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Abstract

Background: The study of the gut microbiota (GM) is rapidly moving towards its functional characterization

by means of shotgun meta-omics. In this context, there is still no consensus on which microbial functions are

consistently and constitutively expressed in the human gut in physiological conditions. Here, we selected a cohort

of 15 healthy subjects from a native and highly monitored Sardinian population and analyzed their GMs using

shotgun metaproteomics, with the aim of investigating GM functions actually expressed in a healthy human

population. In addition, shotgun metagenomics was employed to reveal GM functional potential and to compare

metagenome and metaproteome profiles in a combined taxonomic and functional fashion.

Results: Metagenomic and metaproteomic data concerning the taxonomic structure of the GM under study were

globally comparable. On the contrary, a considerable divergence between genetic potential and functional activity

of the human healthy GM was observed, with the metaproteome displaying a higher plasticity, compared to the

lower inter-individual variability of metagenome profiles. The taxon-specific contribution to functional activities and

metabolic tasks was also examined, giving insights into the peculiar role of several GM members in carbohydrate

metabolism (including polysaccharide degradation, glycan transport, glycolysis, and short-chain fatty acid production).

Noteworthy, Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the metabolic

activity with the highest expression rate and the lowest inter-individual variability in the study cohort, in line with the

previously reported importance of the biosynthesis of this microbial product for the gut homeostasis.

Conclusions: Our results provide detailed and taxon-specific information regarding functions and pathways actively

working in a healthy GM. The reported discrepancy between expressed functions and functional potential suggests

that caution should be used before drawing functional conclusions from metagenomic data, further supporting

metaproteomics as a fundamental approach to characterize the human GM metabolic functions and activities.

Keywords: Gut microbiota, Metagenomics, Metaproteomics, Metabolic pathway, Faecalibacterium, Short-chain fatty acids

Background

In the latest years, the study of the gut microbiota (GM)

has been shifting from a mere description of the

taxonomic composition, usually obtained through the

application of 16S rRNA gene sequencing to fecal sam-

ples, to a broader investigation of GM functional poten-

tial, made possible by shotgun metagenomics (MG)

approaches [1]. Population MG studies have revealed

that GMs share a stable set of core functions, in spite of

a large inter-individual structural/compositional variability

[2, 3]. However, since sequenced genes are not necessarily

expressed [4, 5], MG cannot provide reliable information

on which microbial functional traits are actually changing

in response to stimuli from host metabolism, immunity,

neurobiology, diet, or other environmental factors.

Conversely, this type of information can be gathered by

functional meta-omics, as metatranscriptomics (MT) and

metaproteomics (MP), which display higher sensitivity to

perturbation and may therefore better reflect host-

microbiome interactions [6]. In this context, of particular

interest is to investigate the relationship between potential

and actually active GM features in a human population, in

order to identify microbial functions constitutively
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expressed in a healthy gut starting from a known MG

potential. A recent investigation has addressed this aim

with respect to MT, finding transcripts of ribosomal

proteins and citrate cycle enzymes among those with the

highest expression rate (mRNA/DNA ratio) and genes

involved in starch metabolism, amino acid biosynthesis,

sporulation, and peptidoglycan biosynthesis as those with

the lowest expression rate [7]. Less is known about micro-

bial proteins, even though these provide major informa-

tion concerning GM metabolism and represent key

molecules in the host-GM interaction. Although a few

pioneering studies have presented the analysis of paired

metagenomes and metaproteomes in disease-related

human cohorts [6, 8], a systematic, comparative investiga-

tion of taxonomic and functional features potentially and

actually expressed by the GM of a healthy population has

not been described so far.

Here, we selected a cohort of healthy subjects from a

clinically monitored Sardinian population and collected

from each subject a stool sample which underwent

DNA and protein extraction, followed by shotgun MG

and MP analyses. MG and MP data were then mined in

a comparative fashion in order to (i) find which func-

tional features are actively and consistently expressed

by the GM, being therefore needful for the host-GM

homeostasis; (ii) identify conserved and variable GM

features within the population; and (iii) investigate the

specific functional and metabolic contribution of the

key GM taxa.

Results
Experimental design and general metrics

Fifteen subjects were selected from the SardiNIA study

cohort [9]. Stool samples were collected from individuals

self-reporting the absence of (i) antimicrobial treatment

during the previous 6 months from sample collection, (ii)

inflammatory bowel disease and other autoimmune condi-

tions, (iii) significant variations of body temperature dur-

ing the last 2 weeks, and (iv) unusual body weight

fluctuation during the last 3 years before sample collection.

Subjects were selected to avoid sex, age, and body mass

index (BMI) biases (Additional file 1: Table S1), and all

followed an omnivorous diet.

As illustrated in Fig. 1, a stool sample was collected

from each subject, and its metagenome and metapro-

teome were characterized by means of shotgun MG and

shotgun MP, respectively. A population-based matched

database, comprising all MG sequences retrieved from

the same cohort under study, was used for MP analysis

in order to map protein expression of the very same

genes identified by MG. MG sequences were annotated

both taxonomically and functionally, and these two

annotation levels were linked to address the question on

“who is doing what” within the GM of the selected

subjects.

A total of 25,993,645 MG reads and 107,069 peptide-

spectrum matches (PSMs) were obtained in this study,

with a mean of 2,077,370 reads and 7138 PSMs per

sample (Additional file 1: Table S2). In view of the inter-

individual variability in the total number of reads, MG

reads were randomly subsampled to allow a better com-

parison among samples. Taxonomic and functional

annotation yields varied between MG and MP, and the

relative amount of reads/peptides assigned to a specific

genus varied between Firmicutes and Bacteroidetes

(Additional file 1: Table S3). Globally speaking, MG data

exhibited a larger depth of information compared to MP,

both in taxonomic and functional terms, as expected

and previously reported [6, 8].

Potential and active functions in the gut microbiota

A preliminary, unsupervised multivariate analysis

revealed a much clearer separation between MG and

MP patterns based on functional data when compared

to taxonomic data (Additional file 2: Figure S1). The

most abundant phyla (A), genera (B), and functions

(KEGG orthologous groups (KOGs); panel C) detected

by MG and MP are illustrated in Fig. 2. Consistently, a

large overlap could be observed between MG and MP

regarding the most abundant phyla and genera, in

Fig. 1 Schematic illustrating the experimental design of the study. Fifteen healthy adult subjects (7 males and 8 females) were selected from a

clinically monitored Sardinian population. Stool samples were collected from each individual and subjected in parallel to Illumina shotgun DNA

sequencing (metagenome profiling) and LTQ-Orbitrap shotgun mass spectrometry analysis (metaproteome profiling). The metagenomes were

also employed as sequences databases, in order to allow a rigorous metaproteome/metagenome comparison, and subjected to taxonomic and

functional annotation
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contrast with considerable differences in functions,

highlighting a divergence between functional potential

and activity. In particular, enzymes belonging to cata-

bolic pathways were generally massively abundant, while

not being among the genes present with the highest

number of copies in the metagenome. Furthermore,

correlation between MG and MP profiles was high when

considering taxa abundances, with a linear decrease

when going down to lower taxonomic levels (Spearman’s

ρ = 0.90 ± 0.06 (mean ± s.d.) at phylum level, ρ = 0.68 ± 0.07

at genus level), while a considerably lower correlation

could be found for functional features (ρ = 0.21 ± 0.06).

We then carried out a comparative investigation of

MG and MP features, in order to identify GM functions

consistently expressed within the healthy human cohort

under study, taking into account the gene potential of

the same GMs. To this aim, we computed the log

MP/MG abundance ratio for each taxon and function

on a subject-by-subject basis and then tested the differ-

ence of the log ratios from zero using a one-sample t test

with FDR correction, as reported previously in a metagen-

ome versus metatranscriptome comparison [7]. On the

whole, the percentage of differential features out of the

total was extremely high when considering functions

(Additional file 1: Table S4), confirming the divergence

between potential and active GM functional traits.

Focusing on taxonomy (Fig. 3a), many key GM taxa

showed significant differences in relative abundance when

comparing gene potential and expressed proteins across

the cohort. For instance, Proteobacteria, Spirochaetes,

Verrucomicrobia, and Coriobacteriales showed a signifi-

cantly low log MP/MG ratio, whereas taxa belonging to

Firmicutes and Bacteroidetes behaved more heteroge-

neously. Among them, Faecalibacterium and Ruminococ-

cus (Firmicutes) as well as Prevotella (Bacteroidetes)

exhibited a significantly high log MP/MG ratio, while a

significantly low log MP/MG ratio was measured for

Bacilli and Erysipelotrichia (Firmicutes), as well as for

Rikenellaceae and Porphyromonadaceae (Bacteroidetes).

The top differential functions are illustrated in Fig. 3b

(see Additional file 3: Dataset S1 for further details).

Several enzymatic functions exerted by the GM of the

studied cohort presented a significantly high log MP/

MG ratio, as those involved in short-chain fatty acid

(SCFA, including propionate and, mostly, butyrate)

metabolism, as well as in degradation of carbohydrates,

polyols, and organic acids. Mapping differential KOGs in

the carbon metabolism KEGG map (Additional file 4:

Figure S2) visually illustrates that the most active meta-

bolic activities performed by the GM are related to

glycolysis, gluconeogenesis, pentose phosphate pathway,

and butyrate biosynthesis. Ferritin and flagellin were the

non-enzymatic proteins with the highest MP/MG log

ratio. On the other hand, functions with the lowest MP/

MG log ratios were related to amino acid, transfer RNA

(tRNA), and cell wall biosynthesis, as well as to DNA

replication and repair. Since some of the MG sequences

matching with a high number of peptides did not present

Fig. 2 Main metagenome and metaproteome features of the gut microbiota. MG data are in blue (left), while MP data are in red (right). Data

are ordered by decreasing median of the relative abundance among subjects. a Tukey’s boxplots showing the top 5 microbial phyla. b Tukey’s

boxplots showing the top 10 microbial genera. c Tukey’s boxplots showing the top 10 gene/protein functions (KEGG orthology groups).

Subunit names are shown into brackets. GAPDH glyceraldehyde 3-phosphate dehydrogenase, PEP phosphoenolpyruvate, P phosphate, BP

bisphosphate, OH hydroxy
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any KOG functional annotation, we performed an add-

itional differential analysis simply considering the gene/

protein name as functional information. As a result, two

previously non-annotated proteins (propanediol utilization

protein PduA and reverse rubrerythrin) exhibited signifi-

cantly (and extremely) high MP/MG log ratios, indicating

their massive expression yield within the subjects’ GMs.

Conserved and variable features in the gut microbiota

Another indication provided by Fig. 2 was that MG data

generally exhibited a much higher inter-individual vari-

ability (expressed by box width) in taxa than in potential

functions, whereas this trend could not be observed in

MP. To quantify this observation in a more rigorous and

comprehensive fashion, we computed between-subject

Fig. 3 Features with significantly differential abundance between gut metaproteome and metagenome. Data were filtered based on the

mean relative abundance of each feature in the sample cohort (threshold >0.01%). a Cladogram illustrating differentially abundant taxa

(blue more abundant in MG, red more abundant in MP). Dot size is proportional to the mean relative abundance of the corresponding taxon. 1

Azospirillum, 2 Acinetobacter, 3 Escherichia, 4 Enterobacter, 5 Oxalobacter, 6 Parasutterella, 7 Alistipes, 8 Mucinivorans, 9 Prevotella, 10 Alloprevotella, 11

Paraprevotella, 12 Porphyromonas, 13 Barnesiella, 14 Odoribacter, 15 Tannerella, 16 Parabacteroides, 17 Butyricimonas, 18 Holdemania, 19 Paenibacillus, 20

Bacillus, 21 Streptococcus, 22 Lactobacillus, 23 Megasphaera, 24 Veillonella, 25 Oscillibacter, 26 Peptoclostridium, 27 Butyricicoccus, 28 Pseudoflavonifractor, 29

Intestinimonas, 30 Flavonifractor, 31 Ruminiclostridium, 32 Anaerotruncus, 33 Ruminococcus, 34 Faecalibacterium, 35 Lachnoclostridium, 36 Butyrivibrio, 37

Coprococcus, 38 Tyzzerella, 39 Akkermansia, 40 Brachyspira, 41 Treponema, 42 Propionibacterium, 43 Actinomyces, 44 Eggerthella, 45 Gordonibacter. b Bar

graphs showing the KEGG orthology functional groups with higher MP/MG log ratio (top 20, left) and those with lower MP/MG log ratio (top

20, right). Subunit names are shown into brackets. OH hydroxy, GAPDH glyceraldehyde 3-phosphate dehydrogenase, 6P-5DH-2DO-gluconate 6-

phospho-5-dehydro-2-deoxy-D-gluconate, PEPCK phosphoenolpyruvate carboxykinase, U-5CMAM modifier uridine 5-carboxymethylaminomethyl

modification enzyme, 2MT-N6-DMAA 2-methylthio-N6-dimethylallyladenosine, 1DO-xylulose-5P 1-deoxy-D-xylulose-5-phosphate, CF coupling factor
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dissimilarity (Bray-Curtis index) at the taxonomic

(genus) and functional level for both MG and MP data.

As a confirmation, a higher inter-individual variability

concerning the taxonomic composition could be mea-

sured in MG compared to MP (Wilcoxon signed-rank

test with continuity correction, two-tailed P = 4.7 × 10−8),

while the analysis of functional data revealed a higher

variability in MP than in MG (P < 2.2 × 10−16).

To further assess which specific GM taxa and func-

tions were more conserved and variable within the

human cohort under study, we also calculated the abun-

dance coefficient of variation (CV) for each taxon and

function measured by MG and/or MP across the 15

subjects. We set two arbitrary thresholds (CV > 150%

and < 60%) to define features with high and low inter-

individual variability, respectively. The amount of high

and low variability features was similar between MG and

MP (about 30 and 10%, respectively); conversely, and

consistently with dissimilarity data, GM expressed func-

tions (MP) were globally much more variable in abun-

dance within the population compared to the potential

functions (MG), even though this effect was less evident

when weighing each feature based on its abundance

(Additional file 1: Table S5).

Focusing on taxonomy (cladogram in Fig. 4a), a mod-

erate correlation could be observed between MG and

MP concerning taxa abundance variability (ρ = 0.33),

although no taxa showed opposite trends (e.g., low vari-

ability with MG and high variability with MP). MG and

MP provided consistent results for the taxonomic

lineage from Verrucomicrobia to Akkermansia, which

exhibited high variability within the subjects, and for the

taxonomic lineage from Bacteroidetes to Bacteroides,

which was instead rather conserved. Moreover, although

with slight differences in the degree of variability between

MG and MP, levels of Bifidobacterium, Prevotella, and

Butyrivibrio displayed a considerably high variability

across the cohort under study, while Alistipes and Faecali-

bacterium were found to be rather conserved in abun-

dance among the subjects analyzed.

The most conserved and variable functions (KOGs)

are shown in Fig. 4b. A very weak correlation could be

observed between MG and MP concerning function

abundance variability (ρ = 0.12). In general, the abun-

dance of genes related to tRNA and peptidoglycan syn-

thesis, as well as to DNA replication and repair, showed

low variability among subjects, contrary to some poten-

tial activities (including transposases, antibiotic resist-

ance genes, and enzymes involved in catabolism of

glycans and biogenic amines) exhibiting a higher vari-

ability. On the other hand, functions related to glutam-

ate degradation and biosynthesis of butyrate, besides

“housekeeping” glycolytic enzymes and translation

factors, appeared to be consistently active in all subjects

(with high abundance and low variability) based on MP

data; interestingly, several stress-related proteins (such

as superoxide scavengers and a trigger factor) were

found to be among the most variable GM features

within the population. Complete data can be found in

Additional file 3: Dataset S1.

Specific functional contribution of Firmicutes and

Bacteroidetes

We also sought to find phylum-specific functions, i.e.,

activities mainly or exclusively due to one of the main

GM phyla (Firmicutes and Bacteroidetes). To this aim,

we computed the log Firmicutes/Bacteroidetes (F/B)

abundance ratio for each function on a subject-by-

subject basis, as described above for the MG versus MP

comparison. Bar graphs of Fig. 5 illustrate functions with

the highest and lowest log F/B ratios, according to MG

(left, blue) and MP (right, red) data (the complete lists

of differential features are given in Additional file 5:

Dataset S2). Phylum-specific genes within the metagen-

ome, providing insights into the peculiar functional

potential of Firmicutes and Bacteroidetes members

across the cohort under study, belonged to a wealth of

different activities (including sporulation, cell wall bio-

genesis and ion transport), mapping to several relevant

biosynthetic and degradative pathways (the related car-

bon metabolism pathway map is reported in Additional

file 6: Figure S3). When considering the metaproteome,

the specific contribution of the two main GM phyla

appears to be better defined and oriented towards more

interrelated metabolic activities. While Bacteroidetes

were found to be specifically involved in multiple activ-

ities, including iron homeostasis, catabolism of non-

glucose monosaccharides (rhamnose, xylose), and folate

metabolism, Firmicutes’ specific contribution to the

GM metabolism was mainly in butyrate biosynthesis, be-

ing most of the differential enzymes (including acetyl-CoA

C-acetyltransferase, 3-hydroxybutyryl-CoA dehydrogen-

ase, butyryl-CoA dehydrogenase, glutaconyl-CoA decarb-

oxylase, and enoyl-CoA hydratase) eventually converging

on butyrate production (as illustrated also in the carbon

metabolism KEGG map of Additional file 7: Figure S4).

Active role of main gut microbiota members in the

carbohydrate metabolism

To further elucidate the specific role of the main GM

members within carbohydrate metabolism, we manually

parsed functional and taxonomic annotations of trans-

porters and enzymes identified by MP and responsible

for processes ranging from polysaccharide degradation

to SCFA production. As schematized in Fig. 6a, complex

polysaccharides are usually degraded in the extracellular

space, then oligo- and monosaccharides are transported

inside the microbial cell, where they are degraded
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through carbohydrate catabolic pathways (converging on

glycolysis); pyruvate and related intermediates are finally

utilized for the biosynthesis of SCFAs, including acetate,

propionate, and butyrate. Figure 6b illustrates the

expression level of each function-taxonomy combin-

ation, with functions grouped according to the reference

pathway (or functional family), and microbial genera

grouped according to the corresponding phylum. Overall

pathway results were retrieved from MP expression data

of 81 functional groups (KOGs); 51 of them, found to be

expressed in at least half of the subjects, are also reported

as single functions.

Considering the GM as a whole, the expression of

glycolytic enzymes accounted for about half of the total

carbohydrate metabolism, while the relative contribution

of butyrate, propionate, and acetate biosynthesis

Fig. 4 Inter-individual variability of gut microbiota features. Data were filtered based on the mean relative abundance of the features in the

sample cohort (threshold >0.01%). a Cladogram illustrating taxa with CV >150% (variable, darker color) or <60% (conserved, lighter color) across

subjects, according to MG (blue) and MP (red) data. Green dots represent taxa found conserved (dark) or variable (light) based on both MG and

MP data. Dot size is proportional to the mean relative abundance of the corresponding taxon. 1 Azospirillum, 2 Acetobacter, 3 Escherichia, 4 Enterobacter, 5

Parasutterella, 6 Sutterella, 7 Bacteroides, 8 Alistipes, 9 Mucinivorans, 10 Prevotella, 11 Alloprevotella, 12 Paraprevotella, 13 Porphyromonas, 14 Barnesiella, 15

Odoribacter, 16 Tannerella, 17 Butyricimonas, 18 Holdemanella, 19 Bacillus, 20 Streptococcus, 21 Acidaminococcus, 22 Phascolarctobacterium, 23 Megasphaera,

24 Dialister, 25 Peptoclostridium, 26 Intestinimonas, 27 Flavonifractor, 28 Anaerotruncus, 29 Ruminococcus, 30 Subdoligranulum, 31 Faecalibacterium, 32

Lachnoclostridium, 33 Dorea, 34 Butyrivibrio, 35 Coprococcus, 36 Marvinbryantia, 37 Akkermansia, 38 Brachyspira, 39 Bifidobacterium, 40 Gordonibacter, 41

Desulfovibrio. b Bar graphs showing the 10 KEGG orthology functional groups with higher CV (variable, darker color) and the 10 with lower CV

(conserved, lighter color) across subjects, according to MG (left, blue) and MP (right, red) data. Subunit names are shown into brackets. Only functional

groups detected in at least half of the subjects are shown. MO monooxygenase, IF initiation factor, PRN polyribonucleotide, GMP guanosine

monophosphate, LL-DAP L,L-diaminopimelate, 5P 5-phosphate
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enzymes was 12, 3, and 1%, respectively. Another rele-

vant metabolic activity was aldose/ketose interconver-

sion (7%), whereas sugar transporters (comprising

TonB-dependent transporters from Bacteroidetes and

ABC transporters from Firmicutes) accounted in total

for 6% of carbohydrate metabolism-related proteins.

Carbohydrate metabolism appeared to be due to Firmi-

cutes and Bacteroidetes at similar extents (46 and 51%

of the total, respectively), with Actinobacteria playing a

minor role in quantitative terms (3%).

When focusing on the metabolic tasks performed by

specific GM members, Bifidobacterium was found to

contribute significantly to mucin glycoprotein degrad-

ation (endo-α-N-acetylgalactosaminidase activity), as

well as to pentose hydrolysis (beta-xylosidase), intercon-

version (pentose isomerases), and catabolism (phospho-

ketolase and transaldolase within the pentose phosphate

pathway). Bacteroides spp. provided a peculiar and active

contribution to starch degradation and uptake, mainly

through enzymes and transporters belonging to the

starch utilization system (Sus), and were clearly shown

to play a key role in fucose, rhamnose, and uronate me-

tabolism and also in the glycolytic pathway (especially in

the preparatory phase); another main member of Bacter-

oidetes, Prevotella, was instead primarily involved in

xyloglucan and arabinan degradation. Among Firmicutes

genera, we found a strong (and almost exclusive)

involvement of Faecalibacterium in butyrogenesis (as

well as in oligosaccharide membrane transport and pyru-

vate phosphate dikinase activity) and of Dialister in the

final part of propionogenesis; furthermore, a considerably

high formate C-acetyltransferase activity from Rumino-

coccus spp. was observed. Of note, a high level of

sequence homology was observed for many orthologous

genes within the same phylum (especially pentose

phosphate pathway enzymes and ABC transporters

expressed by Firmicutes spp.), making it difficult to

achieve a taxonomic classification down to the genus

level (at least through the lowest common ancestor

approach employed here).

Discussion
This study was meant as a comparative and systematic

investigation of potentially and actually expressed

features in the GM of a healthy human population. To

this purpose, a cohort of clinically monitored Sardinian

subjects, following an omnivorous diet and with a BMI

distribution largely comparable to that of the general

Italian population, was selected for stool sample collec-

tion and GM characterization through shotgun MG and

MP. As both diet and BMI are known to deeply influ-

ence the GM composition (as well as, most likely, its

activity), we cannot rule out that cohorts with different

food regimens and/or BMI distributions may show

different taxonomic and functional profiles; however, a

specific investigation of these aspects falls out of the

scope of the present work. Furthermore, gut microbiota

characterization was carried out using fecal samples, as

stool can be collected following non-invasive procedures

and is widely recognized as a good proxy for the colonic

microbial mass. Nevertheless, some differences in struc-

ture and functional expression between colonic and fecal

Fig. 5 KEGG orthology functional groups with significantly differential abundance between Firmicutes and Bacteroidetes. Data were filtered based

on the mean relative abundance of the features in the sample cohort (threshold >0.01%). Functions with higher (top 10) and lower (top 10)

Firmicutes/Bacteroidetes (F/B) log ratio according to MG data are shown in the left bar graph (blue); functions with higher (top 10) and lower (top

10) F/B log ratio according to MP data are shown in the right bar graph (red). Subunit names are shown into brackets. MTHF-tRNA-U5

methylenetetrahydrofolate-tRNA-(uracil-5), 1P 1-phosphate, 1,3-β G-NAHA 1,3-beta-galactosyl-N-acetylhexosamine, 5P 5-phosphate, NADH-Q NADH-

quinone, PRGA phosphoribosylglycinamide, NS-ornithine N-succinyl-L-ornithine, OMRP outermembrane receptor protein, OH hydroxy, MS-transport

multiple sugar transport, ATP-BP adenosine triphosphate-binding protein, 6P-5DH-2DO-gluconate 6-phospho-5-dehydro-2-deoxy-D-gluconate, AICAR

5-aminoimidazole-4-carboxamide ribonucleotide
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Fig. 6 (See legend on next page.)
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microbial communities are expected, especially concern-

ing oxygen-sensitive species and enzymes [10, 11].

The taxonomic composition of the GM of the studied

cohort, based on MG and MP data, exhibited a large

inter-individual variability at the phylum level, with Firmi-

cutes ranging from 6 to 78% and Bacteroidetes ranging

from 21 to 88% (and the F/B ratio ranging from 0.06 to

3.63), as clearly described in previous studies [2, 12, 13].

The GM taxonomic profile is known to vary widely

among different cohorts, based on both genetic and envir-

onmental features, including dietary and cultural habits

[14–17]. Moreover, it is worth reminding that the output

of meta-omic taxonomic profiling can be largely influ-

enced by the DNA/protein extraction methods, by library

preparation methodologies, and by the specific sequence

database(s) used for taxonomic annotation (as detailed

below) [18–21].

Another interesting indication provided by this work,

although obtained in a small population, regards the

inter-individual variability of the abundance of specific

GM members. In particular, the relative level of several

key genera, including Akkermansia, Prevotella, and

Bifidobacterium, was globally poorly conserved within

the human cohort studied, according to both MG and

MP results, suggesting a possible higher responsiveness

to variables like diet or other environmental factors.

Consistently, Akkermansia abundance has been recently

observed to be significantly modulated by many different

foods and dietary variables [22–25], changes in Prevo-

tella spp. levels have been related to increase in fibers in

the diet and to glucose metabolism and tolerance [26–28],

and many bifidobacteria are widely and long used as

probiotics due to their (purported) ability to induce/re-

store GM homeostasis [29, 30]. Of note is also the finding

concerning the low and high inter-individual variability of

butyrate biosynthesis enzymes (see below for discussion

on the role of butyrate in gut health) and oxidative stress-

related GM functions, respectively. Response of microor-

ganisms to reactive oxygen species may in fact vary among

individuals based on several factors, including the degree

of activation of oxidative stress mechanisms modulated by

the host immune system [31, 32]. Moreover, we found that

Faecalibacterium, Ruminococcus, and Prevotella exhibited

a high log MP/MG ratio, suggesting a high protein expres-

sion activity of these taxa. This was previously observed

for Faecalibacterium, when comparing abundance data

based on 16S rRNA gene analysis with MP results [33].

A considerable divergence between GM functional

potential and activity was also observed in the present

study. Multiple data analysis approaches consistently

revealed that the GM protein expression pattern differs

significantly from that of the gene potential, both in

terms of feature abundance distribution and inter-

individual variability. Since the very beginning of GM

research, there was evidence for similarity among indi-

viduals in MG functional profiles and metabolic pathway

gene modules, despite variation in community structure

[2], while, in a pioneering study, VerBerkmoes and

coworkers described a more uneven distribution of func-

tional categories in the human stool metaproteome com-

pared to a (non-matched) metagenome [5]. Similar

conclusions were drawn by Franzosa et al. when com-

paring human gut metatranscriptome and metagenome

[7], even if the correlation between MT and MG func-

tional datasets was much higher than that measured

between MP and MG in this study, in line with recent

reports [6]. The higher inter-individual variability in GM

protein functions compared to the corresponding gene

functions (even considering that the GM taxonomic

structure exhibited an opposite behavior) confirms that

the metaproteome displays a higher plasticity, being thus

a preferential indicator of functional changes in the GM

when compared to MG approaches. Concerning this

divergence between MG and MP data, it is worth noting

that some possible variables might influence the consen-

sus between the two omic approaches. Among them, the

possible impact of differences in genome size among

microbial species should not be overlooked [34], as well

as the influence of potentially varying redundancy levels

among functionally relevant genes [35]. The different

(See figure on previous page.)

Fig. 6 Active carbohydrate metabolism pathways and related taxonomic assignments. a Schematic overview of gut microbiota metabolic

pathways from carbohydrate uptake and degradation to the production of short-chain fatty acids (in bold). Numbers in bold correspond to the

metabolic pathways listed in b. GH glycosyl hydrolase. b Combination of carbohydrate metabolism pathways/enzymes (rows) and specific gut

microbiota phyla/genera (columns) found by MP analysis. Heatmap color scale is based on the logarithmized relative abundance (average of 15

subjects) of each function-taxon combination. For each pathway (rows), only enzymes detected in at least half of the subjects are reported, while

the top row (in bold, corresponding to black-bordered squares) accounts for the total abundance of all enzymes (found in at least one subject)

belonging to the pathway. For each phylum (columns), only genera expressing a function in at least two subjects are reported, and the phylum

column (in bold, corresponding to black-bordered squares) accounts for the total abundance of all functions assigned to that given phylum.

“Carbohydrate metabolism” and “microbiota” report the total of rows and columns, respectively. GH glycosyl hydrolase, ABC ATP-binding cassette,

MsmK multiple sugar-binding transport ATP-binding protein MsmK, MsmX maltodextrin import ATP-binding protein MsmX, UgpC sn-glycerol-3-phos-

phate import ATP-binding protein UgpC, YcjV uncharacterized ABC transporter ATP-binding protein YcjV, YtfQ ABC transporter periplasmic-binding

protein YtfQ, YurJ uncharacterized ABC transporter ATP-binding protein YurJ, DKI 4-deoxy-L-threo-5-hexosulose-uronate ketol, Ru5P ribose-5-phosphate,

GAPDH glyceraldehyde 3-phosphate dehydrogenase, PEPCK phosphoenolpyruvate carboxykinase, OH hydroxy
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information depths which can be reached by MP and

MG (at least with the currently available technological

and bioinformatic approaches) should also be considered

as a factor that might lead to a lower quantitative correl-

ation between the two datasets [6]. As a further consid-

eration, it is worth observing that MG keeps the ability

of providing the full functional history of bacteria travel-

ling the gut, whereas MP allows the investigator to take

a picture of the GM activity at a given time point, loca-

tion, or condition; this undoubtedly makes these two

approaches complementary when attempting to fully

characterize the GM functionality.

When comparing the most abundant protein functions

observed in this study with earlier MP investigations of

healthy human GMs [33, 36], a general consistency

could be found. In particular, glutamate dehydrogenase

was the most abundant protein function revealed in this

study, as previously reported by Kolmeder and coworkers

[33, 37]. Bacterial glutamate dehydrogenase plays a pivotal

role in the intermediary metabolism in bacteria as well as

in animals, providing a major biosynthetic pathway for

glutamate production. Glutamate, in turn, is key as a link

between carbon and nitrogen metabolism and has been

recently shown to be important for Clostridium difficile

colonization of human gut [38]. Hence, given the abun-

dance of glutamate dehydrogenase, its impact might be

relevant for colonization and survival of many other taxa

that inhabit the human intestine. Finally, the glutamate

circuit has been proposed as central to the neuro-

endocrinological role of gut microbiota, the signaling to

the CNS through the intestinal epithelial cell glutamate

receptors, and the activation of the vagal route [39]. Other

abundant functions, which were included among the

top functional categories in previous studies [5, 33], are

glyceraldehyde 3-phosphate dehydrogenase, phosphoenol-

pyruvate carboxykinase, acetyl-CoA C-acetyltransferase,

enolase, and many other enzymes responsible for essential

steps of glycolysis and butyrogenesis, supporting the

hypothesis that these functions and pathways are key for

the intestinal homeostasis. In particular, the massive and

stable expression of butyrate biosynthesis enzymes by

Firmicutes (mainly Faecalibacterium) deserves key atten-

tion. Butyrate is a four-carbon SCFA known as one of the

main products of microbial fermentation in the human

colon and serves as preferential energy source for colono-

cytes [40]. Growing experimental evidences support the

importance of butyrate for colon health, for instance

highlighting the relationship between defects in butyrate

production and pathogenesis or severity of inflammatory

bowel diseases and obesity-related metabolic diseases

[41–43]. Our results demonstrate a high and constant

butyrogenetic activity within a healthy human cohort, in

line with previous reports showing a higher abundance of

butyrate biosynthetic enzymes compared to those involved

in propionate biosynthesis in a healthy cohort [33], thus

further supporting GM butyrate production as a key

requirement for intestinal health. Further, we observed an

apparent pivotal role of Faecalibacterium spp. in synthe-

sizing the enzymes involved in this metabolic pathway. It

needs to be noted, however, that enzyme abundance may

not be directly correlated to metabolite concentrations,

as metabolic fluxes are strongly influenced by enzyme

kinetics and substrate availabilities [44]. Future meta-

metabolomic investigations are therefore expected to

shed further light on these key aspects and their impact

on GM metabolism.

In addition, elongation factor (EF)-Tu and chaperonin

GroES were the second and the fifth most abundant

functions observed in this study. EF-Tu is known for a

long time to be among the most abundant proteins in

many bacterial species, and, therefore, its highest abun-

dance was not unexpected. GroES, together with GroEL,

is also known to be abundantly present in bacteria,

where it serves for proper folding of many proteins,

particularly when large loads of deleterious mutations

occur. Bacterial chaperonin overexpression is hypothe-

sized to be required when bacterial communities evolve

under a strong genetic drift [45]. According to the eco-

logical model proposed by Schloissnig and colleagues,

this is the case of the human gut microbiome, where a

large selection of bacterial population members is sub-

jected to community shifts during the different stage of

the individual host life, and, therefore, their extinction

might be rescued in the presence of abundant chaperonins

[46].

Carbohydrate metabolism was proved in earlier works

as the most represented COG category in the human

gut metaproteome, highlighting its functional relevance

in the host-microbiota interplay [5, 33]. In this respect,

the thorough reconstruction of the GM carbohydrate

metabolism pathways presented here, including the

active contribution to it of the main GM taxa, provides

useful insights into the catabolism and cross-feeding net-

works actually occurring in a healthy human GM. There

is evidence that both generalist (able to degrade a wide

range of carbohydrates) and specialist (able to target

only a few selected glycans) members of the GM belong

to metabolic networks where cross-feeding takes place,

since by-products of one microorganism can serve as

key metabolic resources for other GM members [47].

The activity of sugar-converting enzymes deserves

special attention in this respect. L-fucose isomerase was

described as expressed at high levels in the GM of

healthy individuals in two earlier studies [5, 33]; further-

more, both L-arabinose and uronate metabolism were

found to be particularly active in one of these previously

analyzed human cohorts [33]. Here, we were also able to

assign these metabolic functions to the main microbial
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taxa actively expressing them, showing a general active

involvement of Faecalibacterium, Bacteroides, and

Prevotella (at different extents) both in the aldose/ketose

interconversion and in the uronate pathway, and pecu-

liar (and possibly interrelated) roles of other genera in

specific enzymatic activities (e.g., isomerization of L-ara-

binose and xylose for Bifidobacterium, L-fucose and

xylose for Ruminococcus). It is also worth noting that

enzymes involved in methanogenesis and sulfate reduc-

tion were detected at much lower abundance when com-

pared to GMs from other human cohorts [7], or even

from different hosts, such as murine models [19],

highlighting the impact of genetics, diet, and gut anat-

omy on the GM structure and metabolic functions,

which can be captured and quantified by means of

(multi-)meta-omic approaches.

The choice of a proper sequence database is a key

issue in MP, as it might have a strong influence both on

identification and annotation yields [48–50]. Recently,

we observed that the use of experimental MG sequences

as MP databases can be useful when dealing with human

samples, and that employing population-based databases

(i.e., combining all MG sequences from the population

under study) provides better results than sample-

matched databases [21]. In keeping with these indica-

tions, a population-based database, containing all MG

read sequences retrieved from the same cohort under

study, was used in this work, with the aim of measuring

the protein expression rate of a given metagenome. We

decided not to apply any sequence assembly strategy to

the reads, although this has been found as beneficial for

functional annotation efficiency and would have led to a

slight increase in peptide identifications (data not

shown), as it would have dramatically reduced the

dynamic range of MG counts, unless using really com-

plex and computationally demanding co-assembly strat-

egies [6]. Concerning functional annotation, we adopted

the same strategy recently applied on human and mouse

GM datasets upon critical evaluations [21]. We acknow-

ledge that the global functional annotation yield of MG

reads presented here is rather low, although the presence

of a considerable amount of unknown and poorly anno-

tated functions is a known issue in metaproteomics.

Concerning taxonomic classification, the global annota-

tion yield was satisfactory, although a non-negligible

portion of functional families, having a high level of

sequence homology within related taxa, could only be

mapped to a specific phylum, but not to lower levels

(e.g., genus). This appears to be likely due to intrinsic

limitations of both shotgun mass spectrometry (being

the length of tryptic peptides quite limited) and the low-

est common ancestor approach used for annotation

(which is not able to discriminate among closely related

orthologs). Improved taxonomic and functional

annotation yields might be expected using different se-

quencing platforms allowing for the generation of longer

reads, as well as employing novel and better performing

annotation tools and databases which are hopefully go-

ing to be released in the near future. Finally, we cannot

also ignore a possible impact of technical variability on

the results (although Illumina sequencing protocols, as

well as the shotgun MP pipeline used [19], are estab-

lished and fairly reproducible), and the use of read and

spectral counts as quantitative measure of abundance

should be recognized as an estimation, although quite

robust and widely used [51, 52], rather than an actual

quantification.

Conclusions
We found that a considerable divergence exists between

functional potential and expression in the GM of a

healthy human cohort. Furthermore, our results give

insights into the understanding of active functions and

metabolic tasks of a “normal” GM, highlighting the over-

all key importance of butyrate production. A detailed

picture is also provided about the specific contribution

of GM taxa to the main functional activities, focusing on

carbohydrate metabolism. Our data suggest that caution

should be used before drawing conclusions on the actual

GM functional activity based on metagenomic data, and

support MP as a valuable approach to investigate the

functional role of the GM in health and disease.

Methods
Samples

Stool samples were collected from 15 healthy Sardinian

volunteers (8 females and 7 males) from the SardiNIA

cohort population. Briefly, the SardiNIA study investigates

genotypic and phenotypic aging-related traits in a longitu-

dinal manner. All residents from 4 towns (Lanusei, Arzana,

Ilbono, and Elini) in a valley in Sardinia (Italy) were invited

to participate. Since November 2001, a total of 6921 indi-

viduals aged 18–102 (>60% of the population eligible for

recruitment in the area) were recruited and the majority of

them (n = 6602) have been assessed for ~13.6 million gen-

etic variants [15]. As detailed in Additional file 1: Table S1,

the median age of the studied subjects at the time of sam-

pling was 39 years (range 22–48), while their median body

mass index (BMI) value was 23.2 (range 18.4–31.2), with a

global distribution widely comparable to that of the general

Italian population at the time of sampling (source: ISTAT

2014). All samples were immediately stored at −80 °C, then

transferred to the Porto Conte Ricerche laboratories in dry

ice, and stored again at −80 °C until use. Then, samples

were thawed at 4 °C and, from each of them, two equal

stool portions (weighing approximately 250 mg each) were

collected, of which the first was subjected to DNA
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extraction for MG analysis and the second underwent pro-

tein extraction for MP analysis.

DNA sample preparation and metagenome sequencing

DNA extraction was undertaken using the QIAamp

DNA Stool Mini Kit (Qiagen, Hilden, Germany), according

to the manufacturer’s protocol.

Libraries were constructed according to the Nextera

XT kit (average insert size ~700 bps) and sequenced

with the HiScanSQ sequencer (both from Illumina, San

Diego, CA, USA), using the paired-end method and 93

cycles of sequencing.

Metagenome bioinformatics

Merging and filtering of paired reads were carried out

using tools from the USEARCH suite v.8.1.1861 [53, 54]

as described previously [21]. The mean length of the

paired-end merged reads was 134 bps. Since sequencing

depth may affect estimation of the relative abundances

of gene categories, filtered reads were subjected to ran-

dom subsampling using the fastx_subsample command

(sample_size 200000). A subsequent evaluation of the

taxonomic and functional information depth revealed

that 96% of taxa and 98% of KEGG functions with rela-

tive abundance >0.01% in the non-subsampled dataset

were maintained upon subsampling. Taxonomic annota-

tion was performed using MEGAN v.5.11.3 [55]. Read

sequences were preliminary subjected to DIAMOND

(v.0.7.1) search against the NCBI-nr DB (2016/03 update),

using the blastx command with default parameters [56].

Then, DIAMOND results were parsed using MEGAN to

perform lowest common ancestor classification according

to default parameters.

Functional annotation was carried out through a DIA-

MOND blastx search (top hit and e-value threshold 10−5)

against bacterial sequences from the UniProt/Swiss-Prot

database (release 2015_12), followed by retrieval of KEGG

orthologous group information associated with each

UniProt/Swiss-Prot accession number [57].

The relative abundance of a taxon/function in a sub-

ject was calculated by summing the number of reads

assigned to that taxon/function and then by dividing the

taxon/function read count by the total read count of the

subject. Only taxa and functions with a relative abun-

dance higher than 0.01% were considered for subsequent

differential analysis.

Protein sample preparation and mass spectrometry

analysis

Samples were resuspended by vortexing in an SDS-

based extraction buffer, heated, and then subjected to a

combination of bead-beating and freeze-thawing steps,

as illustrated elsewhere [19]. Protein extracts were re-

duced, alkylated, and digested on-filter according to the

filter-aided sample preparation (FASP) protocol [58],

with slight modifications reported earlier [59].

An LTQ-Orbitrap Velos mass spectrometer (Thermo

Scientific, San Jose, CA, USA) interfaced with an UltiMate

3000 RSLCnano LC system (Thermo Scientific) was used

for LC-MS/MS analysis. Peptide separation by LC was

carried out as previously described [19], while the mass

spectrometer was set up in a data-dependent MS/MS

mode with HCD as fragmentation method, as detailed

elsewhere [59].

Metaproteome bioinformatics

Peptide identification was performed using Proteome

Discoverer (version 1.4; Thermo Scientific), with

Sequest-HT as search engine and Percolator for peptide

validation (FDR <1%). Search parameters were set as

described previously [60], while the sequence database

was composed of the open reading frames (ORFs) found

using FragGeneScan (v.1.19, with the training for Illumina

sequencing reads with about 0.5% error rate) [61] starting

from the MG reads obtained in this study, upon clustering

at 100% using the dedicated USEARCH tool (25,328,860

sequences in total).

All ORFs matched with at least an MS spectrum upon

database searching (average length 42 amino acids) were

subjected to taxonomic and functional classification,

following the same procedure described above for the

whole metagenome sequences (“Metagenome bioinfor-

matics” section), except using the DIAMOND blastp

command instead of blastx.

The relative abundance of a taxon/function in a subject

was calculated by summing the number of MS spectral

counts matched to all ORFs assigned to that taxon/func-

tion and then by dividing the taxon/function count by the

total MS spectral counts for all taxa/functions detected in

that subject (so that the sum of the abundances of all

taxa/functions detected in each subject is 1). Only taxa

and functions with a relative abundance higher than

0.01% were considered for subsequent differential analysis.

Statistical analysis and graph generation

Bray-Curtis dissimilarity values were computed using

the R package “vegan.” The Wilcoxon signed-rank test

(R package “stats”) was applied with continuity correc-

tion to compare Bray-Curtis dissimilarity values between

MG and MP. The extent of differential abundance of

each feature between two groups (MG versus MP or

Firmicutes versus Bacteroidetes) was calculated for each

subject and expressed as a relative abundance log ratio,

using a correction factor (CF = 10−5) to eliminate discon-

tinuity due to missing values. The global log ratio was

intended as the mean of the log ratios calculated for each

subject. The sets of log ratios were further tested for sig-

nificant deviation from zero using the one-sample t test,
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and an FDR correction was performed on the nominal

two-tailed P values following the Benjamini-Hochberg

method (α = 0.05), as reported previously [7], using the

SGoF+ tool v.3.8 [62].

PCA plots and heatmaps were generated using ClustVis

(http://biit.cs.ut.ee/clustvis) [63], boxplots were created

using BoxPlotR (http://shiny.chemgrid.org/boxplotr) [64],

GraphPad Prism (v.5.03) was employed for bar graph gen-

eration, and cladograms were produced using GraPhlAn

[65] and edited using Inkscape (https://inkscape.org).

KEGG pathway maps [66] were customized by uploading

KO numbers through the “user data mapping” function

on the KEGG website (http://www.kegg.jp).

Additional files

Additional file 1: Table S1. Gender, age, and BMI of the human

subjects selected for the study. Table S2. Metrics of metagenome and

metaproteome analysis. Table S3. Taxonomic and functional annotation

yields. Table S4. Percentage of taxa and functions with differential

abundance between the human gut metagenomes and metaproteomes

analyzed in this study. Table S5. Percentage distribution of conserved

and variable features within the human gut metagenomes and

metaproteomes analyzed in this study. (DOCX 35 kb)

Additional file 2: Figure S1. Principal component analysis plots related

to taxonomic and functional features. MG data are in blue, while MP data

are in red. Each dot (with different shape) represents a different human

subject. (A) phyla; (B) genera; (C) KOGs; (D) KOG-phylum combinations.

(PNG 2001 kb)

Additional file 3: Dataset S1. Abundance and differential data (MG

versus MP) at phylum, class, order, family, genus, KOG, KOG/phylum, and

KOG/genus level. (XLSX 3588 kb)

Additional file 4: Figure S2. Metabolic functions with differential

abundance between MP and MG datasets mapped in the KEGG carbon

metabolism pathway. Red arrows indicate enzymes with significantly

higher abundance in the MP dataset, while blue arrows indicate enzymes

with significantly higher abundance in the MG dataset. (PNG 76 kb)

Additional file 5: Dataset S2. Relative abundance and differential

analysis outputs concerning Firmicutes and Bacteroidetes KOGs,

according to MG and MP data. (XLSX 101 kb)

Additional file 6: Figure S3. Metabolic functions with differential

abundance between Firmicutes and Bacteroidetes according to the MG

dataset, mapped in the KEGG carbon metabolism pathway. Purple arrows

indicate genes with significantly higher abundance in Firmicutes, orange

arrows indicate genes with significantly higher abundance in

Bacteroidetes, and gray arrows indicate genes detected in one or both

phyla but with no differential abundance. (PNG 37 kb)

Additional file 7: Figure S4. Metabolic functions with differential

abundance between Firmicutes and Bacteroidetes according to the MP

dataset, mapped in the KEGG carbon metabolism pathway. Purple arrows

indicate proteins with significantly higher abundance in Firmicutes,

orange arrows indicate proteins with significantly higher abundance in

Bacteroidetes, and gray arrows indicate proteins detected in one or both

phyla but with no differential abundance. (PNG 38 kb)
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