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Abstract

Information fusion, i.e., the combination of expert systems, has a huge potential to improve the accuracy of pattern

recognition systems. During the last decades, various application fields started to use different fusion concepts

extensively. The forensic sciences are still hesitant if it comes to blindly applying information fusion. Here, a

potentially negative impact on the classification accuracy, if wrongly used or parameterized, as well as the increased

complexity (and the inherently higher costs for plausibility validation) of fusion is in conflict with the fundamental

requirements for forensics.

The goals of this paper are to explain the reasons for this reluctance to accept such a potentially very beneficial

technique and to illustrate the practical issues arising when applying fusion. For those practical discussions the

exemplary application scenario of morphing attack detection (MAD) is selected with the goal to facilitate the

understanding between the media forensics community and forensic practitioners.

As general contributions, it is illustrated why the naive assumption that fusion would make the detection more

reliable can fail in practice, i.e., why fusion behaves in a field application sometimes differently than in the lab. As a

result, the constraints and limitations of the application of fusion are discussed and its impact to (media) forensics is

reflected upon.

As technical contributions, the current state of the art of MAD is expanded by:

a) The introduction of the likelihood-based fusion and an fusion ensemble composition experiment to extend

the set of methods (majority voting, sum-rule, and Dempster-Shafer Theory of evidence) used previously

b) The direct comparison of the two evaluation scenarios “MAD in document issuing” and “MAD in identity

verification” using a realistic and some less restrictive evaluation setups

c) A thorough analysis and discussion of the detection performance issues and the reasons why fusion in a

majority of the test cases discussed here leads to worse classification accuracy than the best individual classifier

Keywords: Information fusion, Media forensics, Face morphing attacks, Morph attack detection (MAD), Fusion

methods, Fusion ensemble composition

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: christian.kraetzer@iti.cs.uni-magdeburg.de

Otto-von-Guericke University Magdeburg, Magdeburg, Germany

EURASIP Journal on
Information Security

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 

https://doi.org/10.1186/s13635-021-00123-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-021-00123-4&domain=pdf
http://orcid.org/0000-0002-0138-4638
http://creativecommons.org/licenses/by/4.0/
mailto:christian.kraetzer@iti.cs.uni-magdeburg.de


1 Introduction
Information fusion has a long research history and its

core concept, the combination of outputs of different ex-

pert systems, has been rigorously studied and applied for

at least two decades in various application domains. The

concept of fusion has been studied under many different

terminologies, e.g., classifier ensembles [1], combining

pattern classifiers [2], or cooperative agents [3]. As a re-

sult of the growing popularity of machine learning at

that point of time and practical problems arising from

ever increasing feature space complexities, in 2002 [4]

stated that “instead of looking for the best set of features

and the best classifier, now we look for the best set of

classifiers and then the best combination method.” This

statement was rephrased by [5] into “the role of informa-

tion fusion […] is to determine the best set of experts in

a given problem domain and devise an appropriate func-

tion that can optimally combine the decisions rendered

by the individual experts [...].” In [2], the following three

different types of reasons why a classifier ensemble

might be better than a single classifier are identified:

Statistical (instead of picking a potentially inadequate

single classifier, it would be a safer option to use a set of

unrelated ones and consider all their outputs), computa-

tional (some training algorithms use hill-climbing or

random methods, which might lead to different local op-

tima when initialized differently) and representational (it

is possible that the classifier space considered for a prob-

lem does not contain an optimal classifier). Whatever

the exact reason for choosing a fusion approach instead

of a single classifier, [2] explicitly warns that “an im-

provement on the single best classifier or on the group’s

average performance, for the general case, is not guaran-

teed. What is exposed here are only ‘clever heuristics’

[...]”. In summary, by combining classifiers (or other ex-

pert systems), the applicants hope for a more accurate

decision at the expense of increased complexity.

The huge potential for accuracy improvement gained

by applying fusion has been well illustrated in many

fields of applied pattern recognition. A good example is

the field of biometric user authentication where, e.g., [5]

shows various benefits that this field can draw from fu-

sion at different steps of the pattern recognition pipeline.

When it comes to blindly applying information fusion,

among the disciplines that are currently still hesitant are

the forensic sciences. Here, the potentially negative im-

pact to classification accuracy as well as the increased

complexity (and the inherently higher cost for plausibil-

ity validation) of fusion are in conflict with fundamental

requirements for (media) forensics (as is discussed in

more detail in section 2.1). The goals of this paper are to

explain the reasons for this reluctance to accept a poten-

tially very beneficial technique such as information fu-

sion and to illustrate the practical problems of applying

fusion. To this end, an exemplary application scenario from

media forensics called face morphing attack detection

(MAD) is selected. This scenario is currently a hot research

topic due to the fact that this kind of attack imposes a re-

cent and currently unsolved threat to face image based au-

thentication scenarios such as border crossing using travel

documents (i.e., passports), see section 2.3.

By facilitating the understanding of the reluctance to

blindly use fusion in (media) forensics as well as the po-

tential pitfalls of practically applied fusion techniques, it

is the hope to facilitate acceptance both in the media fo-

rensics community as well as the community of forensic

practitioners. To achieve this, the paper provides the fol-

lowing contributions:

a) As general contributions, it is illustrated why (even

with a set of classifiers relevant to a specific

problem) the naive assumption that fusion would

make the detection more reliable can fail in

practice, i.e., why fusion behaves in a field

application sometimes differently than in the lab

and often delivers lower detection performances

than single detectors. As a result, the constraints

and limitations of the application of fusion are

discussed and its impact to (media) forensics is

reflected upon. The two main aspects addressed in

this discussion are the generalization power of

classification models and the relationship between

training and test data sets. In the evaluations, it is

shown that both aspects, despite being similar in

nature, have to be considered separately for applied

information fusion.

b) As technical contributions for face morphing attack

detection (MAD), the current state of the art is

expanded by:

� Introduction of likelihood ratio (LR) based fusion for

face morphing attack detection (MAD) to extend

the set of methods (majority voting, sum-rule, and

Dempster-Shafer Theory (DST) of evidence [6])

used in [7].

� Direct comparison of the two evaluation scenarios:

“MAD in document issuing” vs. “MAD in identity

verification.”

� Analysis and discussion of detection performance

issues found with the fusion based detectors (note:

questions of feature or classifier selection are out of

scope for this paper), the results show that:

� Fusion can fail even when a set of accurate

individual classifiers is available. The results

presented for fusion detectors are in the vast

majority of the cases worse than the results of the

best individual classifier used.
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� Trained thresholding and weighting strategies as

well as sophisticated (context adapted) fusion

methods (especially DST and LR based) can under

specific circumstances perform significantly worse

than unweighted, simplistic fusion approaches like

the sum-rule or majority voting.

� Different fusion ensemble composition strategies

(i.e., using all available detectors vs. selecting a

subset of those) have an influence on the decision

error rates.

� For the two evaluation scenarios “MAD in

document issuing” (SC1) vs. “MAD in identity

verification” (SC2) different detection and fusion

trends are observed, resulting from differences in the

inherent characteristics of the application scenario

(esp. the amount and type of data available for

investigations).

The rest of the paper is structured as follows: section 2

performs a discussion of related work on requirements

for media forensic methods, the current state of the art

in face morphing attacks detection (MAD) and informa-

tion fusion approaches in MAD. In section 3, the investi-

gation concept from [7] is summarized and extended

into the concept for fusion-based face morphing attack

detection used in this paper. Section 4 defines the evalu-

ation setup (incl. the two application scenarios “MAD in

document issuing” vs. “MAD in identity verification”).

Section 5 presents the evaluation results and their dis-

cussion, while in section 6 the conclusions are drawn

from the presented results.

2 Related work

Technical capabilities (such as accuracy) are by far not

the most significant characteristics of forensic methods.

In general, those are usually rated by practitioners in

criminal investigations by their maturity, i.e., by their

scientific admissibility. Section 2.1 discusses some issues

of scientific admissibility in European contexts (where,

due to the very nature of the EU and its member states,

it is currently much less well regulated as for example in

the USA) to establish an understanding on the require-

ments and limitations for forensic methods originating

from this field.

Section 2.2 briefly summarizes the media forensics

application domain selected for this paper, the face

morphing attack detection (MAD). More detailed

overviews over the research activities in this field,

which is very active since 2014, can be found in the

two survey papers [8, 9].

Several studies have demonstrated that both manually

and automatically generated high-quality morphs cannot

be recognized as such neither by algorithms nor by hu-

man examiners [10–13], and even low-quality morphs

pose a threat to the identity verification process if it is

completely automated. This explains the urgent need for

automated face morphing detectors. At the time of writ-

ing this paper, none of the existing research initiatives

working on this specific image manipulation detection

problem has been able to present detectors that achieve

sufficient detection accuracy on a wide range of

morphed images (see the ongoing NIST FRVT MORPH

challenge [14]). As a logical consequence fusion ap-

proaches are used to combine the existing detectors and

thereby improve the overall performance. The state of

the art approaches in information fusion for MAD are

briefly discussed in section 2.3.

2.1 Requirements for media forensic methods in terms of

scientific admissibility

When working in media forensics, the question of deter-

mining the maturity of methods arises. In lab tests ana-

lyzing data for which ground truth information exists, an

answer to that question is easy. In that case, the degree

of agreement between ground truth label and detector

response can simply be used to express the accuracy of

the method.

In field applications of forensics, there usually exists

no ground truth information for an object under investi-

gation. In these cases, other means of establishing the

maturity or suitability of a forensic method have to be

used. In forensics, the whole field of work looking into

this aspect is termed “scientific admissibility.” It is a very

complex topic on which Champod and Vuille state in

[15]: “The scientific admissibility of evidence, while sub-

ject to fairly precise rules in United States law, [...], is

seldom addressed in European legal writings, [...]. The

question of scientific reliability is seen as intrinsically

linked with the assessment of the actual evidence, that is

with the determination of its probative value […].” Re-

searchers in the fields of computer science and applied

pattern recognition have to rely on the verdict of legal

experts defining the hurdles media forensics approaches

have to take before achieving the ultimate goal of court

admissibility. Looking at [15], it can be stated that there

is no EU wide regulation on scientific admissibility ques-

tions but that there are common principles that would

have to be considered. In that in-depth analysis of the

current legal situation in [15] a non-exhaustive list of

such principles is presented, containing in its core the

following aspects:

� Methods should be peer reviewed and accepted

within the corresponding scientific community.

� Error rates associated with a method should be

precisely known,

� Existence of standards for the application and

maintenance of methods.
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This list is very similar to the state-of-the-art criteria

used by judges in the USA to address the questions of

court admissibility for forensic (and other) methods, i.e.,

the so called Daubert and FRE702 criteria [15]. While

pointing out the benefits of such selection principles,

Champod and Vuille also provide some form of criticism

into their application: for peer reviewed methods they

point out that “this criterion does not indicate whether a

technique accepted in scientific literature has been used

properly in a given case” and regarding the issue of as-

certaining the error rates of a test, they claim that those

“can prove misleading if not all its complexities are

understood” [15].

In the context of work presented in this paper, those

statements imply two important things: First, that a very

careful investigation of the precise constrains for the ap-

plication of a method such as information fusion is re-

quired for any specific forensic application case. Second,

that the associated complexities in practical application

(such as the attempt to improve MAD detection used

for illustration purposed within this paper) are clearly

and openly discussed.

2.2 Face morphing attacks and their detection

Face images in documents are an established and well

accepted means of identity verification. Current elec-

tronic machine readable travel documents (eMRTD) are

equipped with digital portraits to automate the identity

verification process. The automation saves manpower

and enhances security due to switching from subjective

(officers) to objective (automated face recognition sys-

tems) matching of faces. The benefit of automation is es-

pecially relevant in high-throughput applications like an

airport border control. However, the automation entails

the risk of face morphing attacks [16].

In publications such as [12, 16], it has been shown that

the blending of face images (here called face morphing)

of two or more persons can lead to a face image resem-

bling the faces of all persons involved. Using such an

image as a reference in a document is referred to as face

morphing attack because it enables illicit document

sharing among several users. Such morphing attacks

have been shown to be effective in an automated border

control (ABC) scenario giving a wanted criminal a

chance to cross a border with a chosen (i.e., wrong)

identity [10, 17, 18].

Document issuing procedures are different depending

on the country and its national regulations. In many

countries, the biometric face image can be (and often is)

submitted as a hard copy. Here, the attack aims at fool-

ing an officer at the document issuing office by submit-

ting a morphed face image. As long as persons are

allowed to submit images to the document issuing office

during the document generation, face morphing attacks

will remain a severe threat to photo-ID-based verifica-

tion. Indeed, if an officer accepts a morphed face image,

the issued document would pass all integrity checks, and

if an automated face recognition (AFR) system matches

a live face with a morphed document image, access will

be granted to an impostor.

The risk of the morphing attack can be reduced by

supporting both officers and AFR systems with a dedi-

cated morph detector. The only way to completely re-

move the threat of such attacks would be to take the

picture directly in the controlled environment of the is-

suing office and by ensuring that there is no malware-

enabled morphing attack embedded into the digital part

of the document issuing pipeline, too. The question

whether to take the picture directly in place is a political

issue, which has in the past lead to many controversial

discussions (e.g., in France and Germany) between gov-

ernmental regulation and the photo industry. But even if

this problem would be solved for one country, there

would still be the issues of legacy passports (which might

still be valid for up to 10 years) as well as foreign

documents.

Figure 1 depicts the document life-cycle of a docu-

ment with a face morphing attack present. While publi-

cations such as [19] also discuss the role of forensics

(and anti-forensics) in the quality assessment (QA) of

the attacker during the morph generation process, in the

scope of this paper, only the image forensic analysis of

the images submitted into the document creation and

the corresponding analysis in every document usage

(e.g., in an ABC gate) are relevant. These two investiga-

tion points are representing the evaluation scenarios

“MAD in document issuing” (SC1) and “MAD in identity

verification” (SC2) considered in this paper. They are

discussed in detail in section 4.

The face morphing attack detection (MAD) ap-

proaches are typically categorized into two groups re-

garding whether a trustworthy reference face image is

presented or not. The first group is often referred to as

single-image or no-reference MAD approaches. The sec-

ond group is referred to as two-image differential or

reference-based MAD approaches. Despite the fact that

the reference-based MAD has more potential for robust

operation, the non-reference MAD approaches are better

represented in the literature.

Within the group of reference-based MAD ap-

proaches, as ponted out in [21] there are two subcat-

egories: Reconstruction-based and reference-based

MAD. The most prominent examples from the first sub-

category try to reconstruct a likely original face (from

the assumedly morphed face image provided) by making

use of a trustworthy reference face image taken life from

the person in front of a camera. This process is often re-

ferred to as de-morphing. The detection is done in this
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case by comparing the reconstructed image and the ref-

erence one. The de-morphing is done either by inversion

of the common morphing procedure [22] or by applying

neural networks such as an autoencoder [23] or genera-

tive adversarial networks (GAN) [24]. Alternative ap-

proaches to implement reference-based MAD could also

be relying on reference feature vectors instead of

complete face images.

The approaches from the second subcategory extract

features from both presented images (probe document

image and trustworthy reference image) and either com-

pare them to each other [13] or combine them for the

further classification [25], or even train an additional

classifier based on difference vectors [26]. The common

problem of all single-image MAD approaches based on

“hand-made” or "hand-crafted" features is that they do

not detect morphing but rather traces of image manipu-

lations. Since, there is a set of legitimate image manipu-

lations such as in-plane rotation, cropping, scaling, and

even some kinds of filtering the morphing characteristics

can be easily simulated to prevent detection. The more

sophisticated single-image MAD (like [27]) approaches

make use of deep convolutional neural networks

(DCNN) which are learned to automatically extract fea-

tures characterizing morphing artifacts based on a large

set of samples. If a training set is large and diverse

enough covering all frequently used image manipula-

tions, there is a chance that the network will learn not

the characteristics of a special dataset, but actual charac-

teristics of morphing. Training of different DCNN archi-

tectures for morphing detection was conducted in [17,

26, 28] applying transfer learning with pre-trained net-

works as well as learning from scratch. In [29], a

feature-level fusion of two DCNNs (AlexNet and

VGG19) trained by means of transfer learning is shown

to outperform BSIF features.

The majority of the aforementioned detectors are

learned with morphed face images created by the stand-

ard morphing approach which roughly includes three

steps: alignment of faces, warping of face components

given by polygons (usually triangles), and blending of

color values [12, 17, 30]. However, the recent trend is

the application of GAN to create realistic face images

[31, 32]. The performance of MAD approaches to detect

standard morphs and morphs produced by GAN are

compared in [33, 34]. Several MAD approaches are com-

pared within the framework of the ongoing NIST FRVT

MORPH challenge [14].

2.3 Information fusion approaches in face morphing

attack detection

Decision-making systems can be fused at four different

levels [2]: data level, feature level, classifier level, and

combination (or decision) level. The earlier the fusion is

applied, the higher are implementation costs (esp. the

computation power required), but also the higher accur-

acy is expected.

A huge number of different fusion approaches exist,

ranging from simplistic methods, like the sum-rule (also

known as average rule, meaning the linear combination

of matching scores with equal weights) or majority vot-

ing to complex schemes like Dempster-Shafer Theory

(DST) of evidence [35]. Since DST has a theoretical

foundation for handling contradicting and missing deci-

sions of expert systems, it has been successfully applied

in a wide range of applications [36]. There, exist

Fig. 1 Document life-cycle in case of a face morphing attack including the evaluation scenarios “MAD in document issuing” (SC1) and “MAD in

identity verification” (SC2) (image derived from [19], combined morph generated based on [12] original face images taken from the ECVP

face dataset [20]
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different ways on how to exactly implement fusion based

on DST. For details of our own realization, we refer to

section 4.3 accordingly.

For the question which fusion method should be

chosen, there exists, to the best of the authors’ know-

ledge, no universally agreed upon theory to answer this

question. Some experts put a strong focus on one spe-

cific method, e.g., Kittler et al. in [37], where the authors

claimed that the sum-rule is not only simple, intuitive,

remarkably robust, but also outperforms in their experi-

ments all other aggregation operators tested. Other ex-

perts, like Ho [4] and Kuncheva [38], explicitly refrain to

give any generalized recommendation. Acknowledging

the fact that, even when a critical mass of single classifi-

cation models has been accumulated in a field of appli-

cation, there are still open questions regarding their

combination and the interpretation of the combination

output.

If, within media forensics, the field of image manipula-

tion detection is considered (which also contains MAD

as a research question) the same wide range of methods

are used in research papers, ranging from the simple to

complex. A good example in this domain would be the

work of Fontani et al. in [39, 40]. In those papers, the

authors apply with DST a very sophisticated approach to

image manipulation detection task and additionally use

its benefits to counter anti-forensics.

A face morphing attack detector is in its nature a bin-

ary pattern classifier. The methods for combining such

pattern classifiers have been thoroughly studied for a

long time, e.g., in [38]. The paper [7] summarizes the

state of the art in information fusion for MAD and ex-

tends it by introducing DST to this field. The test results

presented do show that the error rates with the DST-

based fusion are significantly lower compared to those

of individual detectors as well as some simplistic fusion

approaches applied previously (majority voting and aver-

age rule). Here, the work from [7] is used as basis for

this paper, taking its fusion framework and extending it

even further by including likelihood-based fusion. The

reason to do so is the prominent role that the forensic

sciences currently attribute to the usage of likelihood ra-

tios in expert testimony, see, e.g., [41] for the example of

footwear marks (and underlying forensic analyses, see,

e.g., [42]).

While many scientific publications address applying

fusion under lab conditions, only very few publications

address the question of generalization as well as the ap-

plicability for forensic procedures within the context of

criminal investigations. In [43], classical probabilities are

replaced by Shafer belief functions and an analogy of the

Bayes’ rule is introduced that is capable to overcome the

traditional inability to distinguish between lack of belief

and disbelief. Besides mathematical modeling, the

consequences of applying the fusion theory for legal

practice are discussed. They conclude that there is still a

lot of room for explaining the advantages and limitations

of using information fusion to forensic researchers as well

as the actual practitioners in criminal investigations. Here,

the discussion of the advantages and disadvantages of in-

formation fusion is continued and its limitations, if applied

in real-life conditions, are empirically demonstrated.

3 The concept of fusion-based face morphing
attack detection

In theory, a necessary and sufficient condition for a

combination or fusion of classifiers to be more accurate

than any of its members is that the individual classifiers

are accurate and diverse. An accurate classifier has a

classification performance better than random guessing

and two diverse classifiers make errors on different data

points [44]. In practice, experimental evidence has been

provided that, for the case of classifiers with a low level

of dependence, a consensual decision is likely to be more

accurate than any of individual decisions [45]. It has

been also shown that lowering correlation among classi-

fiers increases the accuracy of combination [46].

Application of fusion to MAD approaches and espe-

cially of the Dempster Shafer Theory (DST) is initially

discussed in [7]. In the experiments performed there, the

fusion always outperforms individual classifiers in terms

of lower error rates. The evaluation concept from this

paper is considered here as a reference. It is expanded

and it is demonstrated that under certain conditions the

superiority of fusion is not always the case. In particular,

it is illustrated why the assumption that fusion would

make the detection more reliable can nevertheless fail in

practice. This enables a discussion on the constraints

and limitations of the application of fusion and reflects

upon the impact of generalization power of single classi-

fiers as well as fusion methods and the relationship be-

tween training and test data sets. Figure 2 roughly

depicts the initial evaluation concept.

The concept consists of five major components:

1. The set D of individual morphing attack detectors.

Each individual morphing detector is considered as

a black box (i.e., they are used as pre-trained

methods implying that we have no influence on the

training of the classification model). An input for an

individual detector is a face image and an output is

a score between 0 and 1. High scores indicate

morphs and low scores genuine samples.

2. The set of approaches for establishing weights for

individual decisions in the fused one. In the case of

DST, the mass (belief) functions are required. The

process of deriving such parameters is referred to as

training in Fig. 2.
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3. The set of fusion approaches F. A fusion approach

gets a list of individual decisions and the

“importance” of each decision and returns the

consensual decision.

4. The evaluation data, which includes training data

for establishing fusion parameters (e.g., weights or

mass functions) and test data for estimation of error

rates. The training and test datasets are created by

splitting the AMSL Face Morph Image Data Set

(made available via: https://omen.cs.uni-magdeburg.

de/disclaimer/index.php). This dataset was initially

created to simulate a border control scenario and

includes cropped and JPEG-compressed face images

which do not exceed 15 kByte and, therefore, fit

onto a chip of an eMRTD. In the evaluation, this

application scenario is referred to as “MAD in iden-

tity verification” (SC2). For creating morphed face

images, the combined morphing approach from

[30] is applied.

5. Comparison of individual detectors and fusion

approaches. As a performance metric, we have

chosen the error rates of classification

approaches.

Here, this concept and its components are re-used and

extended by the following: (1) providing a better separ-

ation between the training and test datasets by using

completely different data sources, (2) adding a fusion ap-

proach based on forensic likelihood ratios, (3) adding

two types of morphed face images: complete and splicing

morphs [12], and (4) adding the application scenario

“MAD in document issuing” (SC1).

For scientific rigor, it has been ensured in communica-

tion with the authors of the MAD approaches that the

datasets used for training of the individual detectors do

not overlap with the datasets used for training and test-

ing of the fusion approaches.

4 Evaluation setup

Figure 3 depicts the evaluation concept for this paper.

The components from [7] and the modifications and ex-

tensions summarized in section 3 are apparent in the

comparison to Fig. 2.

The representation of the evaluation scenario is done

by either using images in their native format and reso-

lution (for application scenario “MAD in document issu-

ing” SC1) or in the format specified for ICAO compliant

eMRTD (for application scenario “MAD in identity veri-

fication” SC2). The evaluation scenarios are discussed in

more detail in section 4.1. In section 4.2, the used single

classifiers for MAD are discussed, while section 4.3 sum-

marizes the fusion methods evaluated (including the

strategies for determination of decision thresholds and

score normalization). Section 4.4 introduces the per-

formance metrics and 4.5 the databases that are used to

create the evaluation data sets.

4.1 Detailed specification of two evaluation scenarios

So far, the evaluation of morphing attack detection

(MAD) mechanisms has not been focused on the appli-

cation scenario. The MAD approaches were rather clas-

sified in two groups regarding whether a trustworthy

reference face image is presented or not (reference-based

vs. single-image/no-reference approaches; see section

2.2). Here, two application scenarios “MAD in document

issuing” (SC1) and “MAD in identity verification” (SC2),

representing the two forensic checks required in the

document life-cycle of a face image based identity docu-

ment (see Fig. 1), are considered. Table 1 compares both

application scenarios.

Fig. 2 Evaluation concept for MAD in identity verification from [7]
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The most intuitive mapping would be to link single-

image MAD approaches to SC1 and reference-based

MAD approaches to SC2. In fact, both application sce-

narios can be tuned in the way that the reference image

is presented. For SC2, taking a “live” face image is an in-

herent part of the procedure. Note that this image could

be used solely for face recognition and ignored by the

MAD module. For the document issuing in SC1, a web-

cam could be installed next to the officer at the issuing

authority, providing a possibility for capturing “live” face

images of an applicant.

No-reference MAD approaches are limited to the

search for content-independent statistical anomalies or

content-dependent visual artifacts caused by the morph-

ing process. Such methods often apply techniques devel-

oped within the context of digital image forensics (see

section 2.2). Reference-based MAD algorithms try to re-

construct the morphing process aiming at predicting the

face of an “accomplice” and comparing this face to the

trustworthy “live” image. Hence, the presence of a

reference face image rather gives additional options for

the choice of detection mechanisms, but does not deter-

mine the application scenario.

In contrast, the face image format in SC2 is very closely

defined by national and international regulations, especially

by the International Civil Aviation Organization (ICAO)

standardization of eMRTD. As a result, the limitations to

the digital image that should be stored in an eMRTD are

caused by antiquated physical storage limitations. For in-

stance, the current generation of German (and other coun-

tries) passports limits the free space for a digital face to 15

kB. During the application for a new document, an appli-

cant submits a printed face photograph of the size of 35 ×

45 mm. These images are scanned with the resolution of

300 dpi and undergo lossy compression before they are

stored in the passport. The submission of printed face im-

ages is in fact the main vulnerability spot making the face

morphing attack easy to execute. The reason is that the

printing process destroys almost all traces of image ma-

nipulation so that human examiners are highly prone to

Fig. 3 Our enhanced evaluation concept—switching from “MAD in identity verification” to “MAD in document issuing” is done by deactivating

the dashed boxes

Table 1 Comparison of the document issuing (SC1) and identity verification (SC2) scenarios

Document issuing (SC1) Identity verification (SC2)

Attack’s target Officer at the document issuing authority Identity verification system

Time constraints Up to several minutes Few seconds (< 2 s)

Face image format - Low-size printed document image
- High-resolution digital image from a
certified photo-kiosk

- Low-resolution compressed digital document image
- Low-size re-printed document image partially occluded
by watermarks

Currently used morphing detection
mechanisms

- Naked eye, comparison to the person
in front of the desk

- No explicit mechanisms
- AFR systems may be set to rejecting at low similarity

Proposed morphing detection
mechanisms

- Primarily non-reference (blind) detection
- Could be extended by reference-based
detection

- Reference-based detection
- Demorphing
- Could be extended by non-reference (blind) detection
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errors when categorizing such images [12]. The straightfor-

ward way to reduce the danger of the morphing attack is a

prescription to submit high-resolution digital face photo-

graphs of a decent quality. Having done this, the image

resolution would not be an issue any more for at least a

document issuing scenario. As described in section 2.2, tak-

ing the picture directly in the controlled environment of

the issuing office would limit the threat by morphing at-

tacks. This is not only a political issue but would also re-

quire the elimination of further attack vectors.

The file format used in this paper to implement SC2 is

a face image compliant with ICAO specifications for

eMRTD: 531 × 413 pixels (inter-eye distance of at least

120 pixels), in JPEG2000 format, compressed to fit the

15 kB size constraint. The file format to implement SC1

is not that narrowly defined; here, the original file format

of the reference databases (see section 4.5) is used.

4.2 Morph attack detection approaches

In this paper, five morph attack detection (MAD) ap-

proaches are examined. The first one (Dkeypoints) is based

on localization and counting of keypoints [19]. The

keypoint-based morphing detector indirectly quantifies

the blending effect as an indispensable part of the morph-

ing process. Blending leads to a reduction of face details

and therefore to a reduction of “significant corners” and

edge pixels. The detector counts the relative number of

keypoints in the face region detected by different ap-

proaches as well as the relative number of edge pixels. For

classification within Dkeypoints, a linear support vector ma-

chine (SVM) was trained based on 24-dimensional feature

vectors with a dataset of 2000 genuine and 2000 morphed

high-resolution passport images. These morphs were cre-

ated using the approaches from [12, 30].

The other four MAD approaches are based on Deep Con-

volutional Neural Networks (DCNN). Two of them desig-

nated as DArXivNaive and DArXivMC are described in [26]. The

other two designated as DBIOSIGNaive and DBIOSIGMC are de-

scribed in [17]. All four of these detectors are based on the

VGG19 network. Transfer learning is applied to build a bin-

ary classifier from the classification model originally trained

for the ILSVRC challenge. The training dataset is comprised

of approximately 2000 genuine images and the same num-

ber of morphs. Genuine images were collected from several

public face databases and scraped from the internet. The

major difference between classifiers is in the approach for

generation of morphed face images for training. While the

DArXivNaive is an older detector trained with lower quality

morphs and DArXivMC is the same detector with an updated

data augmentation strategy in the training, the DBIOSIGNaive

and DBIOSIGMC detectors applied for the creation of the

training data sophisticated morphing with artificially added

high-frequencies to compensate the blurring effect of the

blending operation. The differences between the Naive

training and the MC (multiclass/complex morphs) versions

lie in the composition of the training data: For Naive 50%

genuine images and 50% complete morphs are used. For

MC 50% genuine images and a mix of complete and partial

morphs are used, with the aim of forcing the network to

take all available information for its decision-making into ac-

count (i.e., prevent it from focus on selected face regions like

the eyes to detect morphing attacks). The details on the

training concept for Naive and MC versions of the detectors

used here can be found in [17].

4.3 Fusion approaches

Here, each MAD approach operates as a “black box”

returning a matching score for an input sample. As a

consequence of the evaluation concept, fusion on signal

level is out of scope for this paper and fusion on feature

level (see section 2.3) is not feasible. Hence, the detec-

tion accuracy gain from one fusion approach at the deci-

sion level (majority voting) and three fusion approaches

at the matching score level (weighted linear combin-

ation, Dempster-Shafer Theory (DST) of evidence, and

forensic likelihood ratios (LR)) is explored. Below, the

fusion operators F are described in detail:

4.3.1 Majority voting (FM)

The naive consensus pattern of simple majority [38] is used

for opinion combination. If the number of votes for every

alternative is equal, the majority rule returns “no decision.”

4.3.2 Weighted linear combination (FWLC)

The sum-rule (or weighted linear combination) extends

the average rule by assigning different weights to the

output of the individual classifiers to be combined. For

the case of the same weights, the fusion strategy is often

referred to as average rule. Here, two different strategies

are used: average rule as well as weighted linear combin-

ation with pre-determined weights (see section 5.1 for

details on these two strategies).

4.3.3 Fusion based on Depster-Shafer Theory (FDST)

The Depster-Shafer Theory (DST) is based on two con-

cepts: belief functions representing degrees of belief for one

question from subjective probabilities for a related question

and Dempster’s rule for combining such degrees of belief

when they are based on independent items of evidence.

In our case, the frame of discernment is defined as Θ

= {mor, gen}, with m(mor)/m(gen) representing the basic

beliefs that the face is morphed/genuine respectively,

and m(Θ) is a mass of uncertainty. A degree of belief

(mass) is assigned to each subset. As proposed in [7], we

construct mass functions as cumulative distribution

functions of matching scores obtained from an experi-

ment. Let pmor(s) and pgen(s) be the approximations of

probability density functions of scores for verification
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attempts with morphed and genuine images respectively.

For a detector outcome s* ranging from 0 to 1, we define

the mass m(mor) as an area under pmor(s) between 0

and s* and m(gen) as an area under pgen(s) between s*

and 1, and the mass of uncertainty as a complement to

the sum of both masses:

m morð Þ ¼

Z

s�

s¼0

pmor sð Þds;m genð Þ ¼

Z

1

s¼s�

pgen sð Þds ð1Þ

m Θð Þ ¼ 1− m morð Þ þm genð Þð Þ ð2Þ

Note that we interpret the detector outcome s* (also

called matching score) as a decision confidence with 1

for 100% confidence that the image is morphed and 0

for 100% confidence that the image is genuine.

Technically, the three masses are calculated for each

morphing detector based on the matching scores of

training samples and stored as a parameter of our fusion

engine. At the time of decision-making, for each out-

come si* of the ith detector, we obtain the values

mi(mor), mi(gen), and mi(Θ) as the nearest points on the

corresponding discrete mass curves.

Dempster’s rule of combination for two beliefs from

independent sources is given by:

m A≠Oð Þ ¼
1

K

X

A¼A1∩A2

m1 A1ð Þ �m2 A2ð Þð Þ ð3Þ

K ¼ 1−
X

A1∩A2¼0

m1 A1ð Þ �m2 A2ð Þð Þ ð4Þ

where m(A) represents the combined mass on A (a

given member of the power set), m1 and m2 represent

the masses of first and second items of evidence re-

spectively, and K represents the normalization con-

stant. The second term in K describes the conflict

between two items of evidence. If it is equal to 1

then K is equal to 0 implying that these two items

contradict each other and cannot be combined by ap-

plying Dempster’s rule.

The efficient application of the Dempster’s rule for

computation of combined belief can be found in [6]:

m morð Þ ¼ 1−
1

K

Y

n

i¼1

1−mi morð Þð Þ ð5Þ

m genð Þ ¼ 1−
1

K

Y

n

i¼1

1−mi genð Þð Þ ð6Þ

m Θð Þ ¼
1

K

Y

n

i¼1

mi Θð Þ ð7Þ

K ¼
Y

n

i¼1

1−mi morð Þð Þ

þ
Y

n

i¼1

1−mi genð Þð Þ−
Y

n

i¼1

mi Θð Þ ð8Þ

4.3.4 Fusion using likelihood ratios (FLR)

Likelihood ratios (LR) are used in forensics in order to

express uncertainty [47]. The basic concept relies on the

quotient of the probabilities of the correctness of two

hypotheses with respect to an observation within binary

decisions which are common in forensics. Semantically,

the LR describe how much more probable one of the hy-

potheses is in comparison to a complementary one when

specific observations can be made.

Within the scope of a forensic comparison of face im-

ages, LR are discussed, e.g., in [42] and is already used in

some countries in the forensic practice as well, as shown,

e.g., in [41] for a case involving footwear marks in the

UK. Sometimes the observed LR are mapped to particu-

lar levels regarding the confidence in the hypothesis in

order to make the result more accessible to forensic lay-

men as the requirements for particular LR differ be-

tween forensic domains, see, e.g., [48]. Generally, a

likelihood ratio close to 1 indicates a weak decision as

the probabilities for the two hypotheses are almost

identical.

With the availability of multiple detection algorithms,

a fusion using LR is also possible as suggested, e.g., in

[49] for multiple biometric matchers. For each detection

algorithm, a quality value needs to be determined as a

weight in the fusion algorithm.

In our experiments, the LR for a single detector D pro-

viding confidence levels c in a two-class problem is de-

termined by the quotient of the detectors confidence for

a sample s toward a genuine sample—cD(gen)—divided

by the confidence toward a morphed sample—cD(mor):

LR s;Dð Þ ¼
cD genð Þ

cD morð Þ
ð9Þ

Note that the inverse of the LRs is used in the experi-

ments performed here, in order to achieve a defined

value of zero for a confident decision. Usually the tested

hypothesis—in this case whether an image is a morph—

would be used as the numerator. As a result, the FLR
shows the same behavior. In addition to that, it is pos-

sible to normalize FLR using the number of detectors (in

this paper 5). Otherwise, this number would have to be

taken into account during the interpretation of fusion

operator.

The LR-based fusion score FLR of a sample image in

question for the k = 5 detectors D = {Dkeypoints,
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DArXivNaive, DarXivMC, DBIOSIGNaive, DBIOSIGMC} is deter-

mined as the quotient of weighted sum of LRs toward a

genuine sample (LRg) divided by the LRs toward a

morph (LRm) with LRgðs;DÞ ¼
1

LRmðs;DÞ
¼ cDðmorÞ

cDðgenÞ
:

FLR sð Þ ¼

Pk
i¼1LRg s;Dið Þ�wi

Pk
j¼1LRm s;D j

� �

�w j

ð10Þ

The factor wi/wj represents here the weighting factor

for the LR fusion as described in section 5.1. A quotient

FLR(s) closer to zero indicates a larger confidence of the

decision toward a morph.

4.3.5 Normalization

In order to perform a reasonable fusion, the matching

scores of the individual classifiers should be brought into

the same range. The detectors DArXivNaive, DarXivMC,

DBIOSIGNaive, and DBIOSIGMC return negative values for

genuine faces and positive values for the morphed faces.

The default decision threshold is 0. In contrast, the de-

tector Dkeypoints returns values between 0 and 1. Lower

values are for genuine faces and higher values for

morphed faces. The default decision threshold is 0.5.

Within the training phase performed in this paper using

the DEFACTO dataset (see section 4.5), we perform

min-max normalization of the matching scores and

adapt the default decision thresholds. As a result, the

normalized matching scores of all detectors range then

from 0 to 1 and the new default decision threshold can

be found in Table 3 (column τfixed). For each classifier,

the MIN and MAX values of matching scores are stored

to perform the min-max score normalization at the

evaluation phase. The aforementioned decision thresh-

olds are also stored as parameters of the fusion and are

used in the evaluations in SC1 and SC2.

4.4 Performance metrics

Morphing detection is a standard two class problem

with two possible outcomes: “passport image is

morphed” or “passport image is not morphed” and two

types of errors: morphed image is recognized as non-

morphed and vice versa. Driven by the idea that the

morphing attack can be seen as a special case of the

presentation attack, the detection performance metrics

from the presentation attack detection testing standard

[50] are adopted. Attack Presentation Classification

Error Rate (APCER) describes the proportion of

morphed face images incorrectly classified as genuine

(bona fide) and Bona Fide Classification Error Rate

(BPCER) describes the proportion of genuine (bona fide)

face images incorrectly classified as morphed. MAD ap-

proaches are typically designed to report two values: a

binary decision on whether the image is morphed or

not and a confidence score for this decision from the

interval [0; 1]. Higher values indicate higher confi-

dence that the image is morphed. In fact, the binary

decision is derived from the confidence score by com-

paring it to an algorithm-dependent predefined deci-

sion threshold. Hence, APCER and BPCER are the

reciprocal functions of decision threshold. Formally,

the BPCER is computed as the proportion of bona

fide images over the threshold and the APCER as the

proportion of morphed images below the threshold.

At the stage of development, when an algorithm can

be evaluated with different decision thresholds, the

more informative way to compare algorithms is draw-

ing the detection error trade-off (DET) curves (re-

spectively the area under curve (AUC)) on the same

plot. Traditionally, BPCER is seen as a convenience

measure while APCER as a security measure. The

DET curve represents BPCER as a function of APCE

R. Here, also the half total error rate (HTER) is used

as an average of BPCER and APCER with the fixed

decision threshold to compare performances in an

easier way.

4.5 Evaluation datasets

There are four databases used in the experiments in this

paper: The DEFACTO database [51] containing morphs

and genuine face images is used for the training of the

fusion methods (see Fig. 2). This database is chosen as a

neutral dataset for training because it ensured by the au-

thors that it was not used in the creation (i.e., training)

of any of the five used “black box” individual detectors

and its used morphing method being unknown. By this

choice, a realistic evaluation setup can be ensured, with

training data (DEFACTO material) having an unknown

similarity to test data (for SC1 and SC2; see Fig. 1),

reflecting the constraints that will be encountered in

field application. The following datasets (and subsets)

are used:

� The DEFACTO dataset contains 200 genuine face

images and 39980 morphs. Since using the whole

dataset would represent an extremely strong bias

toward morphs, only a subset of 2309 randomly

selected morphed images is used.

� Three other databases are used to simulate the

evaluations conducted within the comparison

between single classifiers and fusion methods

performances:

� For two of them (the ECVP (aka Utrecht)

[20] and London Set [52] databases) morphed

images are generated using the approaches from

[12, 30]. The subsets of morphed images are
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denoted as complete, splicing, and combined

according to the generation method used.

� Additionally, as a source for further genuine face

images, mugshots from the Alabama News

Network [53] are taken.

Using the original sized images (and morphs based on

those), the experiments simulate the passport issuing

scenario (SC1). In order to simulate the verification sce-

nario (SC2), the images are down-scaled (to 413 × 531

pixels) and compressed using the JPEG2000 format in a

way that the image size does not exceed 15 kilobyte (kB)

as described in section 4.1. Figure 3 shows the exact

evaluation concept and Table 2 summarizes the infor-

mation about the image (sub-)sets used in our

experiments.

5 Evaluation results and discussion

This chapter contains a large number of results from dif-

ferent empirical evaluations as well as their interpret-

ation. It is structured as follows:

� Section 5.1 summarizes the DEFACTO experiments,

which serve as a baseline as well as an estimator for

fusion weights (or mass functions).

� Section 5.2 evaluates the individual detectors and

fusion methods (using the full ensemble of

detectors) for the two simulated application

scenarios SC1 and SC2.

� Section 5.3 discusses the impact of the performed

fusion to the field of MAD.

� Section 5.4 determines the impact of using smaller

ensembles (i.e., subsets of the available detectors) for

fusion.

� Section 5.5 determines the impact of less restrictive

assumptions in the evaluation setup composition on

the error rates achieved in fusion.

� Section 5.6 provides a final summary and

generalization on the obtained results.

5.1 DEFACTO training and baseline experiments

The experiments with the DEFACTO dataset have two

objectives:

1. Fair comparison of the MAD approaches to each

other regarding their error rates with a disjunctive

dataset. In fact, face images in the DEFACTO

dataset do not overlap with those used for the

training of MAD approaches. Moreover, the

morphing procedure with the DEFACTO

significantly differs from those with the individual

MAD approaches.

2. Training of the fusion parameters including fusion

weights and decision thresholds of the individual

MAD approaches as well as mass curves for the

DST-based fusion. An importance (or in other

words a credibility) of one or another detector in

the fusion is given by the fusion weight. Here, we

consider two thresholding strategies “fixed” and

“adaptive” to define at the same time the decision

thresholds and weights (the latter only for FWLC

and FLR):

For the “fixed” strategy, we rely on the default decision

thresholds suggested by the developers of the MAD ap-

proaches and assign equal weights for fusion approaches

that accept weights. This trivial strategy (which con-

siders all available detectors as being equally important)

is typically the only choice if no additional evaluation of

classifiers can be performed, or if there is a suspicion

that the evaluation dataset does not fit to the in-field

data.

For the “adaptive” strategy, we set a new decision

threshold at the point at which the EER of a MAD ap-

proach is reached. Additionally, we calculate the fusion

weights for FWLC and FLR based on the EER values.

To be more precise, the inverse of the EER values are

used as weights of the individual MAD approaches in

the fusion. Since the possible EER values for a binary

Table 2 Evaluation data sets

Database Number of images SC1 (document issuing) SC2 (identity verification)

DEFACTO morphs 2309 tiff, 500 × 652 15kB, jpeg2000, 413 × 531

DEFACTO genuine 200 jpg, 500 × 652 15kB, jpeg2000, 413 × 531

ECVP complete 1326 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London complete 5050 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

ECVP splicing 2614 png, 900 × 1200 15kB, jpeg2000, 413 × 531

London splicing 9352 png, 1350 × 1350 15kB, jpeg2000, 413 × 531

EVCP combined 2652 png, 900 × 1200 15kB, jpeg2000, 413 × 531

Alabama genuine 1343 jpg, image resolution varies 15kB, jpeg2000, 413 × 531
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classifier range from 0 (for a perfect classifier) to 0.5

(for a random guess) and the weight should spread

over the interval [0, 1], an EER value is multiplied by

2, see Equation (11).

wi ¼ max 0; 1−2 � EERið Þ ð11Þ

with i representing one of the five MAD approaches.

Figure 4 shows the DET curves of the five addressed

MAD approaches on the original-sized DEFACTO im-

ages. Crossings with the dashed black line represent the

EER of the detectors. Regarding the EER, three detectors

DArXivNaive, DBIOSIGMC, and DBIOSIGNaive demonstrate

comparable performances, with DBIOSIGMC achieving the

best performance by a small fraction. The DArXivMC

demonstrates slightly worse performance and the Dkey-

points is by far the worst detector.

Table 3 demonstrates the EER values of the individual

MAD approaches, the decision thresholds τ at which the

EER are reached, and the weights assigned to the ap-

proaches for fusion for both strategies “fixed” and “adap-

tive.” If the fusion is done at the decision level, the

decision thresholds are used to derive decisions from

matching scores.

The mass functions for the DST fusion are demon-

strated in Fig. 5. The mass curves for the “genuine” and

“morphed” matching scores reproduce the classic error

curves so that the crossing point indicates the EER.

What can be observed from the results in Table 3 is

that DBIOSIGMC outperforms the other four detectors by

presenting the smallest EER (resp. the highest AUC). As

a result, it is assigned the highest weight for the fusion

operations. The results for Dkeypoints confirm what was

already indicated in Fig. 4: Despite its good performance

on other image sets, this detector is here performing sig-

nificantly worse than the other four. As a result, it gets

with 0.42 the lowest weight assigned for the fusion.

If the EER locations (the projection of the EER onto

the x-axis) and the uncertainty curves shown in Fig. 5

are analyzed, it can be seen that four of the five curves

(resp. EER locations) are shifted from the center to the

left (indicating a bias toward morphed images) and only

Dkeypoints is shifted to the right with a strong bias toward

genuine images. The amount of the shift correlates with

the ranking of the detectors: DBIOSIGMC shows the smal-

lest shift (a nearly centered uncertainty curve with a very

small skew) while the other four show an increase in the

shift (and skew) with their higher EER.

5.2 Experiments with individual detectors and fusion

methods

The sections 5.2.1 and 5.2.2 summarize the results on

the performance of the individual detectors and fusion

methods evaluated with the two simulated application

Fig. 4 DET curves of the individual detectors with the DEFACTO dataset (original-sized images)

Kraetzer et al. EURASIP Journal on Information Security          (2021) 2021:9 Page 13 of 25



scenarios SC1 and SC2. All these tests use as data the

combined images from the ECVP, London and Alabama

datasets (see section 4.5). For SC1 the original-sized im-

ages are used and for SC2 the 15 kB versions.

5.2.1 Scenario SC1 (“MAD in document issuing”)

Figure 6 shows the DET curves for the tests on

complete, splicing, and combined morphs in SC1. The

individual classifier performance is displayed by solid

lines (with the same color coding as in Fig. 4), and the

performance of the fusion methods is given as dashed

lines (where a continuous space of operation points is

possible) or symbols (in case only one operation point,

either the “fixed” setting or the “adaptive,” is possible).

For all three morphing types, the individual classifier

DarXivNaive achieves the best performance for SC1,

followed by the weighted linear combination (FWLC).

The three single classifiers DBIOSIGNaive, DBIOSIGMC, and

Dkeypoints show the lowest performance. FM with “fixed”

and “adaptive” thresholding strategy achieve the lowest

performance of the fusion methods. The more

sophisticated fusion operators (FDST and FLR) perform

better than FM, in some cases FDST even outperforms

FWLC, but both show a significant bias toward morphed

images. Especially for FDST, this is apparent with an

APCER close to 0 at a BPCER of roughly 0.2.

5.2.2 Scenario SC2 (“MAD in identity verification”)

Figure 7 shows the DET curves for the tests on

complete, splicing, and combined morphs in SC2. The

same color coding and symbols are used as in Figs. 4

and 6.

The general performances of the individual and fusion

based detectors in SC2 are very similar to the SC1 re-

sults shown in Fig. 6. A slight decrease in the detection

performances can be observed for all tested methods.

This decrease can be attributed to the fact that the 15

kB image format that is used in SC2 leaves generally less

room for media forensic investigations on image ma-

nipulation. What is remarkable in the results is that the

results of the more sophisticated fusion operators (FDST
and FLR), while also showing some performance de-

crease, loose some of their bias toward morphed images.

Especially for the splicing morphs, it can be observed in

Fig. 7 that FDST shows an APCER larger than 0, even

slightly outperforming at the corresponding APCER

values all other detectors.

5.3 Discussion of the impact of fusion to face morphing

attack detection

Tables 4, 5, and 6 summarize the results. Table 4 dem-

onstrates a baseline using only the individual classifiers,

Fig. 5 Mass functions for the DST fusion resulting from the evaluation with the DEFACTO dataset (original-sized images)

Table 3 Evaluation of detectors with the DEFACTO dataset and

associated weights

Detector AUC EER τadaptive wadaptive τfixed wfixed

DArXivMC 0.94 0.14 0.35 0.72 0.47 1.00

DArXivNaive 0.97 0.10 0.40 0.80 0.59 1.00

DBIOSIGMC 0.98 0.09 0.48 0.82 0.53 1.00

DBIOSIGNaive 0.97 0.10 0.36 0.81 0.52 1.00

Dkeypoints 0.77 0.29 0.87 0.42 0.50 1.00
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showing that DArXivNaive performs best in testing in both

application scenarios SC1 and SC2 on all three morph

types.

Tables 5 and 6 present the single classifier and fusion

results in the “fixed” (Table 5) and “adaptive” (Table 6)

thresholding strategies. The difference lies in the basic

assumption for the similarity of training data (here

DEFACTO) and the material encountered in field appli-

cation (here, the mix of ECVP, London, and Alabama

material, either in original (for SC1) or the 15 kB version

(SC2)). While the “adaptive” setting is the setting en-

countered in most lab experiments, the “fixed” one

(which assumes a much lower similarity between train-

ing and test data) is a more realistic assumption, leading

to more trustworthy error estimates in this media foren-

sic analysis.

When focussing on the single classifier results ob-

tained for both thresholding strategies (“fixed” decision

threshold and fusion weights vs. “adaptive” decision

threshold and fusion weights), it can be seen that DBIO-

SIGMC, which performed best on the DEFACTO dataset

(see Fig. 4 in section 5.1) demonstrates in the evalua-

tions significantly worse performance in both application

scenarios SC1 and SC2. In Fig. 4, in two of the six tests

(the two evaluations run on splicing morphs), it actually

shows the lowest performance (i.e., highest HTER).

When looking at Tables 5 and 6, these results are con-

firmed. For both thresholding strategies and all three dif-

ferent morphing types, DBIOSIGMC achieves the second

lowest detection performances, followed only by Dkey-

points. The best performance for a single classifier is in all

cases achieved by DarXivNaive with the “fixed” decision

threshold.

When comparing the single classifier and fusion re-

sults in Tables 5 and 6, the general picture established in

section 5.2 is confirmed: In nearly all cases for SC1 as

well as SC2, the fusion approaches fail to outperform the

best individual detector. Neither for selected morphing

Fig. 6 DET curves for the tests on complete, splicing, and combined morphs in SC1
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approaches nor for one of the two thresholding strat-

egies, the fusion generally outperforms the best single

classifier, even though in one case for SC2 and splicing

morphs it is close (best single is DarXivNaive with “fixed”

at an HTER of 8.5% and the best fusion is FLR with

“adaptive” and an HTER of 8.92%). Most interestingly,

the DST-based fusion, which is the most sophisticated

fusion strategy and which is highly regarded in many

other application fields, leads here in all cases to low

performances.

For the thresholding strategies, it can be summarized

that for the four classifiers DBIOSIGNaive, DBIOSIGMC , Dar-

XivNaive, and DarXivMC, there is a tendency that the best

results are obtained with the “fixed” decision threshold

while for Dkeypoints in the majority of the cases better re-

sults are obtained with the adaptive decision threshold.

For the fusion, no clear tendency which thresholding

strategy leads to better results can be observed.

When considering the differences in the detection per-

formance for the three tested morph types (combined,

complete, and splicing), it can be summarized that all de-

tection approached discussed here yield very similar de-

tection performances (both in SC1 as well as SC2).

5.4 Variation of the fusion ensemble

During the review phase for this journal paper, the re-

viewers raised the question why it is assumed that a fu-

sion using all five single classifiers is the optimal choice

at hand. Alternative fusion ensembles using three or four

classifiers might be capable to outperform the whole set

of five, especially when removing the weakest candidate

(Dkeypoints). To address this issue, Table 7 compares the

results of three different sets of fusion ensembles for the

“fixed” decision thresholds. The results shown are for

the complete set of 5 detectors as baseline, the best per-

forming ensemble of 4 (here DBIOSIGNaive, DBIOSIGMC,

Fig. 7 DET curves for the tests on complete, splicing, and combined morphs in SC2
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DarXivNaive, and DarXivMC; the evaluations performed in

this case were a complete leave one out sequence but

only the most relevant result is presented here) and the

ensemble of three with the most disparate characteristics

(DarXivNaive, DBIOSIGMC, Dkeypoints; i.e., selection by limit-

ing redundancy). The results show an apparent decrease

of the HTER for SC1 and SC2 if switching from an en-

semble of 5 (denoted as “5 det” in Table 7) to an ensem-

ble of (the most suitable) 4 detectors (denoted as “4 det”

in Table 7). When compared to the single detector per-

formance reported in Table 5 above, it can be seen that

the best ensemble of 4 also seems to outperform the in-

dividual detectors. Some of the figures presented have to

be considered very carefully since they are hiding a

problem in the scheme: This is absolutely no problem

for cases where the individual weighting makes dead-

locks neigh to impossible (e.g., in case of the FWLC) but

is especially relevant for the majority vote where signifi-

cant numbers of “undecided” events occurred (e.g., cases

where 2 detectors predicted one class and the other 2

the other) that are not reported in the table. These “un-

decided” events amount over the various tested ensem-

bles to up to 10% of all majority vote cases.

In case of the chosen ensemble of 3 detectors (denoted

as “3 det” in Table 7) all HTER values increased signifi-

cantly, showing that this ensemble (which more strongly

relies on the opinion of the rather weak Dkeypoints) is out-

performed by the bigger ensembles.

Similar to Table 7, Table 8 performs the same ensem-

ble tests for the “adaptive” thresholding strategy. Here,

the results also show better results for the best ensemble

of 4 detectors when compared to the complete ensemble

of 5. In contrast to the “fixed” thresholding strategy dis-

cussed above, the performance increase obtained by

leaving Dkeypoints out seems smaller but also the number

of “undecided” events is way smaller (less than 3%) so

that here the gain has to be considered higher. This per-

formance gain is also evident in the comparison to the

single detector results discussed in Table 6.

Like in the case of the “fixed” thresholding strategy,

the tested cases of 3 detector ensembles showed signifi-

cantly worse results, increasing the HTER to 18% or

even higher.

Summarizing the results on these detector ensemble

selection experiments, it has to be said that the best per-

forming set of 4 detectors outperformed for both thresh-

olding strategies (“fixed” and “adaptive”) and SC1 as well

as SC2 the complete ensemble of 5. For fusion methods

that are prone to deadlock or “undecided” situations

(esp. the majority vote), the even number of detectors in

this cased caused a small issue, generating in the worst

case up to 10% deadlock results that would have to be

handled in application. All results for the chosen ensem-

ble of the 3 most dissimilar detectors proved near fatal

for the system performance since the HTER was signifi-

cantly increased in all these cases.

5.5 Discussion on alternative evaluation setups

Another issue, raised during the review phase for this

journal, is the choice of a realistic but rather challenging

experimental scenario where the dataset used for train-

ing is disjoint from the ones used for testing. The ques-

tion was how an overlap between training and testing

set (i.e., more favorable conditions for the individual de-

tectors) would influence the outcome of the experi-

ments. To address this question, two different sets of

less realistic experimental setups are discussed below:

first, a tenfold stratified cross-validation with disjoint

sets of genuine samples and morphs, and second an even

less realistic (i.e., more lab-condition) test with a static

percentage split on one a set containing genuine and

morphs that are derived directly from these genuine

images.

For the first of these alternative setups, additional tests

are performed here to show how a deviation from rigor-

ous evaluation routines reflects in the error rates ob-

tained. Table 9 summarizes the results for the “fixed” as

well as the “adaptive” thresholding strategy. If comparing

the results in Table 9 to the results in Tables 4 and 5,

then the single detector performances in the “fixed”

thresholding remain nearly unchanged while the HTER

values in case of the fusions decrease (e.g., from 11.85%

to 2.6% in case of FLR in SC1 for combined morphs of

from 13.70% to 5.9% in case of FLR in SC2 for combined

Table 4 Theoretical performance of the individual detectors

with the combined LondonDB/UtrechtDB/Alabama datasets

(best result per morph type marked in bold)

SC1 SC2

Detector Morph type EER τadaptive EER τadaptive

DArXivMC Combined 3.95% 0.528241 8.27% 0.417467

DArXivNaive 1.94% 0.594687 4.96% 0.499938

DBIOSIGMC 9.75% 0.617098 16.31% 0.561516

DBIOSIGNaive 7.74% 0.558175 13.56% 0.478364

Dkeypoints 12.65% 0.971509 19.08% 0.990942

DArXivMC Complete 4.00% 0.526729 7.75% 0.424468

DArXivNaive 1.82% 0.600357 4.06% 0.507648

DBIOSIGMC 9.75% 0.616997 14.98% 0.565297

DBIOSIGNaive 7.45% 0.563476 12.07% 0.496052

keypoints 12.43% 0.972011 19.53% 0.990758

DArXivMC Splicing 4.99% 0.501098 9.37% 0.406828

DArXivNaive 2.76% 0.566983 5.37% 0.492199

DBIOSIGMC 12.67% 0.594189 20.64% 0.541497

DBIOSIGNaive 9.08% 0.54235 14.84% 0.470685

Dkeypoints 11.09% 0.976876 19.08% 0.990933
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morphs). For the “adaptive” thresholding, the single de-

tector HTER values reported significantly improve (e.g.,

from 9.62 to 2.2% for DArXivNaive in SC1 for combined

morphs). In some cases, they are getting really close to

the EER values for the corresponding experiment, which

represents the best value that could be achieved in this

test. The fusion results for this thresholding strategy see

an even more significant drop in the HTER values pre-

sented (e.g., 13.41% to 2.8% for FM in SC1 for combined

morphs).

For the second, an even less realistic (i.e., more lab-

condition) test no additional test has to be performed

here. Instead results from an earlier publication on fu-

sion in face morph attack detection are re-used here. As

authors of [7], we used a static percentage split (50%:

50%) on one a set containing genuine (originating from

exactly one public database) and morphs that are derived

directly from these genuine images to perform initial

tests with DST in this field. The results presented were

astonishing HTER values of less that 1%. While the re-

sults did indicate the potential benefit of using fusion in

MAD, the observed lack of realism in the setup made us

question the actual extend of the performance increase

we could realistically hope for. This realization moti-

vated the research work on the empirical limitations of

using information fusion and the constraints for its ap-

plication that lead to this journal paper.

Summarizing the results obtained on alternative (i.e.,

less realistic) evaluation setups, it has to be said that the

error rates obtained achieved when drawing training and

test data from the same parent population are obviously

lower than in a setup with disjoint populations used. In

the experiments discussed above, the fusion approaches

benefit more from the unrealistic lab-condition like

Table 5 Realistic performance of the individual detectors and fusion approaches with the fixed decision thresholds and equal fusion

weights with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 7.45% 1.00% 4.22% 3.87% 18.56% 11.22%

DArXivNaive 2.01% 1.82% 1.91% 0.97% 13.32% 7.14%

DBIOSIGMC 25.76% 1.35% 13.56% 23.10% 10.12% 16.61%

DBIOSIGNaive 11.47% 5.25% 8.36% 9.54% 18.05% 13.80%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST 25.47% 0.02% 12.74% 35.02% 0.01% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

DArXivMC Complete 7.45% 1.00% 4.22% 3.87% 15.73% 9.80%

DArXivNaive 2.01% 1.60% 1.81% 0.97% 10.57% 5.77%

DBIOSIGMC 25.76% 1.38% 13.57% 23.10% 8.38% 15.74%

DBIOSIGNaive 11.47% 4.47% 7.97% 9.54% 14.31% 11.92%

Dkeypoints 87.86% 0.00% 43.93% 96.94% 0.00% 48.47%

FM 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

DArXivMC Splicing 7.45% 2.57% 5.01% 3.87% 24.81% 14.34%

DArXivNaive 2.01% 3.54% 2.77% 0.97% 16.04% 8.50%

DBIOSIGMC 25.76% 3.54% 14.65% 23.10% 17.39% 20.25%

DBIOSIGNaive 11.47% 7.39% 9.43% 9.54% 21.22% 15.38%

Dkeypoints 87.86% 0.02% 43.94% 96.94% 0.00% 48.47%

FM 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST 25.47% 0.03% 12.75% 35.02% 0.03% 17.52%

FLR 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%
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evaluation setups than the single detectors and the

“adaptive” thresholding strategy benefits more than the

“fixed” one.

5.6 Summary on the fusion experiments results

There are three main reasons why fusion fails to out-

perform the best individual classifier in the results

discussed in section 5.3:

1. Lack of diversity of the individual detectors. The

detectors DArXivNaive, DarXivMC, DBIOSIGMC, and

DBIOSIGNaive are developed by the same research

group and rely on training of DCNN with similar

data sets but strong variances in data

augmentation. Hence, it is very likely that these

detectors make in field application mistakes on

the same samples. Only the Dkeypoints detector

relies on entirely different morphing detection

clues and is developed by another research group

using a different data set for training. In theory,

an assumed clustering of four apparently very

similar detectors might prove a strong prejudice

in fusion that should be avoided at any cost. In

practice, our experiment on different ensembles

of classifiers showed a better performance if only

those four detectors are used instead of all five.

2. Lack of performance in individual detectors. It can

be seen from the evaluation with the DEFACTO

dataset, that Dkeypoints lacks generalization power.

Table 6 Realistic performance of the individual detectors and fusion approaches with the adaptive decision thresholds and fusion

weights based on the estimated EER with the combined LondonDB/UtrechtDB/Alabama datasets (best result per morph type

marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

DArXivMC Combined 30.08% 0.01% 15.04% 20.79% 0.89% 10.84%

DArXivNaive 19.21% 0.03% 9.62% 20.34% 0.50% 10.42%

DBIOSIGMC 39.76% 0.35% 20.05% 37.03% 4.51% 20.77%

DBIOSIGNaive 34.18% 0.65% 17.41% 33.76% 3.29% 18.52%

Dkeypoints 47.95% 1.15% 24.55% 73.17% 0.26% 36.72%

FM 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST 25.17% 0.02% 12.59% 33.53% 0.01% 16.77%

FLR 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

DArXivMC Complete 30.08% 0.00% 15.04% 20.79% 0.63% 10.71%

DArXivNaive 19.21% 0.02% 9.61% 20.34% 0.35% 10.34%

DBIOSIGMC 39.76% 0.38% 20.07% 37.03% 3.45% 20.24%

DBIOSIGNaive 34.18% 0.44% 17.31% 33.76% 2.46% 18.11%

Dkeypoints 47.95% 1.13% 24.54% 73.17% 0.09% 36.63%

FM 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

DArXivMC Splicing 30.08% 0.03% 15.05% 20.79% 1.38% 11.08%

DArXivNaive 19.21% 0.05% 9.63% 20.34% 0.64% 10.49%

DBIOSIGMC 39.76% 1.11% 20.44% 37.03% 8.60% 22.82%

DBIOSIGNaive 34.18% 1.07% 17.62% 33.76% 4.35% 19.05%

Dkeypoints 47.95% 0.78% 24.36% 73.17% 0.25% 36.71%

FM 26.81% 0.01% 13.41% 29.14% 0.65% 14.89%

FWLC 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%
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The default decision threshold of 0.5 is far away

from the sub-optimal (i.e., containing an offset due

to training data vs. test data mismatch) threshold of

0.87252 obtained from its evaluation. Even higher

are the sub-optimal decision thresholds with the

mixed test data set (London, ECVP , and Alabama

images). The values of approximately 0.97 for the

SC1 and 0.99 for the SC2 indicate a large discrep-

ancy between the data used for the training of the

classifier and for evaluation/testing. As a conse-

quence, the APCER and BPCER values are imbal-

anced, both are on the margins of the [0, 1] interval

Table 7 Comparing fusion ensembles consisting of all five, one set of four (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and one

set of three (DarXivNaive, DBIOSIGMC, Dkeypoints) detectors with the fixed decision thresholds and equal fusion weights with the combined

LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Fusion Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 11.39% 0.56% 5.97% 7.15% 9.30% 8.23%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.84% 10.37%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.01% 17.51%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.35% 13.70%

FM (4 det) 2.98% 0.56% 1.77% 1.56% 9.30% 5.43%

FWLC (4 det) 5.29% 1.07% 3.18% 2.31% 12.17% 7.24%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.49% 10.12%

FLR (4 det) 7.67% 0.61% 4.14% 4.47% 8.53% 6.50%

FM (3 det) 26.14% 0.19% 13.16% 23.25% 3.85% 13.55%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.01% 12.96% 44.86% 0.01% 22.43%

FLR (3 det) 60.46% 0.01% 30.23% 77.35% 0.01% 38.68%

FM (5 det) Complete 11.39% 0.31% 5.85% 7.15% 3.76% 5.46%

FWLC (5 det) 18.09% 0.02% 9.05% 19.90% 0.60% 10.25%

FDST (5 det) 25.47% 0.02% 12.74% 35.02% 0.02% 17.52%

FLR (5 det) 23.68% 0.02% 11.85% 27.05% 0.27% 13.66%

FM (4 det) 2.98% 0.30% 1.64% 1.56% 3.76% 2.66%

FWLC (4 det) 5.29% 0.97% 3.13% 2.31% 9.57% 5.94%

FDST (4 det) 22.34% 0.02% 11.18% 19.75% 0.64% 10.19%

FLR (4 det) 7.67% 0.58% 4.12% 4.47% 6.51% 5.49%

FM (3 det) 26.14% 0.09% 13.11% 23.25% 1.36% 12.30%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.02% 12.96% 44.86% 0.00% 22.43%

FLR (3 det) 60.46% 0.00% 30.23% 77.35% 0.00% 38.67%

FM (5 det) Splicing 11.39% 1.45% 6.42% 7.15% 12.35% 9.75%

FWLC (5 det) 18.09% 0.07% 9.08% 19.90% 1.42% 10.66%

FDST (5 det) 25.47% 0.03% 12.74% 35.02% 0.03% 17.52%

FLR (5 det) 23.68% 0.03% 11.85% 27.05% 0.55% 13.80%

FM (4 det) 2.98% 1.45% 2.21% 1.56% 12.35% 6.96%

FWLC (4 det) 5.29% 2.33% 3.81% 2.31% 16.71% 9.51%

FDST (4 det) 22.34% 0.05% 11.19% 19.75% 0.84% 10.29%

FLR (4 det) 7.67% 1.42% 4.55% 4.47% 11.66% 8.06%

FM (3 det) 26.14% 0.48% 13.31% 23.25% 6.01% 14.63%

FWLC (3 det) 88.38% 0.00% 44.19% 98.06% 0.00% 49.03%

FDST (3 det) 25.91% 0.03% 12.97% 44.86% 0.03% 22.44%

FLR (3 det) 60.46% 0.01% 30.24% 77.35% 0.00% 38.67%
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and the HTER values are close to 43% in SC1 and

48% in SC2 for the “fixed” thresholding strategy. If

the decision threshold for Dkeypoints is readjusted,

based on the training set (DEFACTO), the HTER

values in testing become significantly lower, ap-

proximately 24% in SC1 and 36% in SC2. However,

the APCER and BPCER values are still imbalanced.

The impact of one bad detector on the overall fu-

sion is shown very well in the experiment on differ-

ent ensembles of classifiers showed where a better

performance was achieved when only an ensemble

of four (all except Dkeypoints) is used.

Table 8 Comparing fusion ensembles consisting of all 5, 4 (DBIOSIGNaive, DBIOSIGMC, DarXivNaive, and DarXivMC), and 3 (DarXivNaive, DBIOSIGMC,

Dkeypoints) detectors with the adaptive decision thresholds and fusion weights based on the estimated EER with the combined

LondonDB/UtrechtDB/Alabama datasets (best result per morph type and ensemble size marked in bold)

SC1 SC2

Detector Morph type BPCER APCER HTER BPCER APCER HTER

FM (5 det) Combined 26.81% 0.01% 13.41% 29.14% 0.42% 14.78%

FWLC (5 det) 0.60% 10.87% 5.73% 0.30% 46.48% 23.39%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.00% 16.77%

FLR (5 det) 14.00% 0.09% 7.04% 14.31% 1.90% 8.10%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.42% 8.26%

FWLC (4 det) 6.40% 0.86% 3.63% 3.06% 10.31% 6.68%

FDST (4 det) 23.90% 0.01% 11.95% 21.68% 0.68% 11.18%

FLR (4 det) 7.89% 0.62% 4.26% 4.77% 8.36% 6.56%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.19% 18.28%

FWLC (3 det) 0.00% 64.59% 32.29% 0.00% 93.25% 46.62%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.03% 21.10%

FM (5 det) Complete 26.81% 0.01% 13.41% 29.14% 0.23% 14.68%

FWLC (5 det) 0.60% 10.30% 5.45% 0.30% 41.15% 20.72%

FDST (5 det) 25.17% 0.02% 12.59% 33.53% 0.02% 16.77%

FLR (5 det) 14.00% 0.05% 7.02% 14.31% 1.30% 7.80%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.23% 8.16%

FWLC (4 det) 6.40% 0.78% 3.59% 3.06% 8.03% 5.54%

FDST (4 det) 23.90% 0.02% 11.96% 21.68% 0.77% 11.23%

FLR (4 det) 7.89% 0.61% 4.25% 4.77% 6.29% 5.53%

FM (3 det) 29.41% 0.01% 14.71% 36.36% 0.04% 18.20%

FWLC (3 det) 0.00% 64.16% 32.08% 0.00% 91.78% 45.89%

FDST (3 det) 25.69% 0.02% 12.85% 43.59% 0.00% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.02% 21.10%

FM (5 det) Splicing 26.81% 0.00% 13.40% 29.14% 0.65% 14.89%

FWLC (5 det) 0.60% 17.18% 8.89% 0.30% 56.84% 28.57%

FDST (5 det) 25.17% 0.01% 12.59% 33.53% 0.03% 16.78%

FLR (5 det) 14.00% 0.26% 7.13% 14.31% 3.53% 8.92%

FM (4 det) 17.20% 0.00% 8.60% 16.10% 0.65% 8.37%

FWLC (4 det) 6.40% 2.01% 4.21% 3.06% 14.28% 8.67%

FDST (4 det) 23.90% 0.05% 11.98% 21.68% 1.17% 11.43%

FLR (4 det) 7.89% 1.45% 4.67% 4.77% 11.32% 8.05%

FM (3 det) 29.41% 0.00% 14.71% 36.36% 0.24% 18.30%

FWLC (3 det) 0.00% 75.02% 37.51% 0.00% 97.08% 48.54%

FDST (3 det) 25.69% 0.01% 12.85% 43.59% 0.02% 21.80%

FLR (3 det) 33.88% 0.00% 16.94% 42.18% 0.07% 21.12%
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3. Lack of similarity between the training and test

data. Different proprietary data sets are used for

training individual classifiers, which is a very

common case, but the datasets for adjusting fusion

parameters (evaluation data set) and for actual

testing are also very different from each other and

the training data set. One can say that it makes

absolutely no sense to use different data sources for

adjusting fusion parameters and for testing, but this

is the real-life situation. In practice, it is very diffi-

cult to precisely foresee and provide significant in-

field data at the stage of system development or

parameter adjustment. Moreover, there is no guar-

antee that the in-field data that will be obtained in

the future is even similar to the presented training

data.

The case study performed in this paper clearly demon-

strates that if the training, evaluation, and test datasets

lack similarity, the adaptation of the classifier parameters

such as a decision threshold may lead to performance

degradation. This can be well explained on the example

of the classifier DArXivNaive which in the tests performed

shows the best generalization power. The classifier is

well trained with the default decision threshold of

0.59072. An attempt to adapt the decision threshold

based on the DEFACTO data set actually fails with shift-

ing it to 0.39958, resulting in an EER of 10%. As a conse-

quence, the APCER and BPCER values are imbalanced

in the test leading to the HTER values of approximately

9.5% in SC1 and 10.5% in SC2 (see Table 6). However, if

there is no adaptation of the decision threshold, the sub-

optimal (i.e., offset) thresholds of 0.594687, 0.600357,

and 0.566983 are close to the default one and the APCE

R and BPCER values are well balanced in SC1 leading to

HTER values of 1.91%, 1.81%, and 2.77% for combined,

complete, and splicing morphs respectively (see Table

5). In contrary, the sub-optimal thresholds in the SC2

would be 0.499938, 0.507648, and 0.492199 for com-

bined, complete, and splicing morphs respectively which

are far away from the default value of 0.59072. Hence, in

the test within SC2 the APCER and BPCER values are

imbalanced leading to the HTER values of 7.14%, 5.77%,

and 8.50% for combined, complete, and splicing morphs

respectively. The same situation can be observed with

the detectors DarXivMC, DBIOSIGMC, and DBIOSIGNaive.

Table 9 Fusion under laboratory conditions: tenfold stratified cross-validation with 90% training/10% test split; genuine samples

from the Alabama dataset [53]; morphs from LondonDB and UtrechtDB (best result per morph type and application scenario

marked in bold)

Combined Complete Splicing

SC1 SC2 SC1 SC2 SC1 SC2

EER HTER EER HTER EER HTER EER HTER EER HTER EER HTER

Fixed

DArXivMC 3.8% 4.3% 8.2% 11.2% 3.9% 4.2% 7.2% 9.8% 4.8% 5.0% 9.2% 14.3%

DArXivNaive 1.5% 1.9% 3.9% 7.1% 1.3% 1.8% 3.4% 5.8% 1.8% 2.7% 4.4% 8.5%

DBIOSIGMC 9.3% 13.6% 15.7% 16.6% 9.3% 13.6% 14.7% 15.7% 12.8% 14.7% 20.2% 20.2%

DBIOSIGNaive 7.1% 8.4% 13.4% 13.7% 7.0% 7.9% 11.8% 11.9% 8.4% 9.4% 14.2% 15.4%

Dkeypoints 12.3% 43.9% 18.6% 48.8% 12.2% 43.9% 19.3% 48.8% 8.9% 43.9% 18.3% 48.8%

FM 6.0% 8.2% 6.2% 5.9% 6.4% 9.7%

FWLC 9.6% 10.9% 9.2% 10.6% 9.2% 10.6%

FDST 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

FLR 2.6% 5.9% 3.0% 6.7% 2.9% 7.3%

Adaptive

DArXivMC 3.8% 3.9% 8.2% 8.3% 3.9% 4.0% 7.2% 7.9% 4.8% 4.9% 9.2% 9.4%

DArXivNaive 1.5% 2.2% 3.9% 5.0% 1.3% 2.1% 3.4% 4.4% 1.8% 3.0% 4.4% 5.6%

DBIOSIGMC 9.3% 9.8% 15.7% 16.4% 9.3% 9.8% 14.7% 15.0% 12.8% 12.7% 20.2% 20.7%

DBIOSIGNaive 7.1% 7.9% 13.4% 13.6% 7.0% 7.6% 11.8% 12.1% 8.4% 9.1% 14.2% 15.0%

Dkeypoints 12.3% 12.7% 18.6% 19.0% 12.2% 12.5% 19.3% 19.3% 8.9% 11.4% 18.3% 19.2%

FM 2.8% 6.0% 2.2% 4.5% 3.3% 6.8%

FWLC 15.2% 39.2% 14.3% 35.5% 17.7% 45.8%

FDST 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%

FLR 2.8% 5.8% 3.3% 6.6% 3.1% 7.3%
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Considering the results of different fusion strategies,

it can be said that in almost all cases, the APCER

and BPCER values are imbalanced in the case when

training, evaluation, and test datasets lack similarity.

This results in the conclusion that pre-determining

the proper decision thresholds (as well as the fusion

weights) in real-life conditions (where the training,

evaluation, and in-field data might be dramatically

different) is hardly possible.

When considering alternative (less strict) evaluation

setups, where training and test data show and artificial

similarity due to the fact that they have been drawn

from the same parent distribution, we see in section 5.5

significantly lower HTER values not only for fusion re-

sults but in some cases also for the individual detectors.

The results presented more clear indicators that the

similarity between the training and test data is the dom-

inating factor for the error rates achieved. If this similar-

ity is an artificial one (e.g., in an unrealistic setup where

training, parameterization, and test data are drawn from

the same parent population) instead of a natural one

(i.e., the fusion as well as the individual detectors are

suitably well trained) the low error rates obtained are

meaningless.

The practical consequence of these three issues is that

one of the individual detectors (obviously accurate but

far from perfect in its performance) in all evaluations

outperforms four different fusion approaches, ranging

from simplistic to very sophisticated, in different param-

eterizations in the tests performed in 5.3 but becomes

marginalized by fusion approaches as soon as either the

ensemble of detectors used in the fusion is optimized (as

done by removing one disturbing detector in section 5.4)

or the similarity between training and test data is in-

creased (as in section 5.5).

6 Conclusions
The results presented in the empirical evaluations in this

paper demonstrate that fusion can fail even with a set of

relevant individual classifiers. This can be seen in both

application scenarios (“MAD in document issuing” and

“MAD in identity verification”) evaluated in this paper.

Here, the three reasons for this phenomenon discussed

above are (a) low diversity of the detectors, (b) lack of

performance in individual detectors, and (c) lack of simi-

larity between the training and test data.

Summarizing the lessons learned from the approach of

using fusion for MAD detection as done in this paper

and drawing some generalization toward other media fo-

rensics classification or decision problems, the following

has to be said: The requirements for (media) forensic

methods in terms of scientific admissibility (or Daubert

compliance) are obviously important! Methods should

indeed be published upon and peer reviewed, their error

rates should be precisely known and standards for the

application of methods should be known. But the threat

that Champod and Vuille identify as a problem of ascer-

taining the error rates of a test “can prove misleading if

not all its complexities are understood” [15] plays a very

significant role as demonstrated in the evaluations per-

formed here.

Besides the requirements for individual expert systems

to be used in forensic investigations (including its ac-

curateness), if it comes to information fusion, add-

itional constraints have to be observed. These are, at

least:

� The diversity of the detectors, which has to be

ascertained either by knowledge about the precise

means of decision generation and the diversity of

those means or empirically.

� An independent and thorough benchmarking of

detectors to establish also an idea on the

generalization power of performance claims made by

their creators.

� Considerations on the similarity/correlation between

training data available (during training of the

individual classifiers and the training of the fusion

methods) and the data to be expected in field

application are very important. If very precise

assumptions are possible on the application data,

weighting might be applicable in fusion. Else-wise,

only unweighted fusion strategies like majority

voting or the sum-rule should be employed, if

any fusion is used in those cases at all.

The diversity issue becomes very problematic if fea-

tures (as the means to represent a decision problem in a

feature space) are not hand crafted by experts but

learned, e.g., by DCNN. In this paper, the diversity prob-

lem of the detectors used here as “black boxes” has been

established in direct contact with the developers of those

methods, which is hardly an option in most field

applications.

Also, the recent trend to generate synthetic data sets

for the training of pattern recognition methods (either

traditional or neural network based) introduces another

degree of freedom into the characteristics of datasets. In

publications such as [54], this approach is used to avoid

tedious data collection tasks while creating sufficiently

sized data sets for modern day data-greedy classifiers.

The problem here is the influence of the synthesis

process on its output (i.e., the synthesis-specific artifacts)

that will become part of the model trained by each clas-

sifier. It is related to the questions of source characteris-

tics imposing themselves into trained models but carries

a different degree of relevance for forensic application

scenarios.
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The general problem with training- and test data being

mismatched in practice is hardly new. It hardly ever occurs

in scientific papers on applied pattern recognition, because

it can easily be prevented in lab tests. Nevertheless, it is a

very good argument why media forensic methods should

undergo rigorous testing and benchmarking by third par-

ties, like it is done in the field of MAD in the NIST FRVT

MORPH challenge. Only such joint efforts can lead to

methods that might become mature enough to aim at court

admissibility.
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