitudinal growth of a

plant organ must axiomatically increase the total elongation

of its cells’ side-walls (regardless of the number of cells and
thus cross-walls). A priori, cell division along the long axis

could remain unchanged (Fig. 7A), concurrently increase

(Fig. 7B), or even decrease. The scenario shown in Fig. 7C

is not an option because it would not cause the effects

reported in Figs. 1–5. The data indicate that cell division

increases only slightly during the dramatic promotion of

Amaranthus hypocotyl elongation by cress seed exudate.

Therefore, it is not a question of enhanced cell division

being followed by a matching elongation. On the contrary,

an enhancement of cell elongation is the prime mechanism

leading to a greater hypocotyl length (Fig. 7A); the small

promotion of cell division noted does not keep pace with

the elongation. In the case of growth in hypocotyl width, it

is even clearer that the inhibitory effect of cress seed
exudate on cell-wall expansion is the primary mechanism,

since cell division in the tangential plane was actually

promoted (Fig. 7D, E).

The biological role of the allelopathic material in cress seed

exudates is difficult to ascertain: it could possibly protect

the donor plant from competitors by overstimulating the

Fig. 7. Interpretative diagrams of the epidermis of the Amaranthus hypocotyl and its response to cress seed exudate. (A–C) Epidermal

cells seen in tangential longitudinal section, to show hypocotyl elongation. Three theoretically possible stimulatory effects are shown: (A)

growth without cell division, (B) growth with cell division, and (C) cell division without growth. The effect of cress seed exudate on

Amaranthus hypocotyls is best represented by (A). (D–E) Epidermal cells seen in transverse section, to show the hypocotyl’s girth.

Treatment with exudate (E) results in a more slender hypocotyl despite increasing the cell count in the tangential plane, compared with

water treatment (D).
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hypocotyl growth of the latter to produce excessively tall,

weak, ‘foolish’ seedlings similar to those overstimulated by

gibberellin, as well as by inhibiting root growth (Rice, 1979).

Alternatively, however, the presence of lepidimoide in the

seed(ling)s of numerous species (Yamada et al., 1995) may

suggest that it is a normal component of the growth-regulator

repertoire of plants in general, additional to the better-known

auxins, gibberellins, cytokinins, etc. Either way, a possible
application of the seed exudate phenomenon explored here

could be as the basis of novel natural agrochemicals.
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Š, Bilisics L. 1995. Effect of galactoglucomannan-derived

oligosaccharides on elongation growth of pea and spruce stem

segments stimulated by auxin. Planta 196, 420–424.

Aziz A, Heyraud A, Lambert B. 2004. Oligogalacturonide signal

transduction, induction of defense-related responses and protection of

grapevine against Botrytis cinerea. Planta 218, 767–774.

Bais HP, Weir TL, Perry GL, Gilroy S, Vivanco JM. 2006. The role

of root exudates in rhizosphere interactions with plants and other

organisms. Annual Review Plant Biology 57, 233–266.

Beninger CW, Abou-Zaid MM, Kistner ALE, Hallett RH, Iqbal MJ,

Grodzinski B, Hall JC. 2004. A flavanone and two phenolic acids from

Chrysanthemum morifolium with phytotoxic and insect growth

regulating activity. Journal of Chemical Ecology 30, 589–606.
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