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Predicting system energy consumption accurately and adjusting dynamic operating

parameters of the HVAC system in advance is the basis of realizing the model

predictive control (MPC). In recent years, the LSTM network had made remarkable

achievements in the field of load forecasting. This paper aimed to evaluate the

potential of using an attentional-based LSTM network (A-LSTM) to predict HVAC

energy consumption in practical applications. To evaluate the application potential of

the A-LSTM model in real cases, the training set and test set used in experiments are the

real energy consumption data collected by Kitakyushu Science Research Park in Japan.

Pearce analysis was first carried out on the source data set and built the target database.

Then five baseline models (A-LSTM, LSTM, RNN, DNN, and SVR) were built. Besides, to

optimize the super parameters of the model, the Tree-structured of Parzen Estimators

(TPE) algorithm was introduced. Finally, the applications are performed on the target

database, and the results are analyzed from multiple perspectives, including model

comparisons on different sizes of the training set, model comparisons on different

system operation modes, graphical examination, etc. The results showed that the

performance of the A-LSTM model was better than other baseline models, it could

provide accurate and reliable hourly forecasting for HVAC energy consumption.

Keywords: energy consumption prediction, ultra-short-term forecast, deep learning, LSTM network, attention

mechanism

INTRODUCTION

According to statistics, building energy consumption accounts for about 40% of the total energy

consumption (Mohsin et al., 2020), and the proportion of building carbon dioxide emissions is as
high as 36% of the total emissions (Jradi et al., 2017; Mohsin et al., 2021). Heating, ventilation, and
air-conditioning (HVAC) systems account for 40% (or even higher) of the commercial building
energy consumption (Kim et al., 2019;Wang et al., 2021). Higher energy consumption usually means
greater energy saving potential, so the research of energy-saving technology combining big data and
artificial intelligence has become one of the hot spots in recent years (Sun et al., 2021). Simulation
modeling is mainly used to predict energy consumption in the design stage of HVAC. The factors
considered include building physical parameters, outdoor meteorological parameters, indoor
environmental parameters, and room usage (Ma et al., 2017). Since there are different degrees of
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assumptions and simplifications in the process of establishing the
model, there may be a large error between the predicted energy
consumption in the design stage and the actual operation time.
The data-driven forecasting model is mainly used to predict

energy consumption in the operation stage of HVAC. The
HVAC energy consumption is affected by many factors, not
only by the building itself, but also by meteorological conditions
(such as outdoor temperature and illumination), internal
personnel activities (such as occupancy and power
consumption), time lag, and the actual use of air conditioning
(such as control deviation and operation scheme adjustment)
(Wang et al., 2016). Under the influence of these factors, the
HVAC load curve has the characteristics of strong fluctuation,
large randomness, and not obvious periodicity compared with the
electric load curve. This presents great challenges in designing

data-driven HVAC models. To solve this problem, Wasim Iqbal
et al. proposed the method of negative Binomial regression (NBR)
model analysis (Iqbal et al., 2021), BinbinYu proposed a method
based on the Dynamic Spatial Panel Model (DSPM) Model (Yu,
2021), and WeiqingLi et al. proposed the data envelopment
analysis (DEA) and entropy method (Li et al., 2021a) to
analyze the interaction between various factors. At present, the
operating parameters of the HVAC system in buildings are
mainly set according to the load prediction in the design
stage. It will lead to the HVAC system working in a state of
low efficiency, resulting in a large amount of energy consumption.

To solve this problem, Model predictive control (MPC) was
proposed and had been widely used (Mayne, 2014; Sultana et al.,
2017; Zhan and Chong, 2021). There have beenmany examples of
load forecasting applied to MPC in other energy fields. For
example, Xueyuan Zhao proposed a short-term household
load forecasting model to guide users’ power consumption
behavior and adjust power grid load (Zhao et al., 2021); Based
on the forecast of wind power generation and electricity price,
J.J. Yang proposed a charge-discharge control strategy for energy
storage equipment based on the data drive, which realized the
maximization of income of energy storage equipment (Yang et al.,

2020a). Fangyuan Chang proposed a charging cost control
solution based on reinforcement learning by using long and
short-term memory networks (LSTM) to predict real-time
electricity prices (Chang et al., 2020). Jin Li proposed an
adaptive genetic algorithm based on neighborhood search to
optimize the total cost related to energy consumption and
running time of electric vehicles. (Li et al., 2020). This shows
that predicting system energy consumption accurately and
adjusting dynamic operating parameters of the HVAC system
in advance is the basis of realizing MPC (Hazyuk et al., 2012).

Load forecasting can be divided into ultra-short-term, short-

term, medium-term, and long-term according to different
purposes, and the ultra-short-term load forecast refers to the
load forecast within 1 h in the future (Guo et al., 2018; Qian et al.,
2020). Due to the time delay of building thermal load, the change
of influencing factors in the short term cannot immediately
change the HVAC energy consumption (Huang and Chow,
2011). Therefore, the prediction of ultra-short-term load can
minimize the impact of the uncertainty of input variables on the
prediction results. The behavior of HVAC can be expressed as

time-series data with a certain periodically. The prediction model
can learn the load mode of the system from the time-series data,
and use these modes to make load predictions. After the
prediction range is determined, the appropriate algorithm

needs to be selected. The algorithms in the field of time series
prediction can be divided into two categories: traditional machine
learning algorithms and deep learning algorithms. Traditional
machine learning algorithms are mostly based on statistical
models, Current popular algorithms include Autoregressive
Moving Average (ARIMA) (Liu et al., 2021), support vector
machine (SVM) (Ma et al., 2018), Regression Tree (Yang
et al., 2020b), Random Forest (Li et al., 2021b), and artificial
neural networks (ANN) (Wei et al., 2019; Bui et al., 2020).

In recent years, with the rapid development of deep learning,
the deep neural network has been more and more applied in the

field of load prediction. Deep learning is a series of new structures
and new methods evolved based on multi-layer neural networks
(Lv et al., 2021a). Deep learning models have obvious advantages
over traditional machine learning models in predicting
multivariable time series problems. In the real world, time
series prediction presents multiple challenges, such as having
multiple input variables, the need to predict multiple time steps,
and the need to perform the same type of prediction for multiple
actual observation stations (Askari et al., 2015). In particular, a
deep learning model can support any number but a fixed number
of inputs and outputs. Multivariable time series have multiple

time-varying variables, each of which depends not only on its past
value but also on other variables. These characteristics are
correlated with each other, and in this case, multiple variables
need to be considered to give the best-predicted energy
consumption.

The most basic Deep learning model is Deep Neural Networks
(DNN), also known as multi-layer perceptron (MLP). DNN has
more hidden layers than ordinary artificial neural networks,
which gives it the ability to learn complex patterns. Deb
proposed a DNN - based model for predicting the daily
cooling load of buildings (Deb et al., 2016). Massana proposed

a DNN model-based method for predicting short-term electrical
loads in non-residential buildings (Massana et al., 2015). Zhihan
Lv et al. proposed a layered DAE support vector machine (SDAE-
SVM) model based on a three-layer neural network and achieved
good prediction results (Lv et al., 2021b). However, the DNN
model cannot retain time-series information. It can only be
predicted according to the current input and output values,
and cannot learn the time dependence of data, which limits
the accuracy of its prediction time series.

Recursive neural network (RNN), as a special deep neural
network, can retain and consider the time variation of time series

in the training process (Hochreiter and Schmidhuber, 1997),
which makes it very suitable for time series data with
periodicity. The time series of HVAC energy consumption is
influenced by environmental variables and human living habits
and has a strong periodicity. However, due to the problems of
gradient explosion and gradient disappearance in the RNN
network, the long-term dependence in time series cannot be
retained, which limits the prediction accuracy of the RNN
network. The long-short term memory (LSTM) network adds
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a series of multi-threshold gates based on the RNN network,
which can deal with a long-term dependency relationship to a
certain extent. LSTM networks were first used in natural language
processing (Verwimp et al., 2020), machine translation (Su et al.,

2020) and video recognition (Lv et al., 2021c), etc. In recent years,
LSTM networks have attracted more and more attention in the
field of load prediction. The authors of (Wang et al., 2019a) used
the LSTM network to build a regional scale building energy
consumption prediction model. Sendra-Arranz proposed a
variety of multi-step prediction models based on the LSTM
network to predict residential HVAC consumption (Sendra-
Arranz and Gutiérrez, 2020). Zhe Wang proposed a new
method for predicting plug loads using the LSTM network.
Through the data collected from a real office building in
Berkeley, California, the prediction accuracy of this method

was verified to be better than that of the traditional machine
learning algorithm (Wang et al., 2019b; Wang et al., 2020).

Since the LSTM network adopts the code-decoding
framework, the limitations of the code-decoding framework
will lead to information loss when processing long time series.
Bahdanau first introduced the attention mechanism into the
code-decoding framework in 2014 (Bahdanau et al., 2014).
The attention mechanism can quantitatively assign a weight to
each specific time step in the time series feature, which improves
the attention distraction defect of traditional LSTM (Li et al.,
2019). As far as the author knows, the LSTM model based on the

ATTENTION mechanism has not been applied in the field of
HVAC energy consumption prediction, but some researchers
have started experiments in other load fields and achieved some
results (Lu et al., 2017; Yu et al., 2017; Liang, et al, 2018). Such as
Heidari used an attention-based LSTM (A-LSTM) model to
predict the load of the solar-assisted hot water system and
proved that the prediction accuracy of the A-LSTM model was
better than that of the traditional LSTM model (Heidari and
Khovalyg, 2020). Jince Li proposed an improved attention-based
LSTM (A-LSTM) model for multivariate time series of
predictions of two process industry cases (Li, et al, 2021c).

Tongguang Yang proposed an attention-based LSTM model to
predict the day-ahead PV power output (Yang et al., 2019). All
these cases show that the A-LSTM model has significant
advantages over the traditional LSTM model in dealing with
time series problems.

This paper aims to develop a new HVAC ultra-short-term
energy consumption prediction model. To achieve this goal, this
paper first conducted potential rule analysis and feature
engineering for 9 years’ operation data of Kitakyushu Science
and Research Park’s (KSRP) Energy Center and constructed a
data set for modeling. Then, we developed the LSTMmodel based

on this data set and developed the A-LSTM model by adding the
attention layer to the LSTM model. Besides, the RNN model,
DNN model, and SVR model were also developed to compare
performance. The hyper-parameters of the above models were
optimized by the TPE algorithm to ensure prediction accuracy.
Next, we used the data from the Energy Center from 2002 to 2009
as the training set and the data from 2010 as the test set to conduct
experiments, and gradually reduced the size of data sets to
evaluate the performance of the above five models in different

training sets. Finally, we also evaluated the small-scale prediction
effects of the above five models under four typical
operating modes.

Based on the literature review the main novelty of the paper

can be summarised as follows:

• This paper studies and verifies that the deep learning
method with the attention mechanism has advantages in
the memory and feature selection of time series information
of air conditioning load prediction. As far as the author
knows, the LSTM model based on the ATTENTION
mechanism has not been applied in the field of HVAC
energy consumption prediction.

• In this paper, we use the Tree-Structured of Parzen
Estimators (TPE) algorithm to optimize the parameters

of each baseline model, to ensure that all the baseline
models involved in horizontal comparison are in the best
prediction performance, and to ensure the authenticity of
the prediction performance comparison

• In this paper, we used the real building data set instead of the
standard data set to verify the load prediction potential of
the A-LSTMmodel, which verified the value of this model in
actual engineering. The results show that the A-LSTM
model has advantages over the traditional machine
learning algorithm in various operating modes, especially
in the heating high load period, and has great potential in

the field of ultra-short-term load prediction of HVAC.

METHODOLOGY

LSTM Neural Network
RNN network is a kind of neural network used to process time
series. Compared with the traditional DNN network and CNN
network, RNN adopts a cyclic structure to replace the hidden
layer of the feedforward neural network. In the process of
information transmission, there will be a part of the

information left in the current neuron during each cycle, and
the retained information will be used as the input of the next
neural unit with the new information. In this way, the RNN
network implements “memory”. However, when the input time
series is too long, it is difficult to retain the information in the
RNN network, this is also known as the phenomenon of gradient
disappearance and gradient explosion (Hochreiter and
Schmidhuber, 1997).

Based on the RNN unit, the input gate it , output gate ot , forgetting
gate ft and cell state Ct are added to the LSTM unit to control the
inheritance and abandonment of information. There are three inputs

of the LSTMunit: the input vector xt at the current time slot t, the unit
state Ct−1 at the time slot t−1, and the state of the hidden layer ht−1 at
the time slot t−1. The final output of the LSTM unit is the cell stateCt

at the current time slot t and the state of the hidden layer at the current
time ht To figure out the ht , we first let the Wi, Wo and Wf be the
weight matrix of the input gate, the output gate, and the forgetting
gate, and let the [ht−1, xt] represent the combination of the hidden
state at themoment t−1 and the input of the unit at the time slot t into
a new vector. Besides, let the bi, bo, and bf be their bias vectors, and let
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the σ represent the Sigmoid activation function. The formulas of the it ,
ot , and ft are shown below:

it � σ(Wi · [ht−1, xt] + bi) (1)

ot � σ(Wo · [ht−1, xt] + bo) (2)

ft � σ(Wf · [ht−1, xt] + bf ) (3)

Finally, let tanh represent the activation function, * represent
the Hadamard product, and let the C̃t be the state of the
intermediate unit input at time slot t, then we can calculate
the ht as follows:

C̃t � tanh(WC · [ht−1, xt] + bc) (4)

Ct � ft pCt−1 + it p C̃t (5)

ht � ot p tanh(Ct) (6)

Attention Mechanism
Although the LSTM model has a memory function, and it can
save some time-series information, but because the standard
LSTM model uses the traditional encoder-decoder structure, it
still has some limitations. When processing the time series xt , the
Encoder will first encode the input sequence into a fixed-length
implicit vector h and give the same weight to the implicit vector.

However, when the length of xt increases, the average weight
distribution will reduce the discrimination of xt , and some
important time-series information will be ignored in the
process of training the model, thus affecting the prediction
accuracy of the model.

The Attention mechanism is a mechanism used to optimize
the Encoder-Decoder structural model, It can be combined with a
variety of models depending on the actual situation. An encoder-
decoder model with an Attention mechanism first learns the
weight of each element from the sequence and then recombines

the elements by weight. By assigning different weight parameters
to each input element, the Attention mechanism can focus more
on the parts that are relevant to the input element, thereby

suppressing other useless information. Its biggest advantage is
that it can consider global connection and local connection in one
step, and can realize the parallel computation, which is
particularly important for big data computation. In this paper,
the Bahdanau algorithm (Bahdanau et al., 2014) is adopted to
realize the Attention mechanism, and the structure of the
A-LSTM model adopted is shown in Figure 1:

The calculation process of the Attention layer is shown in Eqs

7–9. i denotes the moment; j denotes the j element in the
sequence; T denotes the length of the sequence; αtj denotes
the weight value; etj is the matching degree between the

element to be encoded and other elements.

etj � a(hi−1, hj) (7)

αtj �
exp(etj)

Σ
t
k�1 exp(etj) (8)

Ct � ∑T
j�1

αtjhi (9)

Tree-Structured of Parzen Estimators
The performance of machine learning models largely depends on
the selection of hyperparameters. With the increase of model
complexity and the amount of training data, automatic
hyperparameter optimization plays an increasingly important
role in the developments (Nguyen et al., 2020). Compared
with traditional manual parameter adjustment, automatic
parameter optimization has the following advantages: 1) It
reduces the manpower of development work. 2) Improve the
performance of machine learning models. 3) Improve the

FIGURE 1 | The structure of the A-LSTM model.
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reproducibility of the results (Luo et al., 2021). In this paper, the
Tree-Structured of Parzen Estimators (TPE) algorithm was used
to achieve automatic optimization of the model’s
hyperparameters. TPE algorithm is an improved algorithm of
Bayesian optimization algorithm (BO). It solves the limitation of
the traditional BO algorithm to deal with classification

parameters and conditional parameters, so it has higher
efficiency.

The main process of the TPE algorithm is to convert the
hyperparametric space into the nonparametric density
distribution first, and then model the process p(x|y). As shown
in Eq. 10, TPE uses two density distributions of Equation to
define p(x|y), y < y* indicates that the value of the objective
function is less than the threshold, and y ≥ y* denotes that the
value of the objective function is greater than or equal to the
threshold.

p(x|y) � { l(x) if y < yp

g(x) if y ≥ yp
(10)

The calculation of Expected Improvement (EI) is shown in Eqs
11–13.

E(x) � ∫
yp

−∞

(yp − y) p(x|y)p(y)
p(x)

dy (11)

c � p(y < yp) (12)

P(x) � ∫
R

P(x|y)P(y)dy (13)

Substitute Eqs 12, 13 into Eq. 11 to get the final Eq. 14.

EIyp(x) � (c + g(x)

l(x)
(1 − c))−1

(14)

It can be seen from Eq. 13 that point x* with the largest Ei is
the point with the smallest g(x)/l(x). The TPE algorithm evaluates
the improvement points according to g(x)/l(x) in each iteration,
and finally returns a point x* with the largest EI. The
corresponding process is shown in Figure 2.

CASE STUDY

Case Introduction
In this paper, data collected by the CCHP system of Kitakyushu

Science Research Park (KSRP) in Japan were used as the research
object. The KSRP system was a distributed energy system
consisting of a gas engine (160 kW), a fuel cell (200 kW), and
a photovoltaic system (150 kW). The system mainly supplied
energy to the main teaching building of The University of
Kitakyushu, which can meet the teaching and office needs of
more than 3,000 people. The target building was divided into four
floors, the first floor included the student center, meeting rooms
and classrooms. The second to fourth floors were teachers’ offices
and student research rooms.

The system was powered by the gas engine, fuel cells,

photovoltaic system and the utility grid. The cooling load,
heating load and hot water load were mainly provided by the
absorption chiller, while the gas engine and fuel cell also provided
part of the cooling and heating load when generating electricity.
The basic schematic diagram of CCHP system at KSRP was
shown in Figure 3. The system also included a detailed data
acquisition system that recorded not only detailed operational
data for each device, but also environmental data related to the
target building. Using the temperature and flow data collected by
the data acquisition system for hot and cold water supply and
recovery, we could calculate the hot and cold load requirements of

the target building in real-time. The KSRP cogeneration system
was established in 2001. To make the model reflect the most real
operating state of the system, we selected the data from 2002 to
2010 as the research object (78,820 pieces of data), because only
3 days of system failure occurred during this period, which could
reduce the impact of data missing on the modeling.

Potential Analysis of Input Data Set
We first calculated the cooling and heating output of the
equipment from January 1, 2002, to December 31, 2010, based
on the gas consumption of the equipment and the annual average
COP(cooling 1.00, heating 0.85). To verify the authenticity of the
data, we also calculated the cooling and heating output based on
the temperature and flow rate of cold and hot water supply and

FIGURE 2 | Flowchart of the TPE algorithm.
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recovery collected by the system. To explore the distribution rule
of these data in time series, we calculated the mean value of load
in units of the month, week and hour respectively, and the results
are shown in Figure 4. As can be seen from Figure 4A, the
average load varies greatly each month. The annual peak value of
total heating load output occurs in January, and that of total
cooling load output occurs in August. Therefore, December,
January, February, and March were defined as the heating

season; July, August, and September as the cooling season;
April, May, June, October, and November as the low-load
season. The prediction effect of the model will be evaluated
respectively according to this division. It can be seen from
Figure 4B that the cooling and heating loads are higher on
weekdays than on weekends; It also can be seen from Figure 4C

that the average daily load distribution in the heating season and
the cooling season is significantly different. All of the above time
information can reflect the impact of human activities on load, so
they can be used as characteristic factors for database
construction.

We also selected other environmental factors that might affect
the heat and cold output to build the initial database, including
data collected by the Energy Center every hour from January 1,
2002, to December 31, 2010, a total of 78,820 pieces of data. Each
group of data includes time information, outdoor temperature
(°C), relative humidity (%), irradiance (W ∕m2), wind speed (m/s),
wind direction, and load output (The positive load indicates the
heating load, and the negative load indicates the refrigeration

load). In addition, the index “trend” indicates the ordinal number
of the data in the time series. Since features with small correlation
will provide unnecessary information in the training of themodel,
which will affect the robustness of the model, Pearson correlation
analysis was conducted for all features, and the results are shown
in Figure 5. It can be seen that the biggest factor affecting the load
is outdoor temperature, followed by the time serial number. The
correlation between wind direction and load was too small
(−0.0087), and we had deleted this feature in later modeling.
Examples of these data were shown in Table 1. In the following
experiments, we used the data from 2002 to 2009 as the training

FIGURE 3 | The basic schematic diagram of the CCHP system at KSRP.

FIGURE 4 | The diagram of average load distributed by the time: (A) average load distinguished by month, (B) average load distinguished by day of the week, (C)

average load distinguished by hour.
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set, the data from 2010 as the test set, and then randomly
extracted 20% data from the training set as the verification set.

Since the numerical dimensions of different variables are greatly
different, it is necessary to normalize the data so that the data can
be uniformly mapped to the interval [0,1]. In the next section,
based on this data set, we will build a prediction model that can
predict the next hour’s load according to the input data of the first
N hours.

RESULT AND DISCUSSION

Model Parameter Setting
In this study, we used the Hyperopt framework to implement the
TPE algorithm and automatically optimized the hyperparameters
of all baseline models. The programming language is Python and
the deep learning framework is TensorFlow2.0. Hyperopt is a
Python library for hyperparametric optimization based on

FIGURE 5 | Correlation analysis between the available features.

TABLE 1 | Example of the database.

Trend Month Weekday Hour Temperature (°C) Humidity (%) Illuminance (W/m2) Windspeed (m/s) Load (kW)

0 1 5 1 1.7 18 0 3.6 0

1 1 5 2 1.4 19 0 9.1 0

2 1 5 3 1.4 19 0 5.5 147.208

3 1 5 4 1.2 20 0 6.9 165.156

4 1 5 5 1.1 20 0 2.2 111.105

5 1 5 6 1.3 19 0 5.7 79.517

6 1 5 7 1.6 19 0 6.4 127.376
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Bayesian optimization. It supports the optimization of
continuous, discrete, and condition variables. Using the
Hyperopt framework requires setting four parameters:
specifying the objective function to be optimized, defining the
search space with super parameters, Trails Database, and the
search algorithm. This section will take the LSTM model as an
example to outline the method of constructing the model. After

the parameter optimization of the LSTM baseline model was
completed, we added an attention layer after the hidden layer of
the LSTM model to build the A-LSTM model.

The LSTM baseline model needs to optimize four
parameters, which are the time step L of each layer in
LSTM (using the length of the previous data), the size of
the hidden unit m of each layer, the size of the batch
processing b in the training process (we used the two-layer
LSTM structure, and set the same hidden unit for each layer
by default), and the drop rate of the Dropout layer. To
determine the range of L, we first performed

autocorrelation analysis on load data to identify data cycle
patterns, and the results are shown in Figure 6. In Figure 6,
the X-axis represents “hours” and the Y-axis represents the
autocorrelation coefficient. We found that the overall
autocorrelation of the load is in the form of cycle decline,
and the autocorrelation of the load is a cycle of 24 h, which
means the autocorrelation peak occurs every 24 h. Therefore,
we define the conditional parameters of L as (12, 24, 36, 48).
To avoid overfitting, we added a dropout layer after each
LSTM layer, and the conditional parameters of drop rate are
(0.2, 0.3, 0.4, 0.5). Due to the limited computational force,

based on ensuring the prediction accuracy, we set the
conditional parameter sets of m and b based on the
empirical method: m ∈{32,64,128,256} and b
∈{32,64,128,256} (Wang et al., 2019b). We input the above
conditional parameters into the Hyperopt framework and use
the TPE algorithm to optimize the model’s super parameters.
Figure 7 shows the optimized RNN, LSTM, and A-LSTM
model structure, the hyperparameters of these models are
determined by the TPE algorithm.

Since the above three models are all recurrent neural
networks, we also set up the DNN model and the SVR
model for horizontal comparison. These two models also
input all the data 24 h before the time slot t and the time data

at the time slot t to predict and finally output the load data at
the time slot t. The optimal hyperparameters of the DNN
model optimized by the TPE algorithm are shown in Table 2.
The optimal hyperparameters of the SVR model optimized by
the TPE algorithm are shown in Table 3. The topology of the
above five models depends on the characteristics of the KSRP
dataset, so for the other datasets, the structure and
hyperparameters of the model should be adjusted
according to the data. Since the focus of this study was to
explore the potential of the LSTM model with the attention
mechanism in the field of load prediction. Therefore, on the

premise of ensuring the prediction accuracy, the topological
structure and input characteristics of the model were
simplified as far as possible, to improve the generalization
ability of the model and reduce the required
computational force.

Annual Prediction Performance
Comparison
To evaluate the time series prediction effect of the A-LSTM
model on this data set, we compared it with the same type of
RNN, LSTM model, and DNN model without memory
function in this experiment. All models have been trained
and tested 5 times, and the final data used for comparison is the
average of the five test results to reduce the errors caused by
random numbers. Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and R-Square Value (R2_SCORE) were
used as indicators of the evaluation model, which were
calculated according to Eqs 15–17. The yi denotes the real
observations, yi denotes the average of the observed value, ỹi
denotes the predicted value, N denotes the number of test
samples.

RMSE �

����
1

n
∑n
i�1

√
(yi − ỹi)2 (15)

MAE �
1

N
∑N
i�1

∣∣∣∣yi − ỹi
∣∣∣∣ (16)

R2 � 1 −

Σ
n
i�1(yi − ỹi)2

Σ
n
i�1(yi − yi)2 (17)

We first used the data of 8 years (from 2002 to 2009) as the
training set to train the models and evaluated the effect of the
load forecast in 2010. The results of the five models
respectively predicting the annual data of 2010 are shown
in Table 4. It could be seen that although the prediction results
of each model were close to, the prediction accuracy of the
A-LSTM model was the highest. Compared with the second-

best predicted LSTM, A-LSTM’s RMSE decreased by 3.06%,
MSE decreased by 6.54%, and R2 value increased by 0.43%. The

FIGURE 6 | Load autocorrelation analysis results.
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reason why the evaluation results are close is that the system
operates under low or zero load for a large amount of time in a
year, and the prediction error during these periods is very
small, which may reduce the overall average prediction error.
We will explore this phenomenon in the next section.

To explore the influence of the size of the training set on the
prediction accuracy of the model, we also conducted the
following experiments: keeping the topological structure of

the above five models unchanged, gradually reducing the
training set in a unit of 2 years, and the 2010 data were
used as the test set to evaluate each model separately. The
experimental results are shown in Figure 8. We found that the
prediction accuracy of each model decreases with the
reduction of the training set. The experiment shows that the
prediction accuracy of the A-LSTM model was the best when
the data of 8, 6, and 4 years were used as the training set.
Compared with the suboptimal LSTM model, its RMSE

decreased by 3.06, 10.86, and 11.29%, respectively. R2 value
increased by 0.43, 2.21, and 2.57%, respectively. However,
when 2 years’ data were used as the training set, the
prediction accuracy of the A-LSTM model decreased
significantly, and its prediction accuracy was only better
than that of the SVR model. This indicates that the
prediction accuracy of the A-LSTM model will increase
with the length of training set, and the prediction accuracy
of 4-years or 6-years data sets of the A-LSTM model has
obvious advantages compared with other models. This
means that when the length of training set is greater than a

certain threshold (6–8 years), the advantage of its prediction
accuracy will gradually decrease compared with other cyclic
neural network models. Besides, when the length of the

FIGURE 7 | Structure of RNN, LSTM, and A-LSTM model.

TABLE 2 | Hyperparameters for DNN model.

Model Layer1 Units Layer2 Units Layer3 Units Batch size Drop rate

DNN 128 64 32 64 0.2

TABLE 3 | Hyperparamers for SVR model.

Model Kernel C Gamma

SVR Rbf 97.227588 0.001032

TABLE 4 | Comparison of prediction errors between different models.

SVR DNN RNN LSTM A-LSTM

RMSE (kW) 106.490 78.788 80.638 77.340 74.977

MAE (kW) 85.632 48.752 48.979 47.929 44.793

R2 0.854 0.922 0.918 0.925 0.929
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FIGURE 8 | The prediction accuracy of each model under different lengths of training set: (A) the comparison of RMSE, (B) the comparison of R2 value.

TABLE 5 | Performance of A-LSTM models compared to the baseline model.

2010.1.1∼2010.1.14 2010.8.1∼2010.8.14

SVR DNN RNN LSTM A-LSTM SVR DNN RNN LSTM A-LSTM

RMSE (kW) 123.508 103.035 93.796 96.558 86.876 108.849 78.129 79.959 75.294 68.361

MAE (kW) 102.083 72.996 66.898 66.192 62.262 88.199 57.575 54.966 50.127 46.529

R2 0.737 0.817 0.839 0.848 0.870 0.800 0.896 0.892 0.904 0.921

2010.3.1∼2010.3.14 2010.5.16∼2010.5.30

SVR DNN RNN LSTM A-LSTM SVR DNN RNN LSTM A-LSTM

RMSE (kW) 99.075 79.973 81.230 78.325 73.427 68.277 54.021 50.452 53.515 47.805

MAE (kW) 78.165 48.027 53.816 49.141 47.206 56.184 35.185 31.627 38.351 29.855

R2 0.521 0.687 0.678 0.701 0.737 0.642 0.776 0.805 0.781 0.824
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training set is less than A certain threshold value (4–2 years),
the prediction accuracy of the A-LSTM model will decrease
significantly.

Prediction Performance Comparison at
High and Low Loads
In the previous section, we discussed how a large number of
zero-load and low-load forecasts over a year may affect the
average error. To more intuitively evaluate the prediction effect
of the A-LSTM model, we selected data of 2 weeks in each of
four periods in the 2010 years for comparison. Among the data
selected for the experiment, two groups were high-load period
data (2010.1.1 to 2010.1.14 and 2010.8.1 to 2010.1.14), and the
other two groups were low-load period data (2010.3.1 to
2010.3.14 and 2010.5.16 to 2010.5.30). the results are shown
in Table 5. As can be seen from Table 4, the prediction accuracy

of the A-LSTMmodel was significantly higher than that of other
models. In the high heating load stage, compared with the
second-best predicted LSTM, A-LSTM’s RMSE decreased by
10.02%, MSE decreased by 5.93%, and R2 value increased by
2.59%; In the high cooling load stage, RMSE of A-LSTM
decreased by 9.21%, MSE decreased by 8.80%, and R2 value
increased by 1.88%, compared with that of the second-best
predicted LSTM. In the low heating load stage, compared
with the second-best predicted LSTM, A-LSTM’s RMSE
decreased by 6.25%, MSE decreased by 3.94%, and R2 value
increased by 5.14%; In the low cooling load stage, RMSE of

A-LSTM decreased by 5.24%, MSE decreased by 4.47%, and R2

value increased by 2.36%, compared with that of the second-best
predicted RNN. This indicates that compared with the low-load
stage, A-LSTM in the high-load stage has an obvious
improvement compared with other models, which also
indicates that A-LSTM has more potential in peak
prediction. It can be seen from Table 5 that the prediction
accuracy of the five models for the cooling load is higher than
that for the heating load. Taking the A-LSTM model as an
example, RMSE decreased by 18.515 (kW), MAE decreased by
15.733 (kW), and R2 value increased by 0.051 in the peak

cooling period compared with the peak heating period. This
change was also evident during periods of low load.

To explain this phenomenon, the characteristic
correlation coefficients of the cooling season and heating
season were statistically analyzed. Figure 9 can explain the
reasons for the above phenomena from one perspective. It

can be seen from Figure 9 that the correlation coefficients
between the load and other characteristics in the
refrigeration season are higher than those in the heating
season, especially the temperature, illumination, and
humidity. This indicates that the output of cooling load is
more affected by environmental factors, while the output of
heat load is more affected by the laws of human production
and life. The existing data cannot fully reflect the laws of
human production and life, but it reflects the environmental
factors more comprehensively, so this phenomenon occurs.

The actual prediction curves corresponding to Table 5 are

shown in Figure 10. As can be seen from the fitting curve results,
the load output of the KSRP system in the high load stage was
distributed discretely, and it fluctuated greatly in the short term,
as the peaks and troughs often appear alternately in the time
series. Except for the SVR model, other models had a good fitting
effect. By comparing R2 values in Table 5, we also found that the
prediction curve fitting rate of all models, including the A-LSTM
model, was higher in the high load period than in the low load
period. It could also be seen from Figure 10 that the curve fitting
effect in the period of the high load was better than that in the
period of low load. This indicates that the load in the low load

stage is more affected by random factors and is more difficult to
predict.

There are two limitations in the current study. First, due to the
limited computational force, the search method adopted in the
hyperparameter optimization in this paper is based on the
conditional parameters, rather than the search based on the
assignment interval. Although the conditional parameters based
on the empirical method can ensure the accuracy of the prediction,
it is undeniable that there is room for further optimization of the
super parameters of themodels. Secondly, the Bahdanau algorithm
adopted is the classical gradient-based method to obtain the

FIGURE 9 | Absolute value of correlation coefficients of load and other features in the database between heating season and cooling season.
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optimal solution. The gradient-based method has the advantage of
easy implementation, but at the same time, it will bring premature
convergence and the problem of falling into a locally optimal
solution. Therefore, there is room for further optimization at the
algorithm level of this study.

CONCLUSION

Predictive control had attracted more and more attention in
building energy efficiency. Previous studies had shown that the
HVAC system of large buildings was complex in structure, and its

FIGURE 10 | Predicted load use versusmeasured load use by different models for 2 weeks as a test period: (A) Forecasting effect of high load period in the heating

season, (B) Forecasting effect of high load period in the cooling season, (C) Forecasting effect of low load period in the heating season, (D) Forecasting effect of low load

period in the cooling season.
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operation was affected by random environmental factors and
human activities, so it was very challenging to predict its short-
term HVAC load. In this paper, we first analyzed the underlying
patterns in the data based on the actual operation data of KSRP

Energy Center in 9 years and then determined the factors used to
establish themodel according to the results of the Pearce correlation
calculation. The results showed that the cooling and heating load of
HVAC was most affected by the outdoor temperature, and the time
of daily peak load was concentrated in a specific period.

Therefore, this paper proposed a new model combining the
attention mechanism with the LSTM neural network, which was
implemented by the following steps: First, according to the
autocorrelation analysis results of HVAC load, we determined
the data of the previous 24 h as the time step to predict the load of
the next hour. In the second step, we used the TPE optimization

method to optimize the hyperparameters of the baseline LSTM
model. The test results showed that the LSTM model with two
layers of 64 neurons had the best prediction effect. Thirdly, we
added the attention layer to the baseline LSTMmodel to build the
A-LSTM model. Finally, we also set up RNN, DNN, and SVR
models as horizontal comparison objects.

Finally, we took the data from KSRP Energy Center from 2002
to 2009 as the training set and the data from 2010 as the test set to
test the above five models respectively. The results showed that the
prediction accuracy of the A-LSTMmodel was the best. Compared
with the LSTMmodel, the overall RMSE decreased by 3.06%, MSE

decreased by 6.54%, and R2 value increased by 0.43%. By
progressively reducing the size of the training set, we found that
the performance advantage of the A-LSTM model was most
significant when the length of training set was between 4 and
6 years. Besides, when the size of the training set dropped to
2 years, the prediction accuracy of the A-LSTM model declined
sharply, which indicates that it has limitations in predicting small
sample data. To verify the impact of low-load and zero-load
samples on the experimental results, we respectively selected
four typical operating mode samples in 2010 for evaluation and

drew the effect chart of the predicted results. The results showed
that the prediction effect of the A-LSTM model for refrigeration
load was better than that for heating load, and the prediction effect
for the high load period is better than that for the low load period.

In conclusion, for the cooling and heating load prediction of large
buildings, the introduction of the attention mechanism can not only
effectively improve the prediction accuracy of the traditional LSTM
model, but also improve the accuracy of peak prediction. However,
in practical application, the prediction effect of this model for
different operating modes is different, which in-depth influence
mechanism and solutions need to be further analyzed. Besides, there
is still room for optimization in the algorithm of attention
mechanism. In future work, we will try to apply the A-LSTM
model to real-time HVAC energy-saving control. Since the
traditional MPC system is a model-based control system, it needs

to model the controlled objects accurately, which may affect the
generality of the model. Therefore, we are more inclined to adopt a
model-free deep reinforcement learning (RL) algorithm to solve this
problem, such as taking the predicted value as the observed state of
the agent to improve the control accuracy of the RL model.
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